

Clarion for Windows 1.5
COPYRIGHT 1985, 1986, 1988, 1990, 1992, 1994, 1995 by TopSpeed Corporation
All rights reserved.

This reference is protected by copyright and all rights are reserved by TopSpeed Corporation. It may not,
in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form without prior consent, in writing, from TopSpeed Corporation.

This reference supports Clarion for Windows. It is possible that it may contain technical or typographical
errors. TopSpeed Corporation provides this publication "as is," without warranty of any kind, either
expressed or implied.

TopSpeed Corporation
150 East Sample Road
Pompano Beach, Florida 33064
(305) 785-4555

TopSpeed Software Limited
Clare House, Thompsons Close
Harpenden, Herts AL5 4ES
United Kingdom
+44 (0)158 276 3200

Trademark Acknowledgements:

TopSpeed is a registered trademark of TopSpeed Corporation.
Clarion for Windows is a trademark of TopSpeed Corporation
Btrieve is a registered trademark of Btrieve Technologies.
Visual Basic, Windows, Windows 95, and Windows NT are registered trademarks of Microsoft
Corporation.
All other products and company names are trademarks of their respective owners.

Version 1.500
0995

The following employees participated
 in the creation of Clarion for Windows:

(In alphabetical order)
NANCY AUGUSTE

BRUCE BARRINGTON
LINDA BART

GEORGE BARWOOD
DAVID BAYLISS

SUSANNE BOSTIC
PAM BRECHLIN

JOHN BROADWATER
DOUG BROWN
TRENT BUCK

RICHARD CHAPMAN
ILKA CIOCANEL

JIM DeFABIA
CARON DETTMANN

SCOTT FERRETT
MARK FRITZINGER

BOB FOREMAN
VINCE GEORGE

GAVIN HALLIDAY
ROY HAWKES
SUSAN HELMS

JOHN HERRON, Jr.
DEBBY HERMAN

NIGEL HICKS
MARCIA HOLMES

KHRIS HOVEN
JOHN IACOVELLI
ANDY IRELAND
STEVEN JAMES

GEORGE LANITIS
LINDA LONIGRO

BARBARA KLEPEISZ
ANNA KRAUSS
BARRY LYNCH
BILLMcCOMBS

CARLOS MARRERO
CHARLENE MILLER

TOM MOSELEY
GILDAR PASSOS
OLE POULSEN

HELEN POUSTIAN
ROY RAFALCO
PATRICK RYAN
LISA SIMMONS

FRANCIS SINYANGWE
H. JOHN SCOTT

RICHARD TAYLOR
CHRISTINE TIMMIS

JEFF TRUDEL
RANDY WOOD
BOB ZAUNERE

Special thanks to the thousands of Beta testers who helped make this product possible.

Additional thanks to the shareholders and Team TopSpeed.

Team TopSpeed

Clarion for Windows Team TopSpeed Members:
Dave Harms (Team Leader)

Ross Santos
Bob Butler

Andy Stapleton
Larry Teames

Steve Bottomly
Randy Goodhew

Todd Seidel
Nigel Moss
Lee White

Clarion for DOS Team TopSpeed Members:
Nik Johnson (Team Leader)

Tom Stevens
Andy Stapleton

George Hale
Sam Bellamy

Nick Van Eldyk
Bruce Wells

Gregory Bailey

FidoNet/Internet Team TopSpeed Members:
Mike Gould
Colin Wynn

Ray Creighton

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction

Introduction

Language Reference Organization

Reference Item Format

KEYWORD (short description of intended use)

Conventions and Symbols

 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format

Program Source Code Format

Statement Format

Declaration and Statement Labels

Structure Termination

Field Qualification

Reserved Words

Special Characters

Program Format

PROGRAM (declare a program)

MEMBER (identify member source file)

MAP (declare PROCEDURE and/or FUNCTION prototypes)

MODULE (specify MEMBER source file)

PROCEDURE (declare a procedure)

FUNCTION (declare a function)

CODE (begin executable statements)

ROUTINE (declare local subroutine)

END (terminate a structure)

Statement Execution Sequence

PROCEDURE and FUNCTION Calls

Procedure Prototyping

FUNCTION and PROCEDURE Prototypes

FUNCTION Return Types

RAW

NAME

TYPE

Parameter Passing

Parameter Types

Passing Parameters of Unspecified Data Type

Passing GROUPs and QUEUEs as Parameters

Passing Arrays as Parameters

Program Structure Compiler Directives

BEGIN (define code structure)

COMPILE (specify source to be compiled)

EJECT (start new listing page)

INCLUDE (compile code in another file)

OMIT (specify source not to be compiled)

SECTION (specify source code section)

SUBTITLE (print MODULE subtitle)

TITLE (print MODULE title)

 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables

Declaring Variables

Variable Declaration Statements

BYTE (one-byte unsigned integer)

SHORT (two-byte signed integer)

USHORT (two-byte unsigned integer)

LONG (four-byte signed integer)

ULONG (four-byte unsigned integer)

SREAL (four-byte signed floating point)

REAL (eight-byte signed floating point)

BFLOAT4 (four-byte signed floating point)

BFLOAT8 (eight-byte signed floating point)

DECIMAL (signed packed decimal)

PDECIMAL (signed packed decimal)

STRING (fixed-length string)

CSTRING (fixed-length null terminated string)

PSTRING (embedded length-byte string)

DATE (four-byte date)

TIME (four-byte time)

GROUP (compound data structure)

LIKE (inherited data type)

Implicit Variables

Reference Variables

Attributes of Variables

PRE (set group label prefix)

DIM (set array dimensions)

DLL (set variable defined externally in

EXTERNAL (set variable defined externally)

NAME (set variables external name)

OVER (set shared memory location)

STATIC (set local variable static)

THREAD (set thread-specific static variable)

BINDABLE (set dynamic expression string variables)

AUTO (uninitialized local variable)

TYPE (GROUP type definition)

Data Declarations and Memory Allocation

Global, Local, Static, and Dynamic

Data Declaration Sections

Picture Tokens

Numeric and Currency Pictures

Scientific Notation Pictures

Date Pictures

Time Pictures

Pattern Pictures

Key-in Template Pictures

String Pictures

Compiler Directives

EQUATE (assign label)

SIZE (memory size in bytes)

 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments

Expressions and Assignments

Expressions

Expression Evaluation

Arithmetic Operators

Logical Operators

Numeric Constants

Numeric Expressions

String Constants

The Concatenation Operator

String Expressions

Implicit String Arrays and String Slicing

Logical Expressions

Runtime Expression Strings

BIND (declare runtime expression string variable)

UNBIND (free runtime expression string variable)

EVALUATE (return runtime expression string result)

Assignment Statements

Simple Assignment Statements

Operating Assignment Statements

Deep Assignment Statements

Reference Assignment Statements

CLEAR (clear a variable)

Data Conversion Rules

Base Types

BCD Operations and Functions

Type Conversion and Intermediate Results

Simple Assignment Data Conversion

 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views

 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements

Control Statements

Control Structures

CASE (conditional execution structure)

EXECUTE (statement selection structure)

IF (conditional execution structure)

LOOP (iteration structure)

Control Statements

BREAK (immediately leave loop)

CHAIN (execute another program)

CYCLE (go to top of loop)

DO (call a ROUTINE)

EXIT (leave a ROUTINE)

GOTO (go to a label)

HALT (exit program)

IDLE (arm periodic procedure)

RETURN (return to caller)

RUN (execute command)

STOP (suspend program execution)

 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures

Window Structures

Clarion Windows

Window Overview

Control Fields and Input Focus

Field Equate Labels

Window Structure Statements

APPLICATION (declare an MDI frame window)

WINDOW (declare a dialog window)

APPLICATION and WINDOW Attributes

ALRT (set window hot keys)

AT (set window position and size)

AUTO (set USE variable automatic re-display)

CENTER (set position and size)

CURSOR (set mouse cursor type)

DOUBLE, NOFRAME, RESIZE (set window border)

FONT (set window default font)

GRAY (set 3-D look background)

HLP (set windows on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

ICON (set window icon)

ICONIZE (set window open as icon)

IMM (set immediate resize event notification)

MASK (set pattern editing data entry)

MAX (set maximize control)

MAXIMIZE (set window open maximized)

MDI (set MDI child window)

MODAL (set system modal window)

MSG (set window status bar message)

PALETTE (set number of hardware colors)

STATUS (set status bar)

SYSTEM (set system menu)

TOOLBOX (set toolbox window behavior)

TIMER (set periodic event)

MENUBAR and TOOLBAR Structures

MENUBAR (declare a pulldown menu)

TOOLBAR (declare a tool bar)

MENUBAR and TOOLBAR Attributes

CURSOR (set toolbar mouse cursor type)

FONT (set toolbar default font)

NOMERGE (set merging behavior)

MENUBAR Controls

MENU (declare a menu box)

ITEM (declare a menu item)

TOOLBAR and WINDOW Control Fields

BOX (declare a window box control)

BUTTON (declare a pushbutton control)

CHECK (declare a window checkbox control)

COMBO (declare an entry/list control)

CUSTOM (declare a window .VBX custom control)

ELLIPSE (declare a window ellipse control)

ENTRY (declare a data entry control)

GROUP (declare a group of window controls)

IMAGE (declare a window graphic image control)

LINE (declare a window line control)

LIST (declare a window list control)

OPTION (declare a group of window RADIO controls)

PROMPT (declare a prompt control)

RADIO (declare a window radio button control)

REGION (declare a window region control)

SPIN (declare a spinning list control)

STRING (declare a window string control)

TEXT (declare a multi-line data entry control)

Control Field Attributes

ALRT (set control hot keys)

AT (set control position and size in window)

BOXED (set window controls group border)

CAP, UPR (set display case)

CHECK (set on/off ITEM)

CLASS (set .VBX custom control class)

COLOR (set control display color)

COLUMN (set list box highlight bar)

CURSOR (set control mouse cursor type)

DEFAULT (set enter key button)

DISABLE (set control dimmed at open)

DROP (set list box behavior)

DRAGID (set drag-and-drop host signatures)

DROPID (set drag-and-drop target signatures)

FILL (set display fill color)

FIRST, LAST (set MENU or ITEM position)

FONT (set control font)

FORMAT (set LIST or COMBO layout)

FROM (set window listbox data source)

FULL (set full-screen)

HIDE (set control hidden at open)

HLP (set controls on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)

ICON (set control icon)

IMM (set immediate event notification)

INS, OVR (set typing mode)

KEY (set control execution keycode)

LEFT, RIGHT, CENTER, DECIMAL (set display justification)

MARK (set multiple selection mode)

MSG (set control status bar message)

NOBAR (set no highlight bar)

PASSWORD (set data non-display)

RANGE (set SPIN range limits)

READONLY (set display-only)

REQ (set required entry)

RIGHT (set MENU position)

ROUND (set round-cornered window BOX)

SCROLL (set scrolling control)

SEPARATOR (set separator line ITEM)

SKIP (set Tab key skip)

STD (set standard behavior)

STEP (set SPIN increment)

TRN (set transparent window string)

USE (set control variable or equate label)

VCR (set VCR control)

 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands

Window Commands

Event Processing

Event-driven programming

ACCEPT (the event processor)

ALERT (set event generation key)

EVENT (return event number)

POST (post user-defined event)

YIELD (allow event processing)

Multi-Threaded Applications

Multi-Threading and MDI

Multi-Threading vs. Multi-Tasking

START (return new execution thread)

THREAD (return current execution thread)

Window Procedures

CHANGE (change control field value)

CLOSE (close window)

CREATE (create new control)

DISABLE (dim a control)

DISPLAY (write USE variables to screen)

ENABLE (re-activate dimmed control)

ERASE (clear screen control and USE variables)

GETFONT (get font information)

GETPOSITION (get control position)

HELP (help window access)

HIDE (blank a control)

OPEN (open window for processing)

SELECT (select next control to process)

SET3DLOOK (set 3D window look)

SETCURSOR (set temporary mouse cursor)

SETFONT (specify font)

SETPOSITION (specify new control position)

SETTARGET (set current window or report)

UNHIDE (show hidden control)

UPDATE (write from screen to USE variables)

Window Functions

ACCEPTED (return control just completed)

CHOICE (return relative item position)

CONTENTS (return contents of USE variable)

FIELD (return control with focus)

FIRSTFIELD (return first window control)

FOCUS (return control with focus)

INCOMPLETE (return empty REQ control)

LASTFIELD (return last window control)

MESSAGE (return message box response)

MOUSEX (return mouse horizontal position)

MOUSEY (return mouse vertical position)

SELECTED (return control that has received focus)

Keyboard Procedures

ALIAS (set alternate keycode)

ASK (get one keystroke)

PRESS (put characters in the buffer)

PRESSKEY (put a keystroke in the buffer)

SETKEYCODE (specify keycode)

Keyboard Functions

KEYBOARD (return keystroke waiting)

KEYCHAR (return ASCII code)

KEYCODE (return last keycode)

KEYSTATE (return keyboard status)

Windows Standard Dialog Functions

COLORDIALOG (return chosen color)

FILEDIALOG (return chosen file)

FONTDIALOG (return chosen font)

PRINTERDIALOG (return chosen printer)

Drag and Drop Processing

CLIPBOARD (return windows clipboard contents)

DRAGID (return matching drag-and-drop signature)

DROPID (return drag-and-drop string)

SETCLIPBOARD (set windows clipboard contents)

SETDROPID (set DROPID return string)

Maintaining INI Files

GETINI (return INI file entry)

PUTINI (set INI file entry)

 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports

Reports

Reports in Windows

Page Overflow

Report Structure

REPORT (declare a report structure)

AT (set detail print area)

FONT (set report default font)

PRE (set report label prefix)

PREVIEW (set report output to metafiles)

LANDSCAPE (set page orientation)

THOUS, MM, POINTS (set report coordinate measure)

Print Structures

BREAK (declare group break structure)

DETAIL (report detail line structure)

FOOTER (page or group footer structure)

FORM (page layout structure)

HEADER (page or group header structure)

Print Structure Attributes

ABSOLUTE (set fixed-position printing)

ALONE (set to print without page header, footer, or form)

AT (set print structure position and size)

FONT (set print structure default font)

PAGEAFTER (set page break after)

PAGEBEFORE (set page break first)

USE (set structure equate label)

WITHNEXT (set widow elimination)

WITHPRIOR (set orphan elimination)

Report Controls

BOX (declare a report box control)

CHECK (declare a report checkbox control)

CUSTOM (declare a report .VBX custom control)

ELLIPSE (declare a report ellipse control)

GROUP (declare a group of report controls)

IMAGE (declare a report graphic image control)

LINE (declare a report line control)

LIST (declare a report list control)

OPTION (declare a group of report RADIO controls)

RADIO (declare a report radio button control)

STRING (declare a report string control)

TEXT (declare a multi-line text control)

Control Attributes

AT (set control position and size in report)

AVE (set total average)

BOXED (set report controls group border)

CAP, UPR (set print case)

CNT (set total count)

COLOR (set color)

FILL (set print fill color)

FONT (set default font)

FORMAT (set LIST print format)

FROM (set report listbox data source)

HIDE (set control non-print)

LEFT, RIGHT, CENTER, DECIMAL (set print justification)

MAX (set total maximum)

META (set .VBX to print as .WMF)

MIN (set total minimum)

PAGE (set page total reset)

PAGENO (set page number print)

RESET (set total reset)

ROUND (set round-cornered report BOX)

SUM (set total)

TRN (set transparent report string)

USE (set code reference name)

Report Procedures

CLOSE (close an active report structure)

ENDPAGE (force page overflow)

OPEN (open a report structure for processing)

PRINT (print a report structure)

 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands

Graphics Commands

Graphics Overview

The Current Target

Graphics Coordinates

Graphics Procedures

ARC (draw an arc of an ellipse)

BLANK (erase graphics)

BOX (draw a rectangle)

CHORD (draw a section of an ellipse)

ELLIPSE (draw an ellipse)

IMAGE (draw a graphic image)

LINE (draw a straight line)

PIE (draw a pie chart)

POLYGON (draw a multi-sided figure)

ROUNDBOX (draw a box with round corners)

SETPENCOLOR (set line draw color)

SETPENSTYLE (set line draw style)

SETPENWIDTH (set line draw thickness)

SHOW (write to screen)

TYPE (write string to screen)

Graphics Functions

PENCOLOR (return line draw color)

PENSTYLE (return line draw style)

PENWIDTH (return line draw thickness)

 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes

 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files

Data Files

Data File Structures

FILE (declare a data file structure)

CREATE (allow data file creation)

DRIVER (specify data file type)

NAME (set filename)

ENCRYPT (encrypt data file)

OWNER (declare password for data encryption)

RECLAIM (reuse deleted record space)

PRE (set file label)

BINDABLE (set runtime expression string RECORD variables)

THREAD (set thread-specific record buffer)

File Structure Statements

INDEX (declare static file access index)

KEY (declare dynamic file access index)

MEMO (declare a text field)

RECORD (declare record structure)

INDEX, KEY and MEMO Attributes

BINARY (MEMO contains binary data)

DUP (allow duplicate KEY entries)

NOCASE (case insensitive KEY or INDEX)

PRIMARY (set relational primary key)

OPT (exclude null KEY or INDEX entries)

NAME (set external name)

File Commands

BUILD (build keys and indexes)

CLOSE (close a data file)

COPY (copy a data file)

CREATE (create an empty data file)

EMPTY (empty a data file)

FLUSH (flush DOS buffers)

LOCK (exclusive file access)

OPEN (open a data file)

PACK (remove deleted records)

REMOVE (erase the data file)

RENAME (change data file directory name)

SHARE (open a data file)

STREAM (enable DOS buffering)

UNLOCK (unlock a locked data file)

Record Access Commands

ADD (add a new file record)

APPEND (add a new file record)

DELETE (delete a file record)

GET (read a file record by direct access)

HOLD (exclusive file record access)

NEXT (read next file record in sequence)

NOMEMO (read file record without reading memo)

PREVIOUS (read previous file record in sequence)

PUT (write record back to file)

RELEASE (release a held file record)

REGET (reget file record)

RESET (reset file record sequence position)

SET (initiate sequential file processing)

SKIP (bypass file records in sequence)

WATCH (automatic file concurrency check)

File Functions

BOF (beginning of file function)

BYTES (return size in bytes)

DUPLICATE (check for duplicate key entries)

EOF (end of file function)

POINTER (return relative record position)

POSITION (return file record sequence position)

RECORDS (return number of file or key records)

SEND (send message to file driver)

Transaction Processing

COMMIT (terminate successful transaction)

LOGOUT (begin transaction)

ROLLBACK (terminate unsuccessful transaction)

Null Data Processing

NULL (return null file field)

SETNULL (set file field null)

SETNONNULL (set file field non-null)

 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views

File Views

View Structures

VIEW (declare a virtual file)

FILTER (set view filter expression)

PROJECT (set view fields)

JOIN (declare a join operation)

View Commands

CLOSE (close a VIEW)

OPEN (open a VIEW)

DELETE (delete a view primary file record)

HOLD (exclusive view record access)

NEXT (read next view record in sequence)

NOMEMO (read view record without reading memos)

PREVIOUS (read previous view record in sequence)

PUT (write VIEW primary file record back)

REGET (reget view record)

RELEASE (release a held view record)

RESET (reset view record sequence position)

SKIP (bypass view records in sequence)

WATCH (automatic view concurrency check)

View Functions

POSITION (return view record sequence position)

 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues

Memory Queues

Queue Structure

QUEUE (declare a memory QUEUE structure)

PRE (set label prefix)

STATIC (set local queue static)

THREAD (set thread-specific static queue)

NAME (set queue variable external name)

TYPE (QUEUE type definition)

Queue Procedures

ADD (add an entry)

DELETE (delete an entry)

FREE (delete all entries)

GET (read an entry)

PUT (write an entry)

SORT (sort entries)

Queue Functions

POINTER (return last entry position)

RECORDS (return number of entries)

 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions

Miscellaneous Procedures and Functions

Mathematical Functions

ABS (return absolute value)

INRANGE (check number within range)

INT (truncate fraction)

LOGE (return natural logarithm)

LOG10 (return base 10 logarithm)

RANDOM (return random number)

ROUND (return rounded number)

SQRT (return square root)

Trigonometric Functions

SIN (return sine)

COS (return cosine)

TAN (return tangent)

ASIN (return arcsine)

ACOS (return arccosine)

ATAN (return arctangent)

String Functions

ALL (return repeated characters)

CENTER (return centered string)

CHR (return character from ASCII)

CLIP (return string without trailing spaces)

DEFORMAT (remove formatting from numeric string)

FORMAT (format numbers into a picture)

INLIST (search for entry in list)

INSTRING (search for substring)

LEFT (return left justified string)

LEN (return length of string)

LOWER (return lower case)

NUMERIC (check numeric string)

RIGHT (return right justified string)

SUB (return substring of string)

UPPER (return upper case)

VAL (return ASCII value)

Bit Manipulation Functions

BAND (return bitwise AND)

BOR (return bitwise OR)

BXOR (return bitwise exclusive OR)

BSHIFT (return shifted bits)

Date / Time Procedures and Functions

Standard Date

Standard Time

TODAY (return system date)

SETTODAY (set system date)

CLOCK (return system time)

SETCLOCK (set system time)

DATE (return standard date)

DAY (return day of month)

MONTH (return month of date)

YEAR (return year of date)

AGE (return age from base date)

DOS Procedures and Functions

COMMAND (return command line)

PATH (return current DOS directory)

RUNCODE (return DOS exit code)

SETCOMMAND (set command line parameters)

SETPATH (change current drive and directory)

Error Reporting Functions

ERROR (return error message)

ERRORCODE (return error code number)

ERRORFILE (return error filename)

FILEERROR (return file driver error message)

FILEERRORCODE (return file driver error code number)

Other Procedures and Functions

ADDRESS (return a memory address)

BEEP (sound tone on speaker)

CALL (call procedure from a DLL)

MAXIMUM (return maximum subscript value)

NAME (return DOS file or device name)

OMITTED (check omitted parameters)

 DDE Library Reference
 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference

DDE Library Reference

Dynamic Data Exchange

DDE Events

DDE Functions

DDESERVER (return DDE server channel)

DDECLIENT (return DDE client channel)

DDEQUERY (return registered DDE servers)

DDECHANNEL (return DDE channel number)

DDEAPP (return server application)

DDEITEM (return server item)

DDETOPIC (return server topic)

DDEVALUE (return data value sent to server)

DDE Procedures

DDEREAD (get data from DDE server)

DDEWRITE (provide data to DDE client)

DDEEXECUTE (send command to DDE server)

DDEPOKE (send unsolicited data to DDE server)

DDECLOSE (terminate DDE server link)

 Keycodes
 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes

Keycodes

Clarion Keycodes

Windows Keycode Mapping Format

KEYCODES.CLW

 Properties
 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties

Data Structure Properties

Built-in Variables

Property Expressions

Attribute Property Equates

List Box Format String Properties

Other Properties

List Box Mouse Click Properties

Undeclared Properties

Printer Control Properties

Embedded SQL

 Events

Language Reference
 Introduction
 Program Source Code Format
 Declaring Variables
 Expressions and Assignments
 Control Statements
 Window Structures
 Window Commands
 Reports
 Graphics Commands
 Data Files
 File Views
 Memory Queues
 Miscellaneous Procedures and Functions
 DDE Library Reference
 Keycodes
 Properties
 Events

Events

Field-Independent Events

Field-Specific Events

Introduction
Clarion for Windows is an integrated environment for writing data processing applications and
management information systems for microcomputers using the Windows operating environment. Clarion
´s programming language is the foundation of this environment. In this reference, the language is
concisely documented in a modular fashion. Although this is not a text book, you should consult this
reference when you want to know the precise syntax required to implement any declaration, statement, or
function.

As far as possible, real-world example code is provided for each item.

Language Reference Organization
Introduction provides an introduction to the Clarion Language Reference. It provides a brief overview of
the contents of each chapter, and a guide to help the reader understand the documentation conventions
used throughout the book.

Program Source Code Format provides the general layout of a Clarion Windows program. Punctuation,
special characters, reserved words, and a detailed description of the "building blocks" required to create
modular, structured Clarion source code are documented here.

Declaring Variables describes the data types and attributes used to declare variables in a Clarion
program. In addition, formatting masks, called "picture tokens," are defined and illustrated.

Expressions and Assignments defines the syntax required to combine variables, functions, and
constants into numeric, string, or logical expressions. It also defines how the value of an expression is
assigned to variables.

Control Statements describes compound executable statements that control program flow and
operation.

Window Structures describes the APPLICATION and WINDOW data structures and all their components
and attributes.

Window Commmands describes the executable statements and functions that are specific to
APPLICATION and WINDOW structures.

Reports describes the REPORT data structure and all its components and attributes. The executable
statements and functions that are specific to using a REPORT structure are also covered here.

Graphics Commands describes executable statements and functions that draw graphical figures in
APPLICATION, WINDOW, and REPORT structures.

Data Files describes the FILE structure. This chapter covers the declarations, statements, and functions
which access data files. The statements and functions required for multi-user and transaction processing
systems are also documented here.

File Views describes the VIEW structure. This chapter covers the declarations, statements, and functions
which access data files through the VIEW structure.

Memory Queues describes the QUEUE data structure, which is used to rapidly process information in
random access memory. Along with all its components and attributes, the executable statements and
functions that are specific to using a memory QUEUE are also covered here.

Miscellaneous Procedures and Functions documents the statements and functions that do not
specifically apply to the subjects covered in chapters 1 through 12.

DDE Library Reference

Clarion Keycodes

Reference Item Format
Each Clarion programming language element listed in this reference is displayed in UPPER CASE letters.
Components of the language are documented with a syntax diagram, a detailed description, and source
code examples.

Items are documented in logical groupings, dependent upon their hierarchical relationships. Therefore,
the "table of contents" for this part of the help is not listed in alphabetical order. You can find alphabetical
listings in the syntax and attributes topics, or by pressing the Search button.

The documentation format used in this book is illustrated in the syntax diagram .

KEYWORD (short description of intended use)
[label] KEYWORD(| parameter1 | [parameter2]) [ATTRIBUTE1()] [ATTRIBUTE2()]

 | alternate |
 | parameter |
 | list |

KEYWORD A brief statement of what the KEYWORD does.

parameter1 A complete description of parameter1, along with how it relates
to parameter2 and the KEYWORD.

parameter2 A complete description of parameter2, along with how it relates
to parameter1 and the KEYWORD. Because it is enclosed in brackets, [], it is optional, and may
be omitted.

alternate parameter list
A complete description of alternates to parameter1, along with how they relate to parameter2 and
the KEYWORD.

ATTRIBUTE1 A sentence describing the relation of ATTRIBUTE1 to the
KEYWORD.

ATTRIBUTE2 A sentence describing the relation of ATTRIBUTE2 to the
KEYWORD.

A concise description of what the KEYWORD does. In many cases the KEYWORD will be an attribute of
a keyword that was described in the preceding text. Sometimes a KEYWORD has no parameters and/or
attributes.

Events Generated: If the KEYWORD generates events, they are listed here.

Return Data Type: The data type returned if KEYWORD is a function.

Errors Posted: If KEYWORD posts errors which may be trapped by the ERROR and ERRORCODE
functions, they are listed here.

Example:
FieldOne = FieldTwo + FieldThree !This is a source code example
FieldThree = KEYWORD(FieldOne,FieldTwo) !Comments follow the "!" character

See Also:   

Related Topic

Related Topic

Conventions and Symbols
Symbols are used in the syntax diagrams as follows:

 Symbol Meaning

 [] Brackets enclose an optional (not required) attribute or
parameter.

 () Parentheses enclose a parameter list.

 | | Vertical lines enclose parameters, where one, but only one, of the
parameters is allowed.

Coding example conventions used throughout this manual:

CLARION KEYWORDS All caps

DataNames Mixed case with caps used for readability

Comments Predominantly lower case

The purpose of these conventions is to make the code examples readable and clear.

Related Topic
CLICKING on a hotspot takes you to the related topic

Related Attribute
CLICKING on a hotspot takes you to the related topic

Program Source Code Format
Statement Format

Declaration and Statement Labels

Structure Termination

Field Qualification

Reserved Words

Special Characters

Program Format

PROGRAM (declare a program)

MEMBER (identify member source file)

MAP (declare PROCEDURE and/or FUNCTION prototypes)

MODULE (specify MEMBER source file)

PROCEDURE (declare a procedure)

FUNCTION (declare a function)

CODE (begin executable statements)

ROUTINE (declare local subroutine)

END (terminate a structure)

Statement Execution Sequence

PROCEDURE and FUNCTION Calls

Procedure Prototyping

FUNCTION and PROCEDURE Prototypes

FUNCTION Return Types

RAW

NAME

TYPE (specify procedure or function type defintion)

PROC (set function called as procedure without warnings)

PRIVATE (set procedure private to a single module)

Parameter Passing

Parameter Types

Passing Parameters of Unspecified Data Type

Passing GROUPs and QUEUEs as Parameters

Passing Arrays as Parameters

Program Structure Compiler Directives

BEGIN (define code structure)

COMPILE (specify source to be compiled)

EJECT (start new listing page)

INCLUDE (compile code in another file)

OMIT (specify source not to be compiled)

SECTION (specify source code section)

SUBTITLE (print MODULE subtitle)

TITLE (print MODULE title)

Statement Format
Clarion is a "statement oriented" language. A statement oriented language makes use of the fact that its
source code is contained in ASCII text files so every line of code is a separate record in the file.
Therefore, the Carriage Return/Line Feed record delimiter can be used to eliminate punctuation.

In general, the Clarion statement format is:
label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]] ...

Attributes specify the properties of the item and are only used on data declarations. Executable
statements take the form of a standard procedure call, except assignment statements (A = B) and control
structures (such as IF, CASE, and LOOP).

A statement´s label must begin in column one (1) of the source code. A statement without a label must not
start in column one. A statement is terminated by the end of the line. A statement too long to fit on one line
can be continued by a vertical bar (|). The semi-colon is an optional statement separator that allows you
to place more than one statement on a line.

Being a statement oriented language eliminates from Clarion much of the punctuation required in other
languages to identify labels and separate statements. Blocks of statements are initiated by a single
compound statement, and are terminated by an END statement (or period).

Declaration and Statement Labels
The language statements in a source module can be divided into two general categories: data
declarations and executable statements, or simply "data" and "code."

During program execution, data declarations reserve memory storage areas that are manipulated by
executable statements. A label is required for the data to be referenced in executable code. All variables,
data structures, PROCEDUREs, FUNCTIONs, and ROUTINEs are referenced by labels.

A label defines a specific location in a PROGRAM. Any code statement may be identified and referenced
by a label. This allows it to be used as the target of a GOTO statement. Each label on an executable
statement adds ten bytes to the executable code size, even if not referenced.

The label on a PROCEDURE or FUNCTION statement is the procedure or function´s name. Using the
label of a PROCEDURE in an executable statement executes the procedure. The label of a FUNCTION is
used in expressions, or parameter lists of other functions, to assign the value returned by the function.

The rules for valid Clarion labels are:

 A label MUST begin in column one (1) of the source code.

 A label may contain letters (upper or lower case), numerals 0 through 9, the underscore
character (_), and colon (:).

 The first character must be a letter or the underscore character.

 Labels are not case sensitive (i.e. CurRent and CURRENT are the same).

 A label may not be a reserved word.

Structure Termination
Compound data structures are created when data declarations are nested within other data declarations.
There are many compound data structures within the Clarion language: APPLICATION, WINDOW,
REPORT, FILE, RECORD, GROUP, VIEW, etc. These compound data structures must be terminated by a
period (.) or the keyword END. IF, CASE, EXECUTE, LOOP, BEGIN, and ACCEPT are all executable
control structures which must also be terminated with a period or END statement.

Field Qualification
Variables declared as members of complex data structures (GROUP, QUEUE, FILE, RECORD, etc.) may
have duplicate labels, as long as the duplicates are not contained within the same structure. To explicitly
reference fields with duplicate labels in separate structures, you may use the PRE attribute on the
structures just as it is documented (Prefix:FieldLabel) to provide unique names for each field. However,
the PRE attribute is not required for this purpose and may be omitted.

Any field of any complex structure can be explicitly referenced by prepending the label of the structure
containing the field to the field label, separated by a colon (StructureName:FieldLabel). You must use this
Field Qualification syntax to reference any field in a complex structure that does not have a PRE attribute.

If the field is within nested complex data structures, you must prepend each successive level's structure
label to the field label to explicitly reference the field (if the nested structure has a label). This means that,
in the case of a FILE structure (without a PRE attribute) in which the RECORD structure has a label, the
individual fields in the file must be referenced as FileLabel:RecordLabel:FieldLabel. If the FILE's
RECORD structure does not have a label, the individual fields are referenced as FileLabel:FieldLabel.

Example:
MasterFile FILE,DRIVER('TopSpeed')
Record RECORD
AcctNumber LONG !Referenced as Masterfile:Record:AcctNumber

 . .
Detail FILE,DRIVER('TopSpeed')

RECORD
AcctNumber LONG !Referenced as Detail:AcctNumber

 . .
Memory GROUP,PRE(Mem)
Message STRING(30) !May be referenced as Mem:Message or Memory:Message

 END
SaveQueue QUEUE
Field1 LONG !Referenced as SaveQueue:Field1
Field2 STRING !Referenced as SaveQueue:Field2

END
OuterGroup GROUP
Field1 LONG !Referenced as OuterGroup:Field1
Field2 STRING !Referenced as OuterGroup:Field2
InnerGroup GROUP
Field1 LONG !Referenced as OuterGroup:InnerGroup:Field1
Field2 STRING !Referenced as OuterGroup:InnerGroup:Field2

END
END

See Also: PRE

Reserved Words
The following keywords are reserved and may not be used as labels:
ACCEPT
AND
BEGIN
BREAK
BY
CASE
COMPILE
CYCLE
DO
EJECT
ELSE
ELSIF
EMBED
END
ENDEMBED
EXECUTE
EXIT
FUNCTION
GOTO
IF
INCLUDE
LOOP
MEMBER
NOT
OF
OMIT
OR
OROF
PROCEDURE
PROGRAM
RETURN
ROUTINE
SECTION
THEN
TIMES
TO
UNTIL
WHILE
XOR
The following keywords may be used as labels of data structures or executable statements. They may not
be used as labels of PROCEDURE or FUNCTION statements:

APPLICATION
CODE
DETAIL
FILE
FOOTER
FORM
GROUP
HEADER
ITEM
MAP
MENU
MENUBAR
MODULE
OPTION
QUEUE
RECORD
REPORT
SUBTITLE
TITLE
TOOLBAR
VIEW
WINDOW

Special Characters

Initiators:
 ! Exclamation point begins a source code comment.
 ? Question mark begins a field equate label.
 @ "At" sign begins a picture token.
 * Asterisk begins a parameter passed by address in a MAP prototype.

Terminators:
 ; Semi-colon is an executable statement separator.
 CR/LF Carriage-return/Line-feed is an executable statement separator.
 . Period terminates a structure.
 | Vertical bar is the source code line continuation character.
 # Pound sign declares an implicit LONG variable.
 $ Dollar sign declares an implicit REAL variable.
 " Double quote declares an implicit STRING variable.

Delimiters:
 () Parentheses enclose a parameter list.
 [] Brackets enclose an array subscript list.
 ´ ´ Single quotes enclose a string constant.
 { } Curly braces enclose a repeat count in a string constant, or a

 control field property parameter to a field equate label in an
assignment statement.

 < > Angle brackets enclose an ASCII code in a string constant, or
indicate a parameter in a MAP prototype which may be omitted.

 : Colon separates the start and stop positions of a string "slice."

Connecters:
 . Period is a decimal point used in numeric constants.
 , Comma connects parameters in a parameter list.
 : Colon connects a prefix to a label or character groups within a label.
 $ Dollar sign connects the window to a field equate label in a control

property assignment statement.
 _ Underscore connects character groups within a label.

Operators:
 + Plus sign indicates addition.
 - Minus sign indicates subtraction.
 * Asterisk indicates multiplication.
 / Slash indicates division.
 % Percent sign indicates modulus division.
 ^ Carat indicates exponentiation.
 < Left angle bracket indicates less than.
 > Right angle bracket indicates greater than.
 = Equal sign indicates assignment or equivalence.
 ~ Tilde indicates the logical "NOT" operator.
 & Ampersand indicates concatenation.

Program Format
PROGRAM (declare a program)

MEMBER (identify member source file)

MAP (declare PROCEDURE and/or FUNCTION prototypes)

MODULE (specify MEMBER source file)

PROCEDURE (declare a procedure)

FUNCTION (declare a function)

CODE (begin executable statements)

ROUTINE (declare local subroutine)

END (terminate a structure)

Statement Execution Sequence

PROCEDURE and FUNCTION Calls

PROGRAM (declare a program)
PROGRAM
[MAP

prototypes
 [MODULE()

 prototypes
 END]
 END]
global data
 CODE
 statements
 [RETURN]
procedures or functions

PROGRAM The first declaration in a Clarion program source module. Required.

MAP Global procedure and function declarations.

MODULE Declare member source modules.

prototypes PROCEDURE and/or FUNCTION declarations.

global data Declare Global data which may be referenced by all procedures and functions.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate program execution. Return to operating system control.

procedures or functions
Source code for the procedures and functions in the PROGRAM module.

The PROGRAM statement is required to be the first declaration in a Clarion program source module. It
may only be preceded by source code comments or a TITLE or SUBTITLE compiler directive. The
PROGRAM source file name is used as the object (.OBJ) and executable (.EXE) file name, when
compiled. The PROGRAM statement may have a label, but the label is ignored by the compiler.

A PROGRAM with PROCEDUREs and/or FUNCTIONs must have a MAP structure. The MAP declares
the PROCEDURE and/or FUNCTION prototypes. Any PROCEDURE or FUNCTION contained in a
separate source file must be declared in a MODULE structure within the MAP.

Data declared in the PROGRAM module, between the keywords PROGRAM and CODE, is Global data
that may be accessed by any PROCEDURE or FUNCTION in the PROGRAM. Its memory allocation is
Static.

Example:
PROGRAM !Sample program declaration

Fahrenheit REAL(0) !Global data declarations
Centigrade REAL(0)
Window WINDOW(´Temperature Conversion´),CENTER,SYSTEM

STRING(´Enter Fahrenheit Temperature: ´),AT(34,50,101,10)
ENTRY(@N-04),AT(138,49,60,12),USE(Fahrenheit)
STRING(´Centigrade Temperature:´),AT(34,71,80,10),LEFT
ENTRY(@N-04),AT(138,70,60,12),USE(Centigrade),SKIP
BUTTON(´Another´),AT(34,92,32,16),USE(?Another)
BUTTON(´Exit´),AT(138,92,32,16),USE(?Exit)

END
CODE !Begin executable code section
OPEN(Window)

ACCEPT
CASE ACCEPTED()
OF ?Fahrenheit
Centigrade = (Fahrenheit - 32) / 1.8
DISPLAY(?Centigrade)

OF ?Another
Fahrenheit = 0
Centigrade = 0
 DISPLAY
SELECT(?Fahrenheit)

OF ?Exit
BREAK

END
END
CLOSE(Window)
RETURN

See Also:

MAP

MODULE

PROCEDURE

FUNCTION

Data Declarations and Memory Allocation

MEMBER (identify member source file)
MEMBER(program)
[MAP
 prototypes
 END]

[label] local data
procedures or functions

MEMBER The first statement in a source module that is not a PROGRAM source file. Required.

program A string constant containing the filename (without extension) of a PROGRAM source
file. This parameter is required.

MAP Local procedure and function declarations. Any procedures or functions declared here
may be referenced only by the procedures or functions in the MEMBER module.

prototypes PROCEDURE and/or FUNCTION declarations.

local data Declare Local Static data which may be referenced only by the procedures and functions
whose source code is in the MEMBER module.

procedures or functions
Source code for the procedures and functions in the MEMBER module.

MEMBER is the first statement required to be in a source module that is not a PROGRAM source file. It
may only be preceded by source code comments or a TITLE or SUBTITLE compiler directive. It is
required at the beginning of any source file that contains PROCEDUREs or FUNCTIONs that are used by
a PROGRAM. The MEMBER statement identifies the program to which the source MODULE belongs.

A MEMBER module may have a local MAP structure. Procedures and functions declared in this MAP are
visible only to the other procedures and functions in the MEMBER module. The source code for the
procedures and functions declared in this MEMBER MAP may be contained in the MEMBER source file,
or another file.

If the source code for the PROCEDURE or FUNCTION declared in a MEMBER MAP is contained in a
separate file, the PROCEDURE or FUNCTION´s prototype must be declared in a MODULE structure
within the MEMBER MAP. That separate source file MEMBER MODULE must also contain its own MAP
which declares the same prototype for that PROCEDURE or FUNCTION. Any PROCEDURE or
FUNCTION not declared in the Global (PROGRAM) MAP must be declared in a local MAP in the
MEMBER MODULE which contains its source code.

Data declared in the MEMBER module, after the keyword MEMBER and before the first PROCEDURE or
FUNCTION statement, is Member Local data that may only be accessed by PROCEDUREs or
FUNCTIONs within the module (unless passed as a parameter). Its memory allocation is Static.

Example:
!Source1 module contains:
 MEMBER(´OrderSys´) !Module belongs to the OrderSys program
MAP !Declare local procedures
 Func1(STRING),STRING !Func1 is known only in both module
MODULE(´Source2.clw´)
HistOrd2 !HistOrd2 is known only in both modules

END
END

LocalData STRING(10) !Declare data local to MEMBER module

HistOrd PROCEDURE !Declare order history procedure
HistData STRING(10) !Declare data local to PROCEDURE
CODE
LocalData = Func1(HistData)

Func1 FUNCTION(RecField) !Declare local function
CODE
!Executable code statements

!Source2 module contains:
 MEMBER(´OrderSys´) !Module belongs to the OrderSys program
MAP !Declare local procedures
HistOrd2 !HistOrd2 is known only in both modules
MODULE(´Source1.clw´)
 Func1(STRING),STRING !Func1 is known only in both modules
END

END
LocalData STRING(10) !Declare data local to MEMBER module
HistOrd2PROCEDURE !Declare second order history procedure
CODE
LocalData = Func1(LocalData)

See Also:

MODULE

PROCEDURE

FUNCTION

Data Declarations and Memory Allocation

MAP (declare PROCEDURE and/or FUNCTION prototypes)
MAP
 prototypes
 [MODULE()
 prototypes
 END]
END

MAP Contains the prototypes which declare the functions, procedures and external source
modules used in a PROGRAM or MEMBER module.

prototypes Declare a PROCEDURE or FUNCTION.

MODULE Declare a member source module.
A MAP structure contains the prototypes which declare the functions, procedures and external source
modules used in a PROGRAM or MEMBER module. A MAP declared in the PROGRAM source module
declares PROCEDUREs or FUNCTIONs that are available throughout the program. A MAP in a MEMBER
module declares PROCEDUREs or FUNCTIONs that are available in that MEMBER module only.

The BUILTINS.CLW file is automatically included in your PROGRAM MAP structure by the compiler. This
file contains prototypes of procedures and functions in the Clarion internal library that are available as part
of the Clarion language. This file is provided because the compiler does not have the prototypes of these
procedures and functions built into it.

Example:
!One file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration
LoadIt ! LoadIt procedure

END !End of map
!A separate file contains:
 MEMBER(´Sample´) !Declare MEMBER module
 MAP !Begin local map declaration
ComputeIt ! compute it procedure

 END !End of map

See Also:

PROGRAM

MEMBER

MODULE

FUNCTION and PROCEDURE Prototypes

MODULE (specify MEMBER source file)
MODULE(sourcefile)
 procedure prototype
 function prototype
END

MODULE Names a MEMBER module or external library file.

sourcefile A string constant. If the sourcefile contains Clarion language source code, this specifies
the filename (without extension) of the source file which contains the PROCEDUREs
and/or FUNCTIONs. If the sourcefile is an external library, this string may contain any
unique identifier.

procedure prototype The prototype of a PROCEDURE contained in the sourcefile.

function prototype The prototype of a FUNCTION contained in the sourcefile.
A MODULE structure names a MEMBER module or external library file. It contains the prototypes for the
PROCEDUREs and FUNCTIONs contained in the sourcefile. A MODULE structure can only be declared
within a MAP structure.

Example:
!The "sample.cla" file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration
 MODULE(´Loadit´) ! source module loadit.cla
 LoadIt ! load it procedure
END ! end module

 MODULE(´Compute´) ! source module compute.cla
 ComputeIt ! compute it procedure
END ! end module

END !End map
!The "loadit.cla" file contains:
MEMBER(´Sample´) !Declare MEMBER module
MAP !Begin local map declaration
 MODULE(´Process´) ! source module process.cla
 ProcessIt ! process it procedure
END ! end module

END !End map

See Also:

MEMBER

MAP

FUNCTION and PROCEDURE Prototypes

PROCEDURE (declare a procedure)
label PROCEDURE [(parameter list)]

local data
CODE

statements
[RETURN]

PROCEDURE Begins a section of source code that can be executed from within a PROGRAM.

label Names the PROCEDURE.

parameter list An optional list of variables which pass values to the PROCEDURE. This list defines the
name of each parameter as used within the PROCEDURE´s source code. Each parameter
is separated by a comma. The data type of each parameter is specified in the procedure´s
prototype in the MAP structure.

local data Declare Local data which may be referenced only by this procedure.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate procedure execution. Return to the point from which the procedure was called.
PROCEDURE begins a section of source code that can be executed from within a PROGRAM. It is called
by naming the PROCEDURE label (with its parameter list, if any) as an executable statement in the code
section of a PROGRAM, PROCEDURE, or FUNCTION.

A PROCEDURE terminates and returns to its caller when a RETURN statement is executed. An implicit
RETURN occurs at the end of the executable code. The end of executable code for the PROCEDURE is
defined as the end of the source file, or the first encounter of a FUNCTION, ROUTINE, or another
PROCEDURE.

Data declared within a PROCEDURE, between the keywords PROCEDURE and CODE, is Procedure
Local data that can only be accessed by that PROCEDURE (unless passed as a parameter to another
PROCEDURE or FUNCTION). This data is allocated memory on the stack upon entering the procedure,
and de-allocated when it terminates.

A PROCEDURE must be declared in the MAP of a PROGRAM or MEMBER module. If declared in the
PROGRAM MAP, it is available to any other procedure or function in the program. If declared in a
MEMBER MAP, it is only available to other procedures or functions in that MEMBER module.

Example:
PROGRAM !Example program code
MAP
 OpenFile(FILE) !Procedure prototype with parameter
 ShoTime !Procedure prototype without parameter
END
CODE
OpenFile(FileOne) !Call procedure to open file
ShoTime !Call ShoTime procedure
 !More executable statements

OpenFilePROCEDURE(AnyFile) !Open any file
CODE !Begin code section
OPEN(AnyFile) !Open the file
IF ERRORCODE() = 2 !If file not found
CREATE(AnyFile) ! create it

END
RETURN !Return to caller

ShoTime PROCEDURE !Show time
Time LONG !Local variable
Window WINDOW,CENTER

 STRING(@T3),USE(Time),AT(34,70)
 BUTTON(´Exit´),AT(138,92,32,16),USE(?Exit)
END

CODE !Begin executable code section
Time = CLOCK() !Get time from system
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Exit
BREAK

END
END
RETURN !Return to caller

See Also:

FUNCTION and PROCEDURE Prototypes

Data Declarations and Memory Allocation

FUNCTION (declare a function)
label FUNCTION [(parameter list)]

local data
CODE

statements
RETURN(value)

FUNCTION Begins a section of source code that can be executed from within a PROGRAM.

label Names the FUNCTION.

parameter list An optional list of variables which pass values to the FUNCTION. This list defines the
name of each parameter as used within the FUNCTION´s source code. Each parameter is
separated by a comma. The data type of each parameter is specified in the procedure´s
prototype in the MAP structure.

local data Declare Local data which may be referenced only by this function.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate function execution and return the value to the expression in which the function
was used.

value A numeric or string constant or variable which specifies the result of the function call.
FUNCTION begins a section of source code that can be executed by naming the FUNCTION label with its
parameter list (empty parentheses are required if no parameters are passed). FUNCTION execution is
terminated by a RETURN statement in its CODE section (required).

A function can be used as an expression component, or a parameter of a PROCEDURE or another
FUNCTION. A FUNCTION may also be called in the same manner as a PROCEDURE, if the program
logic does not require the RETURN value. In this case, the compiler will generate a warning which may
be safely ignored.

Data declared within a FUNCTION, between the keywords FUNCTION and CODE, is Procedure Local
data that can only be accessed by that FUNCTION (unless passed as a parameter to another
PROCEDURE or FUNCTION). This data is allocated memory on the stack upon entering the function,
and de-allocated when it terminates.

A FUNCTION must be declared in the MAP of a PROGRAM or MEMBER module. If declared in the
PROGRAM MAP, it is available to any other procedure or function in the program. If declared in a
MEMBER MAP, it is only available to other procedures or functions in the MEMBER module.

Example:
PROGRAM
MAP
FullName(STRING,STRING,STRING),STRING !Function prototype with parameters
DayString,STRING !Function prototype without parameters

END
TodayString STRING(9)
CODE
TodayString = DayString() !Function call without parameters
 ! the () is required for a function
!Global executable statements

START(NewThread) !Clarion START function called as a

 ! procedure -- generates compiler warning
 ! but executes correctly

FullNameFUNCTION(Last,First,Init) !Full name function
CODE !Begin executable code section
IF Init = ´´ !If no middle initial
RETURN(CLIP(First) & ´ ´ & Last) ! return full name

ELSE !Otherwise
RETURN(CLIP(First) & ´ ´ & Init & ´. ´ & Last)

! return full name
END

DayString FUNCTION !Day string function
CODE !Begin executable code section
Day# = (TODAY() % 7) + 1 !Find day of week from system date
EXECUTE Day# !Execute, return day string
RETURN(´Sunday´)
RETURN(´Monday´)
RETURN(´Tuesday´)
RETURN(´Wednesday´)
RETURN(´Thursday´)
RETURN(´Friday´)
RETURN(´Saturday´)

END

See Also:

FUNCTION and PROCEDURE Prototypes

CODE (begin executable statements)
CODE

The CODE statement separates the data declaration section from the executable statement section within
a PROGRAM, PROCEDURE, or FUNCTION. The first statement executed in a PROGRAM,
PROCEDURE or FUNCTION is the statement following CODE.

Example:
OrdList PROCEDURE !Declare a procedure
!Data declarations go here
CODE !This is the beginning of the "code" section
!Executable statements go here

See Also:

PROGRAM

PROCEDURE

FUNCTION

ROUTINE (declare local subroutine)
label ROUTINE

ROUTINE Declares the beginning of a local subroutine of executable statements.

label The name of the ROUTINE.
ROUTINE declares the beginning of a local subroutine of executable statements. It is local to the
PROCEDURE or FUNCTION in which it is written and must be at the end of the CODE section of the
PROCEDURE or FUNCTION to which it belongs. All variables visible to the PROCEDURE or FUNCTION
are available in the ROUTINE. This includes all Procedure Local, Module Local, and Global data.

A ROUTINE is called by the DO statement followed by the label of the ROUTINE. Program control
following execution of a ROUTINE is returned to the statement following the calling DO statement. A
ROUTINE is terminated by the end of the source module, or by another ROUTINE, PROCEDURE, or
FUNCTION. The EXIT statement can also be used to terminate execution of a ROUTINE´s code (similar
to RETURN in a PROCEDURE).

A ROUTINE is internally implemented by the compiler as a local procedure. Therefore, there are some
efficiency issues that are not immediately obvious:

 DO and EXIT statements are very efficient.

 Accessing the PROCEDURE´s local data is less efficent than accessing module data.

 Implicit variables used only within the ROUTINE are less efficient than using local
variables.

 Each RETURN statement within a ROUTINE incurs a 40-byte overhead.
Example:
SomeProc PROCEDURE
CODE
!Code statements
DO Tally !Call the routine
!More code statements

Tally ROUTINE !Begin routine, end procedure
IF CountVar < 55 !If less than 55
CountVar += 1 ! increment counter

ELSE ! otherwise
CountVar = 0 ! reset the counter
EXIT ! and exit the routine

END !End if

See Also:

EXIT

DO (call a ROUTINE)

END (terminate a structure)
END

END terminates a data declaration structure or a compound executable statement. It is functionally
equivalent to a period (.).

Example:
CustomerFILE,DRIVER(´Clarion´) !Declare a file

RECORD ! begin record declaration
Name STRING(20)
Number LONG

END ! end record declaration
END !End file declaration

CODE
IF Number <> SavNumber !Begin if structure
DO GetNumber

END !End if structure
CASE Action !Begin case structure
OF 1
DO AddRec

OF 2
DO ChgRec

OF 3
DO DelRec

END !End case structure

Statement Execution Sequence
In the CODE section of a Clarion program, statements are normally executed line-by-line, in the sequence
in which they appear in the source module. Control statements, procedure calls, and function calls are
used to modify this execution sequence.

PROCEDURE calls modify the execution sequence by branching to the called procedure and executing
the code contained in it. Control returns to the executable statement following the procedure call when a
RETURN statement is executed in the called procedure, or there are no more statements in the called
procedure to execute.

FUNCTION calls modify the execution sequence by branching to the called function and executing the
code contained in it. Control returns to the executable statement containing the function call when a
RETURN statement is executed in the called function, returning the value of the function.

Control structures--IF , CASE, LOOP, and EXECUTE--change the execution sequence by evaluating
expressions. When the expression is evaluated, the control structure conditionally executes statements
contained within the structure.

Branching also occurs with the GOTO, DO, CYCLE, BREAK, EXIT, RETURN, and RESTART statements.
These statements immediately and unconditionally alter the normal execution sequence.

The START function begins a new execution thread, unconditionally branching to that thread. However,
the user may choose to activate another thread by clicking the mouse on the other thread´s active
window.

Example:
PROGRAM
MAP
 ComputeTime(*GROUP) !Passing a group parameter
 MatchMaster !Passing no parameters
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

 END
CODE !Begin executable code
FieldTwo = CLOCK() !Executes 1st
ComputeTime(ParmGroup) !Executes 2nd, passes control to procedure
MatchMaster !Executes after procedure executes fully

PROCEDURE and FUNCTION Calls
procname[(parameters)]
return = funcname[(parameters)]

procname The name of the PROCEDURE as declared in the procedure´s prototype in the MAP. If
this is not the label of a PROCEDURE statement, compiler errors are issued.

parameters An optional parameter list passed to the PROCEDURE or FUNCTION. A parameter list
may be one or more variable labels or expressions. The parameters are separated by
commas and are declared in the prototype in the MAP.

return The label of a variable to receive the value returned by the FUNCTION.

funcname The name of the FUNCTION as declared in the procedure´s prototype in the MAP. If this
is not the label of a FUNCTION statement, compiler errors are issued.

A PROCEDURE is called by its label (including any parameter list) as a statement in the CODE section of
a PROGRAM, PROCEDURE, or FUNCTION. The parameter list must match the parameter list declared
in the procedure´s prototype in the MAP. Procedures cannot be called in expressions.

A FUNCTION is called by its label (including any parameter list) as a component of an expression or
parameter list passed to another PROCEDURE or FUNCTION. The parameter list must match the
parameter list declared in the function´s prototype in the MAP. A FUNCTION may also be called by its
label (including any parameter list), in the same manner as a PROCEDURE, if its return value is not
needed. This will generate a compiler warning that can be safely ignored.

Example:
PROGRAM
MAP
 ComputeTime(*GROUP) !Passing a group parameter
 MatchMaster(),BYTE !FUNCTION passing no parameters
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

END
CODE
FieldTwo = CLOCK() !Built-in function called as expression
ComputeTime(ParmGroup) !Call the compute time procedure
MatchMaster() !Call the function as a procedure

See Also:

FUNCTION and PROCEDURE Prototypes

Procedure Prototyping
 FUNCTION and PROCEDURE Prototypes

 FUNCTION Return Types

FUNCTION and PROCEDURE Prototypes
name[(parameter list)] [,return type] [,calling convention] [, RAW] [, NAME()] [, TYPE] [, DLL]

[, PROC][, PRIVATE]

name The label of a PROCEDURE or FUNCTION statement.

parameter list The data types of the parameters. Each parameter's data type may be followed by a label
used to document the parameter (only). Each parameter may also include an assignment
of the default value (a constant) to pass if the parameter is omitted.

return type The data type the FUNCTION will RETURN.

calling convention Specify the C or PASCAL stack-based parameter calling
convention.

RAW Specifies that STRING or GROUP parameters pass only the memory address (without
passing the length of the passed string).

NAME Specify an alternate, "external" name for the PROCEDURE or FUNCTION.

TYPE Specify the prototype is a type definition for procedures passed as parameters.

DLL Specify the PROCEDURE or FUNCTION is in a .DLL.

PROC Specify the FUNCTION may be called as a PROCEDURE without generating a compiler
warning.

PRIVATE Specify the PROCEDURE or FUNCTION may be called only from another
PROCEDURE or FUNCTION within the same MODULE.

All PROCEDUREs and FUNCTIONs in a PROGRAM must be declared as a prototype in a MAP. A
prototype is defined as the name of the PROCEDURE or FUNCTION, an optional parameter list, and the
data return type (if prototyping a FUNCTION). You may specify the parameter calling convention, if you
are linking in objects that require stack-based parameter passing (such as objects that were not compiled
with a Clarion TopSpeed compiler).

The optional parameter list is a list of the data types that are passed to the PROCEDURE or FUNCTION.
Each passed parameter in the parameter list is delimited by commas, and the entire parameter list is
enclosed in the parentheses following the name.

In the parameter list, each parameter's data type may be followed by a valid Clarion label which is
completely ignored by the compiler (used only to document the purpose of the parameter). Each passed
parameter's definition may also include the assignment of a constant value to the data type (or the
documentary label, if present) that defines the default value to pass if the parameter is omitted.

Any parameter that may be omitted when the PROCEDURE or FUNCTION is called must be included in
the prototype's parameter list and enclosed in angle brackets (< >) unless a default value is defined for
the parameter. The OMITTED function allows you to test for unpassed paramters at runtime (except those
parameters which have a default value defined).

You can optionally specify the C (right to left) or PASCAL (left to right and compatible with Win95 in 32-bit)
stack-based parameter calling convention for your PROCEDURE or FUNCTION. This provides
compatibility with third-party libraries written in other languages (if they were not compiled with a
TopSpeed compiler). If you do not specify a calling convention, the default is the internal, register-based
parameter passing convention used by all the TopSpeed compilers.

The RAW attribute allows you to pass just the memory address of a *?, STRING, or GROUP parameter
(whether passed by value or by reference) to a non-Clarion language procedure or function. Normally,

STRING or GROUP parameters pass both the address and the length of the string. The RAW attribute
eliminates the length portion. This is provided for compatibility with external library functions which expect
only the address of the string.

The NAME attribute provides the linker an external name for the PROCEDURE or FUNCTION. This is
also provided for compatibility with libraries written in other languages. For example: in some C language
compilers, with the C calling convention specified, the compiler adds a leading underscore to the function
name. The NAME attribute allows the linker to resolve the name of the function correctly.

The TYPE attribute indicates the prototype does not reference a specific PROCEDURE or FUNCTION.
Instead, it defines a prototype name used in other prototypes to indicate the type of procedure passed to
another PROCEDURE or FUNCTION as a parameter.

The DLL attribute specifies that the PROCEDURE or FUNCTION for prototype on which it is placed is in a
.DLL. The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a 32-bit flat
address space, which requires one extra dereference by the compiler to address the procedure.

The PRIVATE attribute specifies that only another PROCEDURE or FUNCTION that is in the same
MODULE may call it. This would most commonly be used on a prototype in a module's MAP structure, but
may also be used in the global MAP.

When the name of a prototype is used in the parameter list of another prototype, it indicates the
procedure being prototyped will receive the label of a PROCEDURE or FUNCTION that receives the
same parameter list (and has the same return type, if it is a FUNCTION). A prototype with the TYPE
attribute may not also have the NAME attribute.

Example:
MAP
MODULE('Test') !'test.clw' contains these procedure and functions
MyProc1(LONG) !LONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyProc3(LONG=23) !Passes 23 if omitted
MyProc4(LONG Count, REAL Sum) !LONG passing a Count and REAL passing a Sum
MyProc5(LONG Count=1, REAL Sum=0) !Count defaults to 1 and Sum to 0
MyFunc1(*SREAL),REAL,C !SREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING !FILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter

MyFunc4(FILE),STRING,PROC !May be called as a procedure without warnings
MyProc6(FILE),PRIVATE !May only be called by other procs in TEST.CLW

END
MODULE('Party3.Obj') !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
Func47(*CSTRING),*CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention
Func49(SREAL),REAL,C,NAME('_func49')

!C convention and external function name
END
MODULE('STDFuncs.DLL') !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL

END
END

See Also:
MAP

MEMBER

MODULE

NAME

PROCEDURE

FUNCTION

RETURN

Parameter Passing

DLL (set procedure defined externally in .DLL)
DLL([flag])

DLL Declares a PROCEDURE or FUNCTION defined externally in a .DLL.

flag A numeric constant, equate, or Project system define which specifies the attribute as
active or not. If the flag is zero, the attribute is not active, just as if it were not present. If
the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the PROCEDURE or FUNCTION on whose prototype it is placed is
defined in a .DLL. The DLL attribute is required for 32-bit applications because .DLLs are relocatable in a
32-bit flat address space, which requires one extra dereference by the compiler to address the procedure.

Example:
MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL

END
END

FUNCTION Return Types
A FUNCTION must RETURN a value. The data type to be returned is listed, separated by a comma, after
the optional parameter list. Valid RETURN types are:
 BYTE SHORT USHORT LONG ULONG SREAL REAL DATE
 TIME STRING CSTRING *BYTE *SHORT *USHORT *LONG
 *ULONG *SREAL *REAL *DATE *TIME *CSTRING
 Untyped value-parameter return value (?)
An untyped value-parameter return value (?) indicates the data type of the value returned by the
FUNCTION is not known. This functions in exactly the same manner as an untyped value-parameter.
When the value is returned from the FUNCTION, standard Clarion Data Conversion Rules apply, no
matter what data type is returned.

Functions which return pointers (the address of some data) should be prototyped with an asterisk
prepended to the return data type. This is provided just for compatibility with external library functions
(written in another language) which return only the address of data. The compiler automatically handles
the returned pointer at runtime. Functions prototyped this way act just like a variable defined in the
program--when the function is used in Clarion code, the data referenced by the returned pointer is
automatically used. This data can be assigned to other variables, passed as parameters to procedures or
functions, or the ADDRESS function may return the address of the data.

As an example of this, assume that the XYZ() function returns *CSTRING (pointer to a CSTRING),
CStringVar is a CSTRING variable, and LongVar is a LONG variable. The simple Clarion assignment
statement, CStringVar = XYZ(), places the data referenced by the XYZ() function´s returned pointer, in the
CStringVar variable. The assignment, LongVar = ADDRESS(XYZ()), places the memory address of that
data in the LongVar variable.

Example:
 MAP
 MODULE(´Party3.Obj´) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
Func47(*CSTRING),*CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention
Func49(SREAL),REAL,C,NAME(´_func49´)

!C convention and external function name
 END

 END

See Also:

MAP

MEMBER

MODULE

NAME

FUNCTION

RETURN

RAW (pass address only)
RAW

The RAW attribute of a PROCEDURE or FUNCTION prototype specifies that STRING or GROUP
parameters pass the memory address only. This allows you to pass just the memory address of a *?,
STRING, or GROUP parameter, whether passed by value or by reference, to a non-Clarion language
procedure or function. Normally, STRING or GROUP parameters pass the address and the length of the
string. The RAW attribute eliminates the length portion. This is provided for compatibility with external
library functions which expect only the address of the string.

Example:
 MAP
 MODULE('Party3.Obj') !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
 END

 END

See Also:

FUNCTION and PROCEDURE Prototypes

Passing Parameters

NAME (set prototype's external name)
NAME(constant)

NAME Specifies an "external" name for the linker.

constant A string constant.
The NAME attribute specifies an "external" name for the linker. The NAME attribute may be placed on a
FUNCTION or PROCEDURE Prototype. The constant supplies the external name used by the linker to
identify the procedure or function from an external library.

Example:
PROGRAM
MAP
 MODULE('External.Obj')
AddCount(LONG),LONG,C,NAME('_AddCount') !C function named '_AddCount'

. .

See Also:

FUNCTION and PROCEDURE Prototypes

TYPE (specify procedure or function type defintion)
TYPE

The TYPE attribute specifies a prototype that does not reference an actual PROCEDURE or FUNCTION.
Instead, it defines a prototype name to use in other prototypes to indicate the type of procedure passed to
another PROCEDURE or FUNCTION as a parameter.

When the name of the TYPEd prototype is used in the parameter list of another prototype, the procedure
being prototyped will receive, as a passed parameter, the label of a PROCEDURE or FUNCTION that has
the same type of parameter list (and has the same return type, if it is a FUNCTION).

Example:
 MAP

ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed the label of a procedure that takes
! a FILE as a required parameter

 END

See Also:

FUNCTION and PROCEDURE Prototypes

PROC (set function called as procedure without warnings)
PROC

The PROC attribute specifies that the FUNCTION on whose prototype it is placed may be called as a
PROCEDURE without generating compiler warnings. This allows you to use a FUNCTION as a
PROCEDURE in those instances in which you do not need the return value from the FUNCTION.

You can now call a function as a procedure without generating a compiler warning if you prototype it with
the PROC attribute. The built in functions which are commonly called as procedures have been
prototyped this way.

This means statements which were written such as:
IF MESSAGE('Error Message Text').

can now be written:
MESSAGE('Error Message Text')

without a compiler warning.

The following built in functions are prototyped with the PROC attribute:

CALL()

COMMAND()

SEND()

MESSAGE()

START()

FILEDIALOG()

FONTDIALOG()

COLORDIALOG()

PRINTERDIALOG()

Example:
MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,PROC

END
END

PRIVATE (set procedure private to a single module)
PRIVATE

The PRIVATE attribute specifies that the PROCEDURE or FUNCTION on whose prototype it is placed
may be called only from a PROCEDURE or FUNCTION within the same source MODULE. This
encapsulates it from other modules.

Example:
MAP
MODULE('STDFuncs.DLL') !A standard functions .DLL
Func49(SREAL),REAL,PASCAL,PROC
Proc50(SREAL),PRIVATE !Callable only from Func49

END
END

Parameter Passing
 Parameter Types

 Passing Parameters of Unspecified Data Type

 Passing GROUPs and QUEUEs as Parameters

 Passing Arrays as Parameters

Parameter Types
There are four types of parameters that may be passed to a PROCEDURE or FUNCTION: value-
parameters, variable-parameters, entity-parameters, and procedure-parameters.

Value-parameters are "passed by value." A copy of the variable passed in the parameter list of the
"calling" PROCEDURE or FUNCTION is used in the "called" PROCEDURE or FUNCTION. The "called"
PROCEDURE or FUNCTION cannot change the value of the variable passed to it by the "caller." Value-
parameters are listed by data type in the PROCEDURE or FUNCTION prototype in the MAP. Valid value-
parameters are:

 BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4
 BFLOAT8 DATE TIME STRING

Variable-parameters are "passed by address." A variable passed by address has only one memory
address. Changing the value of the variable in the "called" PROCEDURE or FUNCTION also changes its
value in the "caller." Variable-parameters are listed by data type with a leading asterisk (*) in the
PROCEDURE or FUNCTION prototype in the MAP. Valid variable-parameters are:

 *BYTE *SHORT *USHORT *LONG *ULONG *SREAL *REAL
 *BFLOAT4 *BFLOAT8 *DECIMAL *PDECIMAL *DATE *TIME
 *STRING *PSTRING *CSTRING *GROUP

Entity-parameters pass the name of a data structure to the "called" PROCEDURE or FUNCTION.
Passing the entity allows the "called" PROCEDURE or FUNCTION to use those Clarion commands that
require the label of the structure as a parameter. Entity-parameters are listed by entity type in the
PROCEDURE or FUNCTION prototype in the MAP. Entity-parameters are always "passed by address."
Valid entity-parameters are:

 FILE VIEW KEY INDEX QUEUE APPLICATION WINDOW
 REPORT

Procedure-parameters pass the name of another PROCEDURE or FUNCTION to the "called"
PROCEDURE or FUNCTION. Procedure-parameters are listed by the name of a preceding prototype of
the same type in the PROCEDURE or FUNCTION prototype in the MAP (which may or may not have the
TYPE attribute). When called in executable code, the "called" PROCEDURE or FUNCTION must be
passed the name of a PROCEDURE or FUNCTION whose prototype is exactly the same as the
procedure named in the "called" procedure´s prototype.

Example:
 MAP
MODULE(´Test´) !´test.clw´ contains these procedure and functions
MyProc1(LONG) !LONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyFunc1(*SREAL),REAL,C !SREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING !FILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter

 END
 MODULE(´Party3.Obj´) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
Func47(*CSTRING),*CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention
Func49(SREAL),REAL,C,NAME(´_func49´)

!C convention and external function name
 END

 END

See Also:

MAP

MEMBER

MODULE

NAME

PROCEDURE

FUNCTION

RETURN

Passing Parameters of Unspecified Data Type
The desire to write general purpose functions which perform some operation on a passed parameter,
where the exact data type of the parameter may vary from one call to the next, is fairly common.
Therefore, the function´s prototype must indicate that the data type of the parameter is unknown at
compile time. The Clarion language allows for this with untyped value-parameters and untyped
variable-parameters. These are polymorphic parameters; they may become any other data type
depending upon the data type passed to the procedure or function.

Untyped value-parameters are represented in the PROCEDURE or FUNCTION prototype with a
question mark (?). When the procedure executes, the parameter is dynamically typed and acts as a data
object of the base type (LONG, STRING, or REAL) of the passed variable, or the base type of whatever it
was last assigned. This means that the "assumed" data type of the parameter can change within the
PROCEDURE or FUNCTION, allowing it to be treated as any data type.

An untyped value-parameter is "passed by value" to the PROCEDURE or FUNCTION and its assumed
data type is handled by Clarion´s automatic Data Conversion Rules. Any changes made to the passed
parameter within the PROCEDURE or FUNCTION do not affect the variable which was passed in.

Data types which may be passed as untyped value-parameters:

 BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4
 BFLOAT8 DECIMAL PDECIMAL DATE TIME STRING PSTRING
 CSTRING GROUP (treated as a STRING) Untyped value-parameter (?)
 Untyped Variable-parameter (*?)

Untyped variable-parameters are represented in the PROCEDURE or FUNCTION prototype with an
asterisk and a question mark (*?). Inside the procedure, the parameter acts as a data object of the type of
the variable passed in at runtime. This means the data type of the parameter is fixed during the execution
of the PROCEDURE or FUNCTION.

An untyped variable-parameter is "passed by address" to the PROCEDURE or FUNCTION. Therefore,
any changes made to the passed parameter within the PROCEDURE or FUNCTION are made directly to
the variable which was passed in. This allows you to write polymorphic functions.

Within a PROCEDURE or FUNCTION which receives an untyped variable-parameter, it is not safe to
make any assumptions about the data type coming in. The danger of making assumptions is the
possiblity of assigning an out-of-range value which the variable´s actual data type cannot handle. If this
happens, the result may be disastrously different from that expected.

Data types which may be passed as untyped variable-parameters:

 BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4
 BFLOAT8 DECIMAL PDECIMAL DATE TIME STRING PSTRING
 CSTRING Untyped variable-parameter (*?)

The RAW attribute can be specified if the untyped variable-parameter (*?) is being passed to external
library functions written in other languages than Clarion. This has the same effect as passing a C or C++
void * parameter.

Arrays may not be passed as either kind of untyped parameter.

Example:
PROGRAM
MAP

 Proc1(?) !Untyped value-parameter
 Proc2(*?) !Untyped variable-parameter
 Proc3(*?) !Untyped variable-parameter (set to crash)
 Max(?,?),? !Function returning Untyped value-parameter
END

GlobalVar1 BYTE(3) !BYTE initialized to 3
GlobalVar2 DECIMAL(8,2,3)
GlobalVar3 DECIMAL(8,1,3)
MaxInteger LONG
MaxString STRING(255)
MaxFloat REAL
CODE
Proc1(GlobalVar1) !Pass in a BYTE, value is 3
Proc2(GlobalVar2) !Pass it a DECIMAL(8,2), value is 3.00 - it prints 3.33
Proc2(GlobalVar3) !Pass it a DECIMAL(8,1), value is 3.0 - it prints 3.3
Proc3(GlobalVar1) !Pass it a BYTE and watch it crash
MaxInteger = Max(1,5) !Max function returns the 5
MaxString = Max(´Z´,´A´) !Max function returns the ´Z´
MaxFloat = Max(1.3,1.25) !Max function returns the 1.3

Proc1 PROCEDURE(ValueParm)
CODE ! ValueParm starts at 3 and is a LONG
ValueParm = ValueParm & ValueParm !Now Contains ´33´ and is a STRING
ValueParm = ValueParm / 10 !Now Contains 3.3 and is a REAL

Proc2 PROCEDURE(VariableParm)
CODE
VariableParm = 10 / 3 !Assign 3.33333333... to passed variable

Proc3 PROCEDURE(VariableParm)
CODE
LOOP
IF VariableParm > 250 THEN BREAK. !If passed a BYTE, BREAK will never happen
VariableParm += 10

END
Max FUNCTION(Val1,Val1) !Find the larger of two passed values
CODE
IF Val1 > Val2 !Check first value against second
RETURN(Val1) ! return first, if largest

ELSE !otherwise
RETURN(Val2) ! return the second

END

See Also:

FUNCTION and PROCEDURE Prototypes

Passing Parameters

Data Conversion Rules

Passing GROUPs and QUEUEs as Parameters
Passing a GROUP or a QUEUE to a PROCEDURE or FUNCTION which has been prototyped with
GROUP or QUEUE types in its parameter list does not allow you to reference the component fields within
the structure in the receiving PROCEDURE or FUNCTION. However, you can place the label of a
GROUP or QUEUE in the prototype's parameter list to pass it by address and allow references to the
component fields.

The GROUP or QUEUE named in the parameter list does not need the TYPE attribute, and does not
have to be declared before the MAP structure, but it must be declared before the PROCEDURE or
FUNCTION that will receive the parameter is called. This is the only case in the Clarion language that
allows such a "forward reference."

The PROCEDURE or FUNCTION statement for the prototype may declare the local name of the passed
group with a prefix to prevent name clashes, owever this is unnecessary as long as you use the Field
Qualification syntax to reference members of the passed group. The passed group can be a "superset" of
the named paremeter, as long as the first fields in the "superset" group are the same as the named group.

Example:
PROGRAM
MAP
MyProc1(PassGroup,NameQue)

!Receives a GROUP defined the same as PassGroup and a QUEUE
! defined the same as NameQue

END
PassGroup GROUP,PRE(Pas),TYPE !Type definition: GROUP with 2 STRING(20) fields
F1 STRING(20)
F2 STRING(20)

END
NameGroup GROUP,PRE(Nme) !Name group
First STRING(20) ! first name
Last STRING(20) ! last name
Company STRING(30)

END
NameQue QUEUE,PRE(Que) !Name Queue
First STRING(20) ! first name
Last STRING(20) ! last name

END
CODE
MyProc1(NameGroup,NameQue) !Pass NameGroup and NameQue as parameters

MyProc1 PROCEDURE(LG:PassedGroup,PassedQue)
CODE
PassedQue:First = LG:F1 !Assign value in Nme:First to Que:First
PassedQue:Last = LG:F2 !Assign value in Nme:Last to Que:Last
ADD(PassedQue) !Add an entry into NameQue

See Also:

FUNCTION and PROCEDURE Prototypes

GROUP

QUEUEField Qualification

Passing Arrays as Parameters
An array may be passed to a PROCEDURE or FUNCTION. The prototype in the MAP structure must
declare the array´s data type as a variable-parameter ("passed by address") with an empty subscript list.
If the array is more than one dimension, commas must be used as position holders to indicate the number
of dimensions in the array.

The calling statement should pass the entire array to the PROCEDURE or FUNCTION, not just one
element.

Example:
PROGRAM
MAP
MainProc

 AddCount(*LONG[,],*LONG[,]) !Passing two two-dimensional long arrays
END
CODE
MainProc !Call first procedure

MainProc PROCEDURE
TotalCount LONG,DIM(10,10)
CurrentCnt LONG,DIM(10,10)
CODE
AddCount(TotalCount,CurrentCnt) !Call the procedure passing the arrays

AddCountPROCEDURE(Tot,Cur) !Procedure expects two arrays
CODE
LOOP I# = 1 TO MAXIMUM(Tot,1) !Loop through first subscript
LOOP J# = 1 TO MAXIMUM(Tot,2) !Loop through second subscript
Tot[I#,J#] += Cur[I#,J#] ! increment TotalCount from CurrentCnt

END
END
CLEAR(Cur) !Clear CurrentCnt array
RETURN

See Also:

DIM

FUNCTION and PROCEDURE Prototypes

MAXIMUM

Program Structure Compiler Directives
Compiler Directives are statements that tell the compiler to take some action at compile time. These
statements are not included in the executable program object code which the compiler generates.
Therefore, there is no run-time overhead associated with their use.

 BEGIN (define code structure)

 COMPILE (specify source to be compiled)

 EJECT (start new listing page)

 INCLUDE (compile code in another file)

 OMIT (specify source not to be compiled)

 SECTION (specify source code section)

 SUBTITLE (print MODULE subtitle)

 TITLE (print MODULE title)

BEGIN (define code structure)
BEGIN
 statements
END

BEGIN Declares a single code statement structure.

statements Executable program instructions.
The BEGIN compiler directive tells the compiler to treat the statements as a single structure. The BEGIN
structure must be terminated by a period or the END statement.

BEGIN is used in an EXECUTE control structure to allow several lines of code to be treated as one.

Example:
EXECUTE Value
Proc1 !Execute if Value = 1
BEGIN !Execute if Value = 2
Value += 1
Proc2

END
Proc3 !Execute if Value = 3

END

See Also:

EXECUTE

COMPILE (specify source to be compiled)
COMPILE(terminator [,expression])

COMPILE Specifies a block of source code lines to be included in the compilation.

terminator A string constant that marks the last line of a block of source code.

expression An expression allowing conditional execution of the COMPILE. The expression is:
EQUATE = integer.

The COMPILE directive specifies a block of source code lines to be included in the compilation. The
included block begins with the COMPILE directive and ends with the line that contains the same string
constant as the terminator. The entire terminating line is included in the COMPILE block.

The optional expression parameter permits conditional COMPILE. The form of the expression is fixed. It is
the label of an EQUATE statement, or a Conditional Switch set in the Project System, followed by an
equal sign (=), followed by an integer constant. The code between COMPILE and the terminator is
compiled only if the expression is true. Although the expression is not required, COMPILE without an
expression parameter is not necessary because all source code is compiled unless explicitly omitted.
COMPILE and OMIT are opposites and may not be nested within each other, or themselves.

Example:
Demo EQUATE(1) !Specify the Demo EQUATE value
CODE
COMPILE(´EndDemoChk´,Demo = 1) !COMPILE only if Demo equate is turned on
DO DemoCheck !Check for demo limits passed

EndDemoChk !End of conditional COMPILE code

See Also:

OMIT

EQUATE

EJECT (start new listing page)
EJECT([module subtitle])

EJECT Starts a new page in a Clarion listing.

module subtitle A string constant containing the subtitle to be printed. On the next page of the listing, the
module subtitle is printed in the first column of the third line.

The EJECT directive starts a new page and an optional new module subtitle in a Clarion listing. If the
module subtitle parameter is omitted, the subtitle set by a previous SUBTITLE or EJECT directive will be
used on the next page.

Example:
EJECT(´File Declarations´) !Start new page, new subtitle

INCLUDE (compile code in another file)
INCLUDE(filename [,section])

INCLUDE Specifies source code to be compiled which exists in a separate file which is not a
MEMBER module.

filename A string constant that contains the DOS file specification for a source file. If the
extension is omitted, .CLA is assumed.

section A string constant which is the string parameter of the SECTION directive marking the
beginning of the source code to be included.

The INCLUDE directive specifies source code to be compiled which exists in a separate file which is not a
MEMBER module. Starting on the line of the INCLUDE directive, the source file, or the specified section
of that file, is compiled as if it appeared in sequence within the source module being compiled.

The compiler uses the Redirection File (CW.RED) to find the file, searching the path specified for that type
of filename (usually by extension). This makes it unnecessary to provide a complete path in the filename
to be included. A discussion of the Redirection file is in the User´s Guide.

Example:
GenLedger PROCEDURE !Declare procedure
INCLUDE(´filedefs.clw´) !Include file definitions here
 CODE !Begin code section
INCLUDE(´Setups´,´ChkErr´) !Include error check from setups.clw

OMIT (specify source not to be compiled)
OMIT(terminator [,expression])

OMIT Specifies a block of source code lines to be omitted from the compilation.

terminator A string constant that marks the last line of a block of source code.

expression An expression allowing conditional execution of the OMIT. The expression must be:
EQUATE = integer.

The OMIT directive specifies a block of source code lines to be omitted from the compilation. These lines
may contain source code comments or a section of code that has been "stubbed out" for testing
purposes. The omitted block begins with the OMIT directive and ends with the line that contains the same
string constant as the terminator. The entire terminating line is included in the OMIT block.

The optional expression parameter permits conditional OMIT. The form of the expression is fixed. It is the
label of an EQUATE statement, or a Conditional Switch set in the Project System, followed by an equal
sign (=), followed by an integer constant. The OMIT directive executes only if the expression is true.

COMPILE and OMIT are opposites and may not be nested within each other, or themselves.

Example:
OMIT(´**END**´) !Unconditional OMIT

*
* Main Program Loop
*

END
Demo EQUATE(0) !Specify the Demo EQUATE value
CODE
OMIT(´EndDemoChk´,Demo = 0) !OMIT only if Demo is turned off
DO DemoCheck !Check for demo limits passed

EndDemoChk !End of omitted code

See Also:

COMPILE

EQUATE

SECTION (specify source code section)
SECTION(string)

SECTION Identifies the beginning of a block of executable source code or data declarations.

string A string constant which names the SECTION.
The SECTION compiler directive identifies the beginning of a block of executable source code or data
declarations which may be INCLUDEd in source code in another file. The SECTION´s string parameter is
used as an optional parameter of the INCLUDE directive to include a specific block of source code. A
SECTION is terminated by the next SECTION or the end of the file.

Example:
 SECTION(´FirstSection´) !Begin section
FieldOne STRING(20)
FieldTwo LONG
 SECTION(´SecondSection´) !End previous section, begin new section
IF Number <> SavNumber
DO GetNumber

END
 SECTION(´ThirdSection´) !End previous section, begin new section
CASE Action
OF 1
DO AddRec

OF 2
DO ChgRec

OF 3
DO DelRec

END !Third section ends at end of file

See Also:

INCLUDE

SUBTITLE (print MODULE subtitle)
SUBTITLE(module subtitle)

SUBTITLE Declares a listing subtitle printed in the first column of the third line of a Clarion listing.

module subtitle A string constant containing the subtitle to be printed.
A SUBTITLE is printed in the first column of the third line of a Clarion listing. The SUBTITLE directive
does not print in the listing. The SUBTITLE directive must be placed at the beginning of a source module
prior to the PROGRAM or MEMBER declarations. The subtitle remains the same on every page of the
listing unless it is changed by an EJECT directive.

Example:
SUBTITLE(´Global Data Declarations´)

TITLE (print MODULE title)
TITLE(module title)

TITLE Declares a listing title printed in the first column of the first line of a Clarion listing.

module title A string constant containing the title to be printed.
A TITLE is printed in the first column of the first line of a Clarion listing. The TITLE directive does not print
in the listing. The TITLE directive must be placed at the beginning of a source module prior to the
PROGRAM or MEMBER declarations. The title remains the same on every page of the listing.

Example:
TITLE(´ORDERSYS - Order Entry System Listing´)

Declaring Variables
Variable Declaration Statements

BYTE (one-byte unsigned integer)

SHORT (two-byte signed integer)

USHORT (two-byte unsigned integer)

LONG (four-byte signed integer)

ULONG (four-byte unsigned integer)

SREAL (four-byte signed floating point)

REAL (eight-byte signed floating point)

BFLOAT4 (four-byte signed floating point)

BFLOAT8 (eight-byte signed floating point)

DECIMAL (signed packed decimal)

PDECIMAL (signed packed decimal)

STRING (fixed-length string)

CSTRING (fixed-length null terminated string)

PSTRING (embedded length-byte string)

DATE (four-byte date)

TIME (four-byte time)

GROUP (compound data structure)

LIKE (inherited data type)

Implicit Variables

Reference Variables

Attributes of Variables

PRE (set group label prefix)

DLL (set variable defined externally in .DLL)

DIM (set array dimensions)

EXTERNAL (set variable defined externally)

NAME (set variables external name)

OVER (set shared memory location)

STATIC (set local variable static)

THREAD (set thread-specific static variable)

BINDABLE (set dynamic expression string variables)

AUTO (uninitialized local variable)

TYPE (GROUP type definition)

Data Declarations and Memory Allocation

Global, Local, Static, and Dynamic

Data Declaration Sections

Picture Tokens

Numeric and Currency Pictures

Scientific Notation Pictures

Date Pictures

Time Pictures

Pattern Pictures

Key-in Template Pictures

String Pictures

Compiler Directives

EQUATE (assign label)

SIZE (memory size in bytes)

Variable Declaration Statements
BYTE (one-byte unsigned integer)

SHORT (two-byte signed integer)

USHORT (two-byte unsigned integer)

LONG (four-byte signed integer)

ULONG (four-byte unsigned integer)

SREAL (four-byte signed floating point)

REAL (eight-byte signed floating point)

BFLOAT4 (four-byte signed floating point)

BFLOAT8 (eight-byte signed floating point)

DECIMAL (signed packed decimal)

PDECIMAL (signed packed decimal)

STRING (fixed-length string)

CSTRING (fixed-length null terminated string)

PSTRING (embedded length-byte string)

DATE (four-byte date)

TIME (four-byte time)

GROUP (compound data structure)

LIKE (inherited data type)

Implicit Variables

Reference Variables

BYTE (one-byte unsigned integer)
label BYTE(initial value) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL][,STATIC] [,THREAD] [,AUTO]

BYTE A one-byte unsigned integer.

Format: magnitude
| |

Bits: 7 0
Range: 0 to 255

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
BYTE declares a one-byte unsigned integer.

Example:
Count1 BYTE !Declare one byte integer
Count2 BYTE,OVER(Count1) !Declare OVER the one byte integer
Count3 BYTE,DIM(4) !Declare it an array of 4 bytes
Count4 BYTE(5) !Declare with initial value
Count5 BYTE,EXTERNAL !Declare as external
Count6 BYTE,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Clarion´) !Declare a file
Record RECORD
Count5 BYTE,NAME(´Counter´) !Declare with external name

. .

SHORT (two-byte signed integer)
label SHORT([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

SHORT A two-byte signed integer.

Format: ± magnitude
 | . | |

Bits: 15 14 0
Range: -32,768 to 32,767

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVERShare a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
SHORT declares a two-byte signed integer, using the Intel 8086 word integer format. The high-order bit of
this configuration is the sign bit (0 = positive, 1 = negative). Negative values are represented in standard
two´s complement notation.

Example:
Count1 SHORT !Declare two-byte signed integer
Count2 SHORT,OVER(Count1) !Declare OVER the two-byte signed integer
Count3 SHORT,DIM(4) !Declare it an array of 4 shorts
Count4 SHORT(5) !Declare with initial value
Count5 SHORT,EXTERNAL !Declare as external
Count6 SHORT,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Clarion´) !Declare a file
Record RECORD
Count7 SHORT,NAME(´Counter´) !Declare with external name

. .

USHORT (two-byte unsigned integer)
label USHORT([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

USHORT A two-bye unsigned integer.

Format: magnitude
 | |

Bits: 15 0
Range: 0 to 65,535

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
USHORT declares a two-byte unsigned integer in the Intel 8086 word format. There is no sign bit in this
configuration.

Example:
Count1 USHORT !Declare two-byte unsigned integer
Count2 USHORT,OVER(Count1) !Declare OVER the two-byte unsigned integer
Count3 USHORT,DIM(4) !Declare it an array of 4 unsigned shorts
Count4 USHORT(5) !Declare with initial value
Count5 USHORT,EXTERNAL !Declare as external
Count6 USHORT,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
Count7 USHORT,NAME(´Counter´) !Declare with external name

 . .

LONG (four-byte signed integer)
label LONG([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

LONG A four-byte unsigned integer.

Format: ± magnitude
 | . | |

Bits: 31 30 0
Range: -2,147,483,648 to 2,147,483,647

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
LONG declares a four-byte signed integer, using the Intel 8086 long integer format. The high-order bit is
the sign bit (0 = positive, 1 = negative). Negative values are represented in standard two´s complement
notation.

Example:
Count1 LONG !Declare four-byte signed integer
Count2 LONG,OVER(Count1) !Declare OVER the four-byte signed integer
Count3 LONG,DIM(4) !Declare it an array of 4 longs
Count4 LONG(5) !Declare with initial value
Count5 LONG,EXTERNAL !Declare as external
Count6 LONG,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Clarion´) !Declare a file
Record RECORD
Count7 LONG,NAME(´Counter´) !Declare with external name

. .

ULONG (four-byte unsigned integer)
label ULONG([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

ULONG A four-byte unsigned integer.

Format: magnitude
 | |

Bits: 31 0
Range: 0 to 4,294,967,295

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
ULONG declares a four-byte unsigned integer, using the Intel 8086 long integer format. There is no sign
bit in this configuration.

Example:
Count1 ULONG !Declare four-byte unsigned integer
Count2 ULONG,OVER(Count1) !Declare OVER four-byte unsigned integer
Count3 ULONG,DIM(4) !Declare it an array of 4 unsigned longs
Count4 ULONG(5) !Declare with initial value
Count5 ULONG,EXTERNAL !Declare as external
Count6 ULONG,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
Count7 ULONG,NAME(´Counter´) !Declare with external name

 . .

SREAL (four-byte signed floating point)
label SREAL([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

SREAL A four-byte floating point number.

Format: ± exponent significand
| . | | |

Bits: 31 30 23 0
Range: 0, ± 1.175494e-38 .. ± 3.402823e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
SREAL declares a four-byte floating point signed numeric variable, using the Intel 8087 short real (single
precision) format.

Example:
Count1 SREAL !Declare four-byte signed floating point
Count2 SREAL,OVER(Count1) !Declare OVER the four-byte

! signed floating point
Count3 SREAL,DIM(4) !Declare it an array of 4 floats
Count4 SREAL(5) !Declare with initial value
Count5 SREAL,EXTERNAL !Declare as external
Count6 SREAL,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
Count7 SREAL,NAME(´Counter´) !Declare with external name

 . .

REAL (eight-byte signed floating point)
label REAL([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

REAL An eight-byte floating point number.

Format: ± exponent significand
| . | | ... |

Bits: 63 62 52
0

Range: 0, ± 2.225073858507201e-308 .. ± 1.79769313496231e+308
(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
REAL declares an eight-byte floating point signed numeric variable, using the Intel 8087 long real (double
precision) format.

Example:
Count1 REAL !Declare eight-byte signed floating point
Count2 REAL,OVER(Count1) !Declare OVER the eight-byte

 ! signed floating point
Count3 REAL,DIM(4) !Declare it an array of 4 reals
Count4 REAL(5) !Declare with initial value
Count5 REAL,EXTERNAL !Declare as external
Count6 REAL,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Clarion´) !Declare a file
Record RECORD
Count5 REAL,NAME(´Counter´) !Declare with external name

. .

BFLOAT4 (four-byte signed floating point)
label BFLOAT4([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]

[,AUTO]

BFLOAT4 A four-byte floating point number.

Format: exponent ± significand
| | . | ... |

Bits: 31 23 22
0

Range: 0, ± 5.87747e-39 .. ± 1.70141e+38
(6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
BFLOAT4 declares a four-byte floating point signed numeric variable, using the Microsoft BASIC (single
precision) format. This data type is normally used for compatibility with existing data since it is internally
converted to a REAL before all arithmetic operations.

Example:
Count1 BFLOAT4 !Declare four-byte signed floating point
Count2 BFLOAT4,OVER(Count1) !Declare OVER the four-byte

 ! signed floating point
Count3 BFLOAT4,DIM(4) !Declare array of 4 single-precision reals
Count4 BFLOAT4(5) !Declare with initial value
Count5 BFLOAT4,EXTERNAL !Declare as external
Count6 BFLOAT4,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
Count5 BFLOAT4,NAME(´Counter´) !Declare with external name

. .

BFLOAT8 (eight-byte signed floating point)
label BFLOAT8([initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL][,STATIC] [,THREAD]

[,AUTO]

BFLOAT8 An eight-byte floating point number.

Format: exponent ± significand
| | . | ... |

Bits: 63 55 54
0

Range: 0, ± 5.877471754e-39 .. ± 1.7014118346e+38
(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
BFLOAT8 declares an eight-byte floating point signed numeric variable, using the Microsoft BASIC
(double precision) format. This data type is normally used for compatibility with existing data since it is
internally converted to a REAL before all arithmetic operations.

Example:
Count1 BFLOAT8 !Declare eight-byte signed floating point
Count2 BFLOAT8,OVER(Count1) !Declare OVER the eight-byte

 ! signed floating point
Count3 BFLOAT8,DIM(4) !Declare it an array of 4 reals
Count4 BFLOAT8(5) !Declare with initial value
Count5 BFLOAT8,EXTERNAL !Declare as external
Count6 BFLOAT8,NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
Count5 BFLOAT8,NAME(´Counter´) !Declare with external name

. .

DECIMAL (signed packed decimal)
label DECIMAL(length [,places] [,initial value]) [,DIM()] [,OVER()] [,NAME()] [,STATIC] [,THREAD]

[,EXTERNAL] [,DLL] [,AUTO]

DECIMAL A packed decimal floating point number.

Format: ± magnitude
| . | .. |

Bits: 127 124
 0

Range: -9,999,999,999,999,999,999,999,999,999,999 to
+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number of decimal digits (integer and
fractional portion combined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal digits in the fractional portion (to
the right of the decimal point) of the variable. It must be less than the length parameter. If
omitted, the variable will be declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
DECIMAL declares a variable length packed decimal signed numeric variable. Each byte of a DECIMAL
holds two decimal digits (4 bits per digit). The left-most byte holds the sign in its high-order nibble (0 =
positive, anything else is negative) and one decimal digit. Therefore, DECIMAL variables always contain a
fixed "odd" number of digits (DECIMAL(10) and DECIMAL(11) both use 6 bytes).

Example:
Count1 DECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 DECIMAL(5),OVER(Count1) !Declare OVER the three-byte

 ! signed packed decimal
Count3 DECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 DECIMAL(5,0,5) !Declare with initial value
Count5 DECIMAL(5,0),EXTERNAL !Declare as external
Count6 DECIMAL(5,0),NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Clarion´) !Declare a file
Record RECORD
Count7 DECIMAL(5,0),NAME(´Counter´) !Declare with external name

. .

PDECIMAL (signed packed decimal)
label PDECIMAL(length [,places] [,initial value]) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]

[,STATIC] [,THREAD] [,AUTO]

PDECIMAL A packed decimal floating point number.

Format: magnitude
 ±
| .. | . |

Bits: 127
 4 0

Range: -9,999,999,999,999,999,999,999,999,999,999 to
+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number of decimal digits (integer and
fractional portion combined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal digits in the fractional portion (to
the right of the decimal point) of the variable. It must be less than the length parameter. If
omitted, the variable will be declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
PDECIMAL declares a variable length packed decimal signed numeric variable in the Btrieve and
IBM/EBCDIC type of format. Each byte of an PDECIMAL holds two decimal digits (4 bits per digit). The
right-most byte holds the sign in its low-order nibble (0Fh or 0Ch = positive, 0Dh = negative) and one
decimal digit. Therefore, PDECIMAL variables always contain a fixed "odd" number of digits
(PDECIMAL(10) and PDECIMAL(11) both use 6 bytes).

Example:
Count1 PDECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 PDECIMAL(5),OVER(Count1) !Declare OVER the three-byte

! signed packed decimal
Count3 PDECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 PDECIMAL(5,0,5) !Declare with initial value
Count5 PDECIMAL(5,0),EXTERNAL !Declare as external
Count6 PDECIMAL(5,0),NAME(´SixCount´) !Declare with external name
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD

Count7 PDECIMAL(5,0),NAME(´Counter´) !Declare with external name
 . .

STRING (fixed-length string)
| length |

label STRING(|string constant |) [,DIM()][,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]
| picture | [,THREAD] [,AUTO]

STRING A character string.

Format: A fixed number of bytes.
Size: 1 to 65,520 bytes in 16-bit, or 4MB in 32-bit.

length A numeric constant that defines the number of bytes in the STRING. String variables are
not initialized unless given a string constant.

string constant The initial value of the STRING. The length of the STRING (in bytes) is set to the length
of the string constant.

picture Used to format the values assigned to the STRING. The length is the number of bytes
needed to contain the formatted STRING.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
STRING declares a fixed-length character string. The memory assigned to the STRING is initialized to all
blanks unless the AUTO attribute is present.

In addition to its explicit declaration, all STRING variables are also implicitly declared as
STRING(1),DIM(length of string). This allows each character in the STRING to be addressed as an array
element. If the STRING also has a DIM attribute, this implicit array declaration is the last (optional)
dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a STRING using the "string slicing" technique.
This technique performs similar action to the SUB function, but is much more flexible and efficient. It is
more flexible because a "string slice" may be used on both the destination and source sides of an
assignment statement and the SUB function can only be used as the source. It is more efficient because
it takes less memory than individual character assignments or the SUB function.

To take a "slice" of the STRING, the beginning and ending character numbers are separated by a colon (:)
and placed in the implicit array dimension position within the square brackets ([]) of the STRING. The
position numbers may be integer constants, variables, or expressions. If variables are used, there must
be at least one blank space between the variable name and the colon separating the beginning and
ending number (to prevent PREfix confusion).

Example:
Name STRING(20) !Declare 20 byte name field
ArrayString STRING(5),DIM(20) !Declare array
Company STRING('Clarion Software, Inc.') !The software company - 22 bytes
Phone STRING(@P(###)###-####P) !Phone number field - 13 bytes
ExampleFile FILE,DRIVER('Clarion') !Declare a file
Record RECORD
NameField STRING(20),NAME('Name') !Declare with external name

. .
CODE
NameField = 'Tammi' !Assign a value
NameField[5] = 'y' ! change fifth letter
NameField[5:6] = 'ie' ! and change a "slice"

! -- the fifth and sixth letters
ArrayString[1] = 'First' !Assign value to first element
ArrayString[1,2] = 'u' !Change first element 2nd character
ArrayString[1,2:3] = NameField[5:6] !Assign slice to slice

CSTRING (fixed-length null terminated string)
| length |

label CSTRING(|string constant |) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL]
| picture | [,STATIC] [,THREAD] [,AUTO]

CSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 65,520 bytes in 16-bit, or unlimited in 32-bit.

length A numeric constant that defines the number of bytes of storage the string will use. This
must include a position for the terminating null character. String variables are not
initialized unless given a string constant.

string constant A string constant containing the initial value of the string. The length of the string is set to
the length of the string constant plus the terminating null character.

picture The picture token used to format the values assigned to the string. The length of the string
is the number of bytes needed to contain the formatted string and the terminating null
character.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
CSTRING declares a character string terminated by a null character (ASCII zero). The memory assigned
to the CSTRING is initialized to a zero length string unless the AUTO attribute is present.

CSTRING matches the string data type used in the "C" language and the "ZSTRING" data type of the
Btrieve Record Manager. Storage and memory requirements are fixed-length, however the terminating
null character is placed at the end of the data entered. CSTRING is internally converted to a STRING
intermediate value for use during program execution. It should be used to achieve compatibility with
outside files or procedures.

In addition to its explicit declaration, all CSTRINGs are implicitly declared as a CSTRING(1),DIM(length of
string). This allows each character in the CSTRING to be addressed as an array element. If the CSTRING
also has a DIM attribute, this implicit array declaration is the last (optional) dimension of the array (to the
right of the explicit dimensions).

You may also directly address multiple characters within a CSTRING using the "string slicing" technique.
This technique performs similar action to the SUB function, but is much more flexible and efficient. It is
more flexible because a "string slice" may be used on both the destination and source sides of an
assignment statement and the SUB function can only be used as the source. It is more efficient because

it takes less memory than individual character assignments or the SUB function.

To take a "slice" of the CSTRING, the beginning and ending character numbers are separated by a colon
(:) and placed in the implicit array dimension position within the square brackets ([]) of the CSTRING. The
position numbers may be integer constants, variables, or expressions. If variables are used, there must
be at least one blank space between the variable name and the colon separating the beginning and
ending number (to prevent PREfix confusion).

Since a CSTRING must be null-terminated, the programmer must be responsible for ensuring that an
ASCII zero is placed at the end of the data if the field is only accessed through its array elements or as a
"slice" (not as a whole entity).

Example:
Name CSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName CSTRING(21),OVER(Name) !Declare field over name field
Contact CSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company CSTRING('Clarion Software, Inc.') !23 byte string - 22 bytes data
Phone CSTRING(@P(###)###-####P) ! Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER('Btrieve') !Declare a file
Record RECORD
NameField CSTRING(21),NAME('ZstringField') !Declare with external name

. .
CODE
Name = 'Tammi' !Assign a value
Name[5] = 'y' ! then change fifth letter
Name[6] = 's' ! then add a letter
Name[7] = '<0>' ! and handle null terminator
Name[5:6] = 'ie' ! and change a "slice"

! -- the fifth and sixth letters
Contact[1] = 'First' !Assign value to first element
Contact[1,2] = 'u' !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice

PSTRING (embedded length-byte string)
| length |

label PSTRING(|string constant |) [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD]
| picture | [,AUTO]

PSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 255 bytes.

length A numeric constant that defines the number of bytes in the string. This must include the
first position length-byte.

string constant A string constant containing the initial value of the string. The length of the string is set to
the length of the string constant plus the length-byte.

picture The picture token used to format the values assigned to the string. The length of the string
is the number of bytes needed to contain the formatted string plus the first position length
byte. String variables are not initialized unless given a string constant.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
PSTRING declares a character string with a leading length byte included in the number of bytes declared
for the string. The memory assigned to the PSTRING is initialized to a zero length string unless the AUTO
attribute is present.

PSTRING matches the string data type used by the Pascal language and the "LSTRING" data type of the
Btrieve Record Manager. Storage and memory requirements are fixed-length, however, the leading length
byte will contain the number of characters actually stored. PSTRING is internally converted to a STRING
intermediate value for use during program execution. It should be used to achieve compatibility with
outside files or procedures.

In addition to its explicit declaration, all PSTRINGs are implicitly declared as a PSTRING(1),DIM(length of
string). This allows each character in the PSTRING to be addressed as an array element. If the PSTRING
also has a DIM attribute, this implicit array declaration is the last (optional) dimension of the array (to the
right of the explicit dimensions).

You may also directly address multiple characters within a PSTRING using the "string slicing" technique.
This technique performs similar action to the SUB function, but is much more flexible and efficient. It is
more flexible because a "string slice" may be used on both the destination and source sides of an
assignment statement and the SUB function can only be used as the source. It is more efficient because

it takes less memory than individual character assignments or the SUB function.

To take a "slice" of the PSTRING, the beginning and ending character numbers are separated by a colon
(:) and placed in the implicit array dimension position within the square brackets ([]) of the PSTRING. The
position numbers may be integer constants, variables, or expressions. If variables are used, there must
be at least one blank space between the variable name and the colon separating the beginning and
ending number (to prevent PREfix confusion).

Since a PSTRING must have a leading length byte, the programmer must be responsible for ensuring
that its value is always correct if the field is only accessed through its array elements or as a "slice" (not
as a whole entity). The PSTRING´s length byte is addressed as element zero (0) of the array (the only
case in Clarion where an array has a zero element). Therefore, the valid range of array indexes for a
PSTRING(30) would be 0 to 29.

Example:
Name PSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName PSTRING(21),OVER(Name) !Declare field over name field
Contact PSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company PSTRING(´Clarion Software, Inc.´) !23 byte string - 22 bytes data
Phone PSTRING(@P(###)###-####P) !Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
NameField PSTRING(21),NAME(´LstringField´) !Declare with external name

. .
CODE
Name = ´Tammi´ !Assign a value
Name[5] = ´y´ ! then change fifth letter
Name[6] = ´s´ ! then add a letter
Name[0] = ´<6>´ ! and handle length byte
Name[5:6] = ´ie´ ! and change a "slice"

! -- the fifth and sixth letters
Contact[1] = ´First´ !Assign value to first element
Contact[1,2] = ´u´ !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice

DATE (four-byte date)
label DATE [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD] [,AUTO]

DATE A four-byte date.

Format: year mm dd
 | | | |

Bits: 31 15 7 0
Range: year: 1 to 9999

 month: 1 to 12
 day: 1 to 31

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
DATE declares a four-byte date variable. This format matches the "DATE" field type used by the Btrieve
Record Manager. A DATE used in a numeric expression is converted to the number of days elapsed since
December 28, 1800 (Clarion Standard Date - usually stored as a LONG). The valid Clarion Standard Date
range is January 1, 1801 through December 31, 2099. Using an out-of-range date produces
unpredictable results. DATE fields should be used to achieve compatibility with outside files or
procedures.

Example:
DueDate DATE !Declare a date field
OtherDate DATE,OVER(DueDate) !Declare field over date field
ContactDate DATE,DIM(4) !Array of 4 date fields
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
DateRecd DATE,NAME(´DateField´) !Declare with external name

. .

See Also:

Standard Date

TIME (four-byte time)
label TIME [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC] [,THREAD] [,AUTO]

TIME A four-byte time.

Format: hh mm ss hs
 | | | | |

Bits: 31 23 15 7 0
Range: hours: 0 to 23

 minutes: 0 to 59
 seconds: 0 to 59

 seconds/100: 0 to 99

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

AUTO Specify the variable has no initial value.
TIME declares a four byte time variable. This format matches the "TIME" field type used by the Btrieve
Record Manager. A TIME used in a numeric expression is converted to the number of hundredths of a
second elapsed since midnight (Clarion Standard Time - usually stored as a LONG). TIME fields should
be used to achieve compatibility with outside files or procedures.

Example:
ChkoutTime TIME !Declare checkout time field
OtherTime TIME,OVER(CheckoutTime) !Declare field over time field
ContactTime TIME,DIM(4) !Array of 4 time fields
ExampleFile FILE,DRIVER(´Btrieve´) !Declare a file
Record RECORD
TimeRecd TIME,NAME(´TimeField´) !Declare with external name

. .

See Also:

Standard Time

GROUP (compound data structure)
label GROUP([group]) [,PRE()] [,DIM()] [,OVER()] [,NAME()] [,EXTERNAL] [,DLL] [,STATIC]

[,THREAD] [,BINDABLE] [, TYPE]
 declarations

END

GROUP A compound data structure.

group The label of a previously declared GROUP, QUEUE, or RECORD structure from which
it will inherit its structure. This may be a GROUP or QUEUE with the TYPE attribute.

PRE Declare a label prefix for variables within the structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or structure.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

STATIC Specify the variable's memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.

TYPE Specify the GROUP is a type definition for GROUPs passed as parameters.

declarations Multiple consecutive variable declarations.
A GROUP structure allows multiple variable declarations to be referenced by a single label. It may be
used to dimension a set of variables, or to assign or compare sets of variables in a single statement. In
large complicated programs, a GROUP structure is helpful for keeping sets of related data organized. A
GROUP must be terminated by a period or the END statement.

The structure of a GROUP declared with the group parameter begins with the same structure as the
named group; the GROUP inherits the fields of the named group. The GROUP may also contain its own
declarations that follow the inherited fields. If the group parameter names a QUEUE or RECORD
structure, only the fields are inherited and not the functionality implied by the QUEUE or RECORD.

When referenced in a statement or expression, a GROUP is treated as a STRING composed of all the
variables within the structure. A GROUP structure may be nested within another data structure, such as a
RECORD or another GROUP.

Because of their internal storage format, numeric variables (other than DECIMAL) declared in a group do
not collate properly when treated as strings. For this reason, building a KEY on a GROUP that contains
numeric variables may produce an unexpected collating sequence.

A GROUP with the BINDABLE attribute makes all the variables within the GROUP available for use in a
dynamic expression. The contents of each variable's NAME attribute is the logical name used in the
dynamic expression. If no NAME attribute is present, the label of the variable (including prefix) is used.
Space is allocated in the .EXE for the names of all of the variables in the structure. This creates a larger
program that uses more memory than it normally would. Therefore, the BINDABLE attribute should only

be used when a large proportion of the constituent fields are going to be used.

A GROUP with the TYPE attribute is not allocated any memory; it is only a type definition for GROUPs
that are passed as parameters to PROCEDUREs or FUNCTIONs. This allows the receiving procedure to
directly address component fields in the passed GROUP. The parameter declaration on the
PROCEDURE or FUNCTION statement instantiates a local prefix for the passed GROUP as it names the
passed GROUP for ther procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type definition) to
directly address component fields of the GROUP passed as the parameter.

Example:
PROGRAM

PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END
MAP
MyProc1(PassGroup) !Passes a GROUP defined the same as PassGroup

END
NameGroup GROUP,PRE(Nme) !Name group
First STRING(20) ! first name
Middle STRING(1) ! middle initial
Last STRING(20) ! last name

END !End group declaration
NameGroup2 GROUP(PassGroup),PRE(Nme2) !Group that inherits PassGroup's fields

! resulting in Nme2:F1, Nme2:F2, and Nme2:F3
END ! fields declared in this group

DateTimeGrp GROUP,PRE(Dtg),DIM(10) !Date/time array
Date LONG
Time LONG

END !End group declaration
FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME('FILE') !Dynamic name: FILE
Dot STRING('.') !Dynamic name: Dot
Extension STRING(3),NAME('EXT') !Dynamic name: EXT

END
CODE
MyProc1(NameGroup) !Call proc passing NameGroup as parameter
MyProc1(NameGroup2) !Call proc passing NameGroup2 as parameter

MyProc1 PROCEDURE(LOC:PassedGroup) !Proc to receive GROUP parameter
LocalVar STRING(20)
CODE
LocalVar = LOC:F1 !Assign value in Nme:First to LocalVar

! from passed parameter

LIKE (inherited data type)
new declaration LIKE(like declaration) [,DIM()] [,OVER()] [,PRE()] [,NAME()] [,BINDABLE]

LIKE Declares a variable whose data type is inherited from another variable.

new declarationThe label of the new data element declaration.

like declaration The label of the data element declaration whose definition will be used.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or structure.

PRE Declare a label prefix for any variables within the structure. This is required when the
like declaration is a GROUP.

NAME Specify an alternate, "external" name for the field.

EXTERNAL Specify the variable is defined, and its memory is allocated, in an external library. Not
valid within FILE, QUEUE, or GROUP declarations.

STATIC Specify the variable´s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for each execution thread. Also
implicitly adds the STATIC attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dynamic expressions.
LIKE tells the compiler to define the new declaration using the same definition as the like declaration,
including all attributes. If the original like declaration changes, so does the new declaration.

The new declaration may use the DIM and OVER attributes. If the like declaration has a DIM attribute, the
new declaration is already an array. If a further DIM attribute is added to the new declaration, the array is
further dimensioned.

The PRE and NAME attributes may be used, if appropriate. If the like declaration already has these
attributes, the new declaration will inherit them and compiler errors can occur. To correct this, specify a
PRE or NAME attribute on the new declaration to override the inherited attribute.

Example:
Amount REAL !Define a field
QTDAmount LIKE(Amount) !Use same definition
YTDAmount LIKE(QTDAmount) !Use same definition again
MonthlyAmts LIKE(Amount),DIM(12) !Use same definition for array, 12 elements
AmtPrPerson LIKE(MonthlyAmts),DIM(10)

 !Use same definition for array of 120 elements (12,10)
Construct GROUP,PRE(Con) !Define a group
Field1 LIKE(Amount) ! con:field1 - real
Field2 STRING(10) ! con:field2 - string(10)

 END
NewGroup LIKE(Construct),PRE(New) !Define new group, with

 ! new:field1 - real
 ! new:field2 - string(10)

AmountFile FILE,DRIVER(´Clarion´),PRE(Amt)
Record RECORD
Amount REAL !Define a field

QTDAmount LIKE(Amount) !Use same definition
 . .

See Also:

DIM

OVER

PRE

NAME

Implicit Variables
Implicit variables are not declared in data declarations. They are created by the compiler when it first
encounters them. Implicit variables are automatically initialized to blank or zero; they do not have to be
explicitly assigned values before use. You may always assume that they contain blanks or zero before
your program´s first assignment to them.

Any implicit variable used in the global data declaration area (between the keywords PROGRAM and
CODE) is Global data, assigned static memory. Any implicit variable used between the keywords
MEMBER and PROCEDURE (or FUNCTION) is Module data, assigned static memory. Any other implicit
variable is Local data, assigned dynamic memory on the program´s stack.

Since the compiler dynamically creates implicit variables as they are encountered, there is a danger that
problems may arise that can be difficult to trace. This is due to the lack of compile-time error and type
checking on implicit variables. For example, if you spell incorrectly the name of a previously used implicit
variable, the compiler will not tell you, but will simply create a new implicit variable with the new spelling.
When your program checks the value in the original implicit variable, it will be incorrect. Therefore, implicit
variables should be used with care and caution, and only within a limited scope (or not at all).

Implicit variables are generally used for: array subscripts, true/false switches, intermediate variables in
complex calculations, loop control variables, etc. The Clarion language provides three types of implicit
variables:

 # Pound sign names an implicit LONG variable, a label terminated by a # character.

 $ Dollar sign names an implicit REAL variable, a label terminated by a $ character.

 " Double quote names an implicit 32 byte string, a label terminated by a " character.
Example:
LOOP Counter# = 1 TO 10 !Implicit LONG loop counter
ArrayField[Counter#] = Counter# * 2 ! to initialize an array

END
Address" = CLIP(City) & ´, ´ & State & ´ ´ & Zip !Implicit STRING(32)
MESSAGE(Address") !Used to display a temporary value
Percent$ = ROUND((Quota / Sales),.1) * 100 !Implicit REAL
MESSAGE(FORMAT(Percent$,@P%<<<.##P)) !Used to display a temporary value

See Also:

Data Declarations and Memory Allocation

Reference Variables
A reference variable contains a reference to another data declaration (its "target"). You declare a
reference variable by prepending an ampersand (&) to the data type of its target (&BYTE, &FILE,
&LONG, &WINDOW, etc.). Depending upon the target´s data type, the reference variable may contain the
target´s memory address, or a more complex internal data structure (describing the location and type of
target data).

Valid reference variable declarations are: &BYTE, &SHORT, &USHORT, &LONG, &ULONG, &REAL,
&SREAL, &BFLOAT8, &BFLOAT4, &DECIMAL, &PDECIMAL, &STRING, &CSTRING, &PSTRING,
&GROUP, &QUEUE, &FILE, &VIEW, &WINDOW. Reference variables may not be declared within
GROUP, FILE, QUEUE, or VIEW structures.

The &STRING, &CSTRING, &PSTRING, &DECIMAL, and &PDECIMAL reference variable declarations
do not require length parameters, since all necessary information about the specific target data item is
contained in the reference. This means a &STRING reference variable may contain a reference to any
length STRING variable. A reference variable declared with &WINDOW can target either an
APPLICATION, WINDOW, or REPORT structure.

The label of the reference variable is syntactically correct every place in executable code where its target
is allowed. When used in a code statement, the reference variable is automatically "dereferenced" to
supply the statement the value of its target (except for reference assignment statements). References
cross thread boundaries, and so, may be used to reference data items in other execution threads.

The &= operator executes a reference assignment statement (destination &= source). This assigns the
source´s reference to the destination reference variable.

Example:
App1 APPLICATION(´Hello´)

 END
App2 APPLICATION(´Buenos Dias´)

 END
AppRef &WINDOW !Reference to an APPLICATION, WINDOW, or REPORT
CODE
IF CTL:Language = ´English´ !If english language user
AppRef &= App1 ! reference english application frame

ELSE
AppRef &= App2 ! else reference spanish application frame

END
OPEN(AppRef) !Open the referenced application frame window

See Also:

Reference Assignment Statements

THREAD

Attributes of Variables
PRE (set group label prefix)

DIM (set array dimensions)

EXTERNAL (set variable defined externally)

NAME (set variables external name)

OVER (set shared memory location)

STATIC (set local variable static)

THREAD (set thread-specific static variable)

BINDABLE (set dynamic expression string variables)

AUTO (uninitialized local variable)

TYPE (GROUP type definition)

PRE (set group label prefix)
PRE(prefix)

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0 through 9, and the underscore
character. A prefix must start with an alphabet character and must not be a reserved word.
By convention, a prefix is 1-3 characters, although it can be longer.

The PRE attribute provides a label prefix for complex data structures. It is used to distinguish between
identical variable names that occur in different structures. When referenced in executable statements,
assignments, and parameter lists, a prefix is attached to a label by a colon (Pre:Label). PRE may be used
with the following data structures discussed in this reference: GROUP, and LIKE.

Example:
G1 GROUP,PRE(Mem) !Declare some memory variables
Message STRING(30) ! with the Mem prefix
Page LONG
Line LONG
Device STRING(30)

END
G2 LIKE(G1),PRE(Me2) !Declare second GROUP LIKE the first

 !Contains same variables with Me2 prefix
CODE
Mem:Message = ´Variable in original group´
Me2:Message = ´Variable in LIKE group´

See Also:

Reserved Words

DIM (set array dimensions)
DIM(dimension,...,dimension)

DIM Declares a variable as an array.

dimension A numeric constant which specifies the number of elements in this dimension of the array.
The DIM attribute declares a variable as an array. The variable is repeated the number of times specified
by the dimension parameters. Multi-dimensional arrays may be thought of as nested. Each dimension in
the array has a corresponding subscript. Therefore, referencing a variable in a three dimensional array
requires three subscripts. There is no limit to the number of dimensions; however, the total size of an
array must not exceed 65,520 bytes of data in 16-bit applications (there is no limit in 32-bit applications).

Subscripts identify which element of the array is being referenced. A subscript list contains a subscript for
each dimension of the array. Each subscript is separated by a comma and the entire list is enclosed in
brackets ([]). A subscript may be a numeric constant, expression, or function. The entire array may be
referenced by the label of the array without a subscript list.

A GROUP structure is a special case. Each level of nesting adds subscripts to the GROUP and the
variables within the GROUP. Data declared within the GROUP may be referenced exactly like the
GROUP itself.

Example:
Scr GROUP !Characters on a text-mode screen
Row GROUP,DIM(25) !Twenty-five rows
Pos GROUP,DIM(80) !Two thousand positions
Attr BYTE !Attribute byte
Char BYTE !Character byte

. . . !Terminate the group structures
! In the group above:
! Scr is a 4,000 byte GROUP
! Row[1] is a 160 byte GROUP
! Pos[1,1] is a 2 byte GROUP
! Attr[1,1] is a BYTE
! Char[1,1] is a BYTE

Month STRING(10),DIM(12) !Dimension the month to 12
CODE
CLEAR(Month) !Assign blanks to the entire array
Month[1] = 'January' !Load the months into the array
Month[2] = 'February'
Month[3] = 'March'

See Also:

MAXIMUM

EXTERNAL (set variable defined externally)
EXTERNAL([member])

EXTERNAL Specifies the variable or FILE is defined in an external library.

member A string constant. Valid only on a FILE declaration. It contains the filename (without
extension) of the MEMBER module containing the FILE definition without the
EXTERNAL attribute. If the FILE is defined in a PROGRAM module, an empty member
string ('') is required.

The EXTERNAL attribute specifies that the variable or FILE on which it is placed is defined in an external
library. Therefore, a variable or FILE with the EXTERNAL attribute is declared and may be referenced in
the Clarion code, but is not allocated memory. The memory for the variable or FILE is allocated by the
external library. This allows the Clarion program access to variables or FILEs declared as public in
external libraries.

The EXTERNAL attribute, without the member parameter, is valid only on variables declared outside
FILE, QUEUE, or GROUP structures.

When using EXTERNAL(member) to declare a FILE shared by multiple libraries (.LIBs, or .DLLs
and .EXE), only one library should define the FILE without the EXTERNAL attribute. All the other libraries
(and the .EXE) should declare the FILE with the EXTERNAL attribute. This ensures that there is only one
record buffer allocated for the FILE and all the libraries and the .EXE will reference the same memory
when referring to data elements from that FILE.

The FILE declarations in all libraries (or .EXEs) that reference common files must be EXACTLY the same
(with the appropriate addition of the EXTERNAL attribute). If they are not exactly the same, data
corruption could occur. The actual consequence of incompatible FILE declarations is dependent upon the
file driver for that file system. Any incompatibilities between libraries cannot be detected by the compiler
or linker, therefore it is the programmer´s responsibility to ensure that consistency is maintained.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same files
would have one .DLL containing the actual FILE definition that only contains FILE and global variable
definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one central library in
which the actual file definitions are maintained. This one central .DLL is linked into all .EXEs that use
those common files. All other .DLLs and/or .EXEs in the system would declare the common FILEs with
the EXTERNAL attribute.

Example:
PROGRAM
MAP
 MODULE('LIB.LIB')
 AddCount !External library procedure

. .
TotalCount LONG,EXTERNAL !A variable declared in an external library
Cust FILE,PRE(Cus),EXTERNAL('') !A File defined in a PROGRAM module
CustKey KEY('Name') ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

. .
Contact FILE,PRE(Con),EXTERNAL('LIB01') !A File defined in a MEMBER module
ContactKey KEY('Name') ! whose .LIB is linked into this program

Record RECORD
Name STRING(20)

. .
! The LIB.CLW file contains:
PROGRAM
MAP
 MODULE(´LIB01´)
 AddCount !

. .
TotalCount LONG !The TotalCount variable definition
Cust FILE,PRE(Cus) !The Cust File definition where the
CustKey KEY(´Cus:Name´) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .
CODE
!Executable code ...

! The LIB01.CLW file contains:
 MEMBER(´LIB´)
Contact FILE,PRE(Con) !The Contact File definition where the
ContactKey KEY(´Con:Name´) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .
AddCount PROCEDURE
CODE
TotalCount += 1

See Also:

NAME

DLL (set variable defined externally in .DLL)
DLL([flag])

DLL Declares a variable defined externally in a .DLL.

flag A numeric constant, equate, or Project system define which specifies the attribute as
active or not. If the flag is zero, the attribute is not active, just as if it were not present. If
the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the variable on which it is placed is defined in a .DLL. A variable with DLL
attribute must also have the EXTERNAL attribute. The DLL attribute is required for 32-bit applications
because .DLLs are relocatable in a 32-bit flat address space, which requires one extra dereference by the
compiler to address the variable. The DLL attribute is valid only on variables declared outside FILE,
QUEUE, or GROUP structures.

The variable declarations in all libraries (or .EXEs) that reference common variables must be EXACTLY
the same (with the appropriate addition of the EXTERNAL and DLL attributes). If they are not exactly the
same, data corruption could occur. Any incompatibilities between libraries cannot be detected by the
compiler or linker, therefore it is the programmer's responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a variable shared by .DLLs and .EXE, only one .DLL should
define the variable without the EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the variable with the EXTERNAL and DLL attributes. This ensures that there is only one memory
allocation for the variable and all the .DLLs and the .EXE will reference the same memory when referring
to that variable.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
variables would have one .DLL containing the actual data definition that only contains FILE and global
variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one central
library in which the actual file definitions are maintained. This one central .DLL is linked into all .EXEs that
use those common files. All other .DLLs and/or .EXEs in the system would declare the common variables
with the EXTERNAL and DLL attributes.

Example:
TotalCount LONG,EXTERNAL,DLL !A variable declared in an external .DLL

See Also: EXTERNAL

NAME (set variable´s external name)
NAME([| constant |])

| variable |

NAME Specifies an "external" name for the linker or file driver.

constant A string constant.

variable The label of a STRING variable declared in the global data declaration area or a
MEMBER module´s data declaration area.

The NAME attribute specifies an "external" name for the linker or file driver. The NAME attribute is
completely independent of the EXTERNAL attribute--there is no required connection between the two,
although both attributes may be used on the same variable.

The NAME attribute may be placed on a FUNCTION or PROCEDURE Prototype, FILE, KEY, INDEX,
MEMO, any field declared within a FILE, any field declared within a QUEUE structure, or any field not
within a structure. The NAME attribute has different implications depending on where it is used.

NAME(constant) may be specified on a FUNCTION or PROCEDURE Prototype. The constant supplies
the external name used by the linker to identify the procedure or function from an external library.

The NAME(constant) or NAME(variable) attribute on a FILE declaration specifies a DOS directory file
specification. If the constant or variable does not contain a drive and path, the current drive and directory
are assumed. If the extension is omitted, the directory entry assumes the file driver´s default value. Some
file drivers require that KEYs, INDEXes, or MEMOs be in separate files. Therefore, a NAME may also be
placed on a KEY, INDEX, or MEMO. A NAME attribute without a constant or variable defaults to the label
of the declaration statement on which it is placed (including any specified prefix).

NAME(constant) may be used on any field declared within the RECORD structure. This provides the file
driver with the name of a field as it may be used in that driver´s file system.

NAME(constant) may be used on any field declared within a QUEUE structure. This provides the
capability of run time dynamic sorts.

NAME(constant) may be used on any variable declared outside of any structure. This provides the linker
with an external name to identify a variable declared in an external library. If the variable also has the
EXTERNAL attribute, it is declared, and its memory is allocated, as a public variable in the external
library. Without the EXTERNAL attribute, it is declared, and its memory is allocated, in the Clarion
program, and it is declared as an external variable in the external library.

Example:
PROGRAM
MAP
 MODULE(´External.Obj´)
AddCount(LONG),LONG,C,NAME(´_AddCount´) !C function named ´_AddCount´

. .
Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(´Name´),NAME(´c:\data\cust.idx´) !Declare key, cust.idx
Record RECORD
Name STRING(20) !Default NAME to ´Cus:Name´

. .
SortQue QUEUE,PRE(Que)
Field1 STRING(10),NAME(´FirstField´) !QUEUE SORT NAME

Field2 LONG,NAME(´SecondField´) !QUEUE SORT NAME
END

CurrentCnt LONG,EXTERNAL,NAME(´Cur´) !Field declared public in
! external library as ´Cur´

TotalCnt LONG,NAME(´Tot´) !Field declared external
! in external library as ´Tot´

See Also:

FUNCTION and PROCEDURE Prototypes

FILE

KEY

INDEX

QUEUE

EXTERNAL

OVER (set shared memory location)
OVER(overvariable)

OVER Allows one memory address to be referenced two different ways.

overvariable The label of a variable that already occupies the memory to be shared.
The OVER attribute allows one memory address to be referenced two different ways. The variable
declared with the OVER attribute must not be larger than the overvariable it is being declared OVER (it
may be smaller, though).

You may declare a variable OVER an overvariable which is part of the parameter list passed into a
PROCEDURE or FUNCTION.

A field within a GROUP structure cannot be declared OVER a variable outside that GROUP structure.

Example:
SomeProc PROCEDURE(PassedGroup) !Proc receives a GROUP parameter
NewGroupGROUP,OVER(PassedGroup) !Redeclare passed GROUP parameter
Field1 STRING(10) !Compiler warning issued that
Field2 STRING(2) ! NewGroup must not be larger

END ! than PassedGroup
CustNote FILE,PRE(Csn) !Declare CustNote file
Notes MEMO(2000) !The memo field
Record RECORD
CustID LONG

 . .
CsnMemoRow STRING(10),DIM(200),OVER(Csn:Notes)

!Csn:Notes memo may be addressed
! as a whole or in 10-byte chunks

See Also:

DIM

STATIC (set local variable static)
STATIC

The STATIC attribute allows a variable declared within a PROCEDURE or FUNCTION to be allocated
static memory instead of stack memory. This makes any value contained in the variable "persistent" from
one instance of the procedure to the next.

Example:
SomeProc PROCEDURE
AcctFile STRING(64),STATIC !STATIC needed for use as

! Variable in NAME attribute
Transactions FILE,DRIVER(´Clarion´),PRE(TRA),NAME(AcctFile)
AccountKey KEY(TRA:Account),OPT,DUP
Record RECORD
Account SHORT !Account code
Date LONG !Transaction Date
Amount DECIMAL(13,2) !Transaction Amount

 . .

See Also:

Data Declarations and Memory Allocation

THREAD (set thread-specific static variable)
THREAD

The THREAD attribute declares a static variable which is allocated memory separately for each execution
thread in the program. This makes the value contained in the variable dependent upon which thread is
executing. Whenever a new execution thread is begun, a new instance of the variable, specific to that
thread, is created.

The variable must be allocated static memory so it should be declared as Local data with the STATIC
attribute. It may also be declared as Global data or Module data.

This attribute creates runtime "overhead," particularly on Global or Module data. Therefore, it should be
used only when absolutely necessary.

Example:
GlobalVar LONG,THREAD !Each execution thread gets its own copy
SomeProcPROCEDURE
LocalVarLONG,THREAD !Local threaded variable (automatically STATIC)

See Also:

START

Data Declarations and Memory Allocation

STATIC

BINDABLE (set dynamic expression string variables)
BINDABLE

The BINDABLE attribute declares a GROUP, QUEUE, FILE, or VIEW whose constituent variables are all
available for use in a runtime expression string. The contents of each variable´s NAME attribute is the
logical name used in the runtime expression string. If no NAME attribute is present, the label of the
variable (including prefix) is used. Space is allocated in the .EXE for the names of all of the variables in
the structure. This creates a larger program that uses more memory than it normally would. Therefore, the
BINDABLE attribute should only be used when a large proportion of the constituent fields are going to be
used.

Example:
FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME(´FILE´) !Dynamic name: FILE
Dot STRING(´.´) !Dynamic name: Dot
Extension STRING(3),NAME(´EXT´) !Dynamic name: EXT

END !

See Also:

BIND

UNBIND

EVALUATE

AUTO (uninitialized local variable)
AUTO

The AUTO attribute allows a variable, declared within a PROCEDURE or FUNCTION, to be allocated
uninitialized stack memory. Without the AUTO attribute, a numeric variable is initialized to zero and a
string variable is initialized to all blanks when its memory is assigned at run-time.

The AUTO attribute is used when you do not need to rely on an initial blank or zero value because you
intend to assign some other value to the variable. This saves a small amount of run-time memory by
eliminating the internal code necessary to perform the automatic initialization for the variable.

Example:
SomeProc PROCEDURE
SaveCustID LONG,AUTO !Non-initialized local variable

TYPE (GROUP type definition)
TYPE

The TYPE attribute creates a "type definition" for a GROUP. The type definition can then be used in a
LIKE statement to define other similar GROUPs. A GROUP with the TYPE attribute is not allocated any
memory.

Example:
PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END
NameGroup LIKE(PassGroup),PRE(Nme) !Name group

Data Declarations and Memory Allocation
Global, Local, Static, and Dynamic

Data Declaration Sections

Global, Local, Static, and Dynamic
Data declarations allocate memory to store the data values. Global, Local, Static, and Dynamic are terms
that describe types of memory allocation.

The terms "Global" and "Local" refer to the "visibility" of data:

 "Global" means the data is visible and available to all procedures in the program.

 "Local" means the data has limited visibility. This may be limited to one procedure or
function, or limited to a specific set of procedures and/or functions.

The terms "Static" and "Dynamic" refer to the persistence of the data´s memory allocation:

 "Static" means the data is allocated memory that is not released until the entire program is
finished executing.

 "Dynamic" means the data is allocated memory on the program´s stack. Stack memory is
released when the PROCEDURE or FUNCTION that allocated the stack memory returns
to the place in the program from which it was called.

Data Declaration Sections
There are three areas where data can be declared in a Clarion program:

 In the PROGRAM module, after the keyword PROGRAM and before the CODE
statement. This is the Global data section.

 In a MEMBER module, after the keyword MEMBER and before the first PROCEDURE
or FUNCTION statement. This is the Module data section.

 In a PROCEDURE or FUNCTION, after the keyword PROCEDURE (or FUNCTION)
and before the CODE statement. This is the Local data section.

Global data is visible to executable statements and expressions in every PROCEDURE and FUNCTION
in the PROGRAM. Global data is allocated in Static memory.

Module data is visible only to the set of PROCEDUREs and FUNCTIONs contained in the MEMBER
module. Of course, it may be passed as a parameter to PROCEDUREs or FUNCTIONs in other
MEMBER modules, if required. Module data is also allocated Static memory.

Local data is visible only within the PROCEDURE or FUNCTION in which it is declared. Of course, it may
be passed as a parameter to any other PROCEDURE or FUNCTION. Local data is allocated Dynamic
memory on the program´s stack. This can be overridden by using the STATIC attribute, making its value
persistent between calls to the procedure.

Dynamic memory allocation for Local data allows a FUNCTION or PROCEDURE to be truly recursive,
receiving a new copy of its local variables each time it is called.

See Also:

FUNCTION and PROCEDURE Prototypes

STATIC

Picture Tokens
Picture tokens provide a masking format for displaying and editing variables. Picture tokens may be used
as parameters of STRING, ENTRY, or STRING OPTION declarations in SCREEN structures; as a
parameter of STRING statements in a REPORT structure; as a parameter of some Clarion procedures
and functions; or, the parameter of STRING, CSTRING and PSTRING variable declarations.

There are seven types of picture tokens:

Numeric and Currency Pictures

Scientific Notation Pictures

Date Pictures

Time Pictures

Pattern Pictures

Key-in Template Pictures

String Pictures

Numeric and Currency Pictures
@N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N All numeric and currency pictures begin with @N.

currency Either a dollar sign ($) or a string constant enclosed in tildes (~). When it precedes the
sign indicator and there is no fill indicator, the currency symbol "floats" to the left of the
high order digit. If there is a fill indicator, the currency symbol remains fixed in the left-
most position. If the currency indicator follows the size and grouping, it appears at the
end of the number displayed.

sign Specifies the display format for negative numbers. If a hyphen precedes the fill and size
indicators, negative numbers will display with a leading minus sign. If a hyphen follows
the size, grouping, places, and currency indicators, negative numbers will display with a
trailing minus sign. If parentheses are placed in both positions, negative numbers will be
displayed enclosed in parentheses.

fill Specifies leading zeros, spaces, or asterisks (*) in any leading zero positions, and
suppresses grouping. If the fill indicator is omitted, leading zeros are suppressed.

 0 (zero) Produces leading zeroes
 _ (underscore) Produces leading spaces
 * (asterisk) Produces leading asterisks

size The size is required to specify the total number of significant digits to display, including
the number of digits in the places indicator and any formatting characters.

grouping A grouping symbol, other than a comma (the default), can be placed to the right of the
size indicator to specify a three digit group separator.

 . (period) Produces periods
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

places Specifies the decimal separator symbol and the number of decimal digits. The number of
decimal digits must be less than the size indicator. The decimal separator may be a period
(.), grave accent (´ -- produces periods for grouping separators, unless overridden), or the
letter "v" (used only for STRING field storage declarations--not for display).

 . (period) Produces a period
´ (grave accent) Produces a comma
v Produces no decimal separator

B Specifies that the format displays as blank whenever its value is zero.
The numeric and currency pictures format numeric values for screen display or in reports. If the value is
greater than the maximum value the picture can display, a string of asterisks is displayed.

Example:
Numeric Result Format
@N94,550,000Nine digits, group with commas (default)
@N_9B 4550000Nine digits, no grouping, leading blanks if zero
@N09 004550000Nine digits, leading zero
@N*9 ***45,000Nine digits, asterisk fill, group with commas
@N9_ 4 550 000Nine digits, group with spaces
@N9. 4.550.000Nine digits, group with periods

Decimal Result Format
@N9.2 4,550.75Two decimal places, period decimal separator
@N_9.2B 4550.75 Two decimal places, period decimal separator, no

grouping, blank if zero
@N_9´2 4550,75Two decimal places, comma decimal separator
@N9.´2 4.550,75Comma decimal separator, group with periods
@N9_´2 4 550,75Comma decimal separator, group with spaces,
Signed Result Format
@N-9.2B -2,347.25 Leading minus sign, blank if zero
@N9.2- 2,347.25-Trailing minus sign
@N(10.2) (2,347.25) Enclosed in parens when negative
Dollar Currency Result Format
@N$9.2B $2,347.25 Leading dollar sign, blank if zero
@N$10.2- $2,347.25- Leading dollar sign, trailing minus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative
Int´l Currency Result Format
@N12_´2~ F~ 1 5430,50 F France
@N~L. ~12´ L. 1.430.050 Italy
@N~£~12.2 £1,240.50 United Kingdom
@N~kr~12´2 kr1.430,50 Norway
@N~DM~12´2 DM1.430,50 Germany
@N12_´2~ mk~ 1 430,50 mk Finland
@N12´2~ kr~ 1.430,50 kr Sweden
Storage-Only Pictures:
Variable1 STRING(@N_6v2) !Declare as 6 bytes stored without decimal
CODE
Variable1 = 1234.56 !Assign value, stores ´123456´ in file
MESSAGE(FORMAT(Variable1,@N_7.2)) !Display with decimal point: ´1234.56´

Scientific Notation Pictures
@Em.n[B]

@E All scientific notation pictures begin with @E.

m Determines the total number of characters in the format provided by the picture.

n Indicates the number of digits that appear to the left of the decimal point.

B Specifies that the format displays as blank when the value is zero.
The scientific notation picture formats very large or very small numbers. The format is a decimal number
raised by a power of ten.

Example:
Picture Value Result
@E9.0 1,967,865 .20e+007
@E12.1 1,967,865 1.9679e+006
@E12.1B 0
@E12.1 -1,967,865 -1.9679e+006
@E12.1 .000000032 3.2000e-008

Date Pictures
@Dn[s][B]

@D All date pictures begin with @D.

n Determines the date picture format. Date picture formats range from 1 through 16.

s A separation character. Slash (/) characters appear between the month, day, and year
components of certain date picture formats. Following are alternate separation characters.

 . (period) Produces periods
´ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

B Specifies that the format displays as blank when the value is zero.
Dates may be stored in numeric variables (usually LONG), a DATE field (for Btrieve compatibility), or in a
STRING declared with a date picture. A date stored in a numeric variable is called a "Clarion Standard
Date." The stored value is the number of days since December 28, 1800. The date picture token
converts the value into one of the 16 date formats.

Example:
Picture Format Result
@D1mm/dd/yy 10/31/59
@D2mm/dd/yyyy 10/31/1959
@D3mmm dd, yyyy OCT 31,1959
@D4mmmmmmmmm dd, yyyyOctober 31, 1959
@D5dd/mm/yy 31/10/59
@D6dd/mm/yyyy 31/10/1959
@D7dd mmm yy 31 OCT 59
@D8dd mmm yyyy 31 OCT 1959
@D9yy/mm/dd 59/10/31
@D10 yyyy/mm/dd 1959/10/31
@D11 yymmdd 591031
@D12 yyyymmdd 19591031
@D13 mm/yy 10/59
@D14 mm/yyyy 10/1959
@D15 yy/mm 59/10
@D16 yyyy/mm 1959/10
@D17 Windows Control Panel setting for Short Date
@D18 Windows Control Panel setting for Long Date
 Alternate separators

@D1. mm.dd.yyPeriod separator
@D2- mm-dd-yyyyDash separator
@D5_ dd mm yyUnderscore produces space separator
@D6´ dd,mm,yyyyGrave accent produces comma separator

See Also:

Standard Date

Time Pictures
@Tn[s][B]

@T All time pictures begin with @T.

n Determines the time picture format. Time picture formats range from 1 through 6.

s A separation character. By default, colon (:) characters appear between the hour, minute,
and second components of certain time picture formats. The following s indicators
provide an alternate separation character for these formats.

 . (period) Produces periods
´ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

B Specifies that the format displays as blank when the value is zero.
Times may be stored in a numeric variable (usually a LONG), a TIME field (for Btrieve compatibility), or in
a STRING declared with a time picture. A time stored in a numeric variable is called a "Standard Time."
The stored value is the number of hundredths of a second since midnight. The picture token converts the
value to one of the six time formats.

Example:
Picture Format Result
@T1hh:mm 17:30
@T2hhmm 1730
@T3hh:mmXM 5:30PM
@T4hh:mm:ss 17:30:00
@T5hhmmss 173000
@T6hh:mm:ssXM 5:30:00PM
@T7 Windows Control Panel setting for Short Time
@T8 Windows Control Panel setting for Long Time

 Alternate separators
@T1. hh.mm Period separator
@T1- hh-mm Dash separator
@T3_ hh mmXM Underscore produces space separator
@T4´ hh,mm,ssGrave accent produces comma separator

See Also:

Standard Time

Pattern Pictures
@P[<][#][x]P[B]

@P All pattern pictures begin with the @P delimiter and end with the P delimiter. The case of
the delimiters must be the same.

< Specifies an integer position that is blank when zero.

Specifies an integer position.

x Represents optional display characters. These characters appear in the final result string.

P All pattern pictures must end with P. If a lower case @p delimiter is used, the ending P
delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.
Pattern pictures contain optional integer positions and optional edit characters. Any character other than <
or # is considered an edit character which will appear in the formatted picture string. The @P and P
delimiters are case sensitive. Therefore, an upper case "P" can be included as an edit character if the
delimiters are both lower case "p" and vice versa.

Pattern pictures do not recognize decimal points, in order to permit the period to be used as an edit
character. Therefore, the value formatted by a pattern picture should be an integer. If a floating piont value
is formatted by a pattern picture, only the integer portion of the number will appear in the result.

Example:
Picture Value Result
@P###-##-####P 215846377 215-84-6377
@P<#/##/##P 103159 10/31/59
@P(###)###-####P 3057854555 (305)785-4555
@P###/###-####P 7854555 000/785-4555
@p<#:##PMp 530 5:30PM
@P<#´ <#"P 506 5´ 6"
@P<#lb. <#oz.P 902 9lb. 2oz.
@P4##A-#P 112 411A-2
@PA##.C#P 312.45 A31.C2

Key-in Template Pictures
@K[@][#][<][x][\][?][^][_][|]K[B]

@K All key-in template pictures begin with the @K delimiter and end with the K delimiter.
The case of the delimiters must be the same.

@ Specifies only uppercase and lowercase alphabetic characters.

Specifies an integer 0 through 9.

< Specifies an integer that is blank for high order zeros.

x Represents optional constant display characters (any displayable character). These
characters appear in the final result string.

\ Indicates the following character is a display character. This allows you to include any of
the picture formatting characters (@,#,<,\,?,^,_,|) within the string as a display character.

? Specifies any character may be placed in this position.

^ Specifies only uppercase alphabetic characters in this position.

_ Underscore specifies only lowercase alphabetic characters in this position.

| Allows the operator to "stop here" if there are no more characters to input. Only the data
entered and any display characters up to that point will be in the string result.

K All key-in template pictures must end with K. If a lower case @k delimiter is used, the
ending K delimiter must also be lower case.

B Specifies that the format displays as blank when the value is zero.
Key-in pictures may contain integer positions (# <), alphabet character positions (@ ^ _), any character
positions (?), and display characters. Any character other than a formatting indicator is considered a
display character, which appears in the formatted picture string. The @K and K delimiters are case
sensitive. Therefore, an upper case "K" may be included as a display character if the delimiters are both
lower case "k" and vice versa.

Key-in pictures are used specifically with STRING, PSTRING, and CSTRING fields to allow custom field
editing control and validation. Using a key-in picture containing any of the alphabet indicators (@ ^ _) on
a numeric entry field produces unpredictable results.

Using the Insert typing mode for a key-in picture could produce unpredictable results. Therefore, key-in
pictures always receive data entry in Overwrite mode, even if the INS attribute is present.

Example:
Picture Value Entered Result String
@K###-##-####K 215846377 215-84-6377
@K#####|-####K 33064 33064
@K#####|-####K 330643597 33064-3597
@K<# ^^^ ##K 10AUG59 10 AUG 59
@K(###)@@@-##\@##K 305abc4555 (305)abc-45@55
@K###/?##-####K 7854555 000/785-4555
@k<#:##^Mk 530P 5:30PM
@K<#´ <#"K 506 5´ 6"
@K4#_#A-#K 1g12 41g1A-2

String Pictures
@Slength

@S All string pictures begin with @S.

length Determines the number of characters in the picture format.
A string picture describes an unformatted string of a specific length.

Example:
Name STRING(@S20) !A 20 character string field

Compiler Directives
EQUATE (assign label)

SIZE (memory size in bytes)

EQUATE (assign label)
| label |

label EQUATE(| constant |)
| picture |

EQUATE Assigns a label to another label or constant.

label The label of any statement preceding the EQUATE statement. This is used to declare an
alternate statement label.

constant A numeric or string constant. This is used to declare a shorthand label for a constant
value. It also makes a constant easy to locate and change.

picture A picture token. This is used to declare a shorthand label for a picture token. However,
the screen and report formatter in the Clarion Editor will not recognize the equated label
as a valid picture.

The EQUATE directive assigns a label to another label or constant. It does not use any run-time memory.
The label of an EQUATE directive cannot be the same as its parameter.

Example:
Init EQUATE(SetUpProg) !Set alias label
Off EQUATE(0) !Off means zero
On EQUATE(1) !On means one
PI EQUATE(3.1415927) !The value of PI
EnterMsgEQUATE(´Press Ctrl-Enter to SAVE´)
SocSecPic EQUATE(@P###-##-####P) !Soc-sec number picture

See Also:

Reserved Words

SIZE (memory size in bytes)
| variable |

SIZE(| constant |)
| picture |

SIZE Supplies the amount of memory used for storage.

variable The label of a previously declared variable.

constant A numeric or string constant.

picture A picture token.
SIZE directs the compiler to supply the amount of memory (in bytes) used to store the variable, constant,
or picture.

Example:
SavRec STRING(1),DIM(SIZE(Cus:Record)

!Dimension the string to size of record
StringVar STRING(SIZE(´Clarion Software, Inc.´))

 !A string long enough for the constant
LOOP I# = 1 TO SIZE(ParseString) !Loop for number of bytes in the string
PicLen = SIZE(@P(###)###-####P) !Save size of the picture

Expressions and Assignments
Expression Evaluation

Arithmetic Operators

Logical Operators

Numeric Constants

Numeric Expressions

String Constants

The Concatenation Operator

String Expressions

Implicit String Arrays and String Slicing

Logical Expressions

Runtime Expression Strings

BIND (declare runtime expression string variable)

UNBIND (free runtime expression string variable)

EVALUATE (return runtime expression string result)

Assignment Statements

Simple Assignment Statements

Operating Assignment Statements

Deep Assignment Statements

Reference Assignment Statements

CLEAR (clear a variable)

Data Conversion Rules

Base Types

BCD Operations and Functions

Type Conversion and Intermediate Results

Expressions
An expression is a mathematical, string, or logical formula that produces a value. An expression may be
the source variable of an assignment statement, a parameter of a procedure or function, a subscript of an
array (a dimensioned variable), or the condition of an IF, CASE, LOOP, or EXECUTE structure.
Expressions may contain constant values, variables, and function calls connected by logical and/or
arithmetic or string operators.

Expression Evaluation
Expressions are evaluated in the standard algebraic order of operations. The precedence of operations is
controlled by operator type and placement of parentheses. Each operation produces an (internal)
intermediate value used in subsequent operations. Parentheses may be used to group operations within
expressions. Expressions are evaluated beginning with the inner-most set of parentheses and working
through to the outer-most set.

Precedence levels for expression evaluation, from highest to lowest, are:

 Level 1 () Parenthetical Grouping
 Level 2 - Unary Minus (Negative sign)
 Level 3 function call Gets the RETURN value
 Level 4 ^ Exponentiation
 Level 5 * / % Multiplication, Division, Modulus Division
 Level 6 + - Addition, Subtraction
 Level 7 & Concatenation

Expressions may produce numeric values, string values, or logical values (true/false evaluation). An
expression may contain no operators at all; it may be a single variable, constant value, or function call.

Arithmetic Operators
An arithmetic operator combines two operands arithmetically to produce an intermediate value. The
operators are:

 + Addition (A + B gives the sum of A and B)
 - Subtraction (A - B gives the difference of A and B)
 * Multiplication (A * B multiples A by B)
 / Division (A / B gives divides A by B)
 ^ Exponentiation (A ^ B gives A raised to power of B)
 % Modulus Division (A % B gives the remainder of A divided by B)

Logical Operators
A logical operator compares two operands or expressions and produces a true or false condition. There
are two types of logical operators: conditional and Boolean. Conditional operators compare two values or
expressions. Boolean operators connect string, numeric, or logical expressions together to determine
true-false logic. Operators may be combined to create complex operators.

Conditional Operators
= Equal sign
< Less than
> Greater than

Boolean Operators
NOT Boolean NOT
 ~ Tilde (Logical NOT)
 AND Boolean AND
 OR Boolean OR
 XOR Boolean XOR (eXclusive OR)

Combined operators
<> Not equal
 ~= Not equal
 NOT = Not equal
 <= Less than or equal to
 =< Less than or equal to
 ~> Not greater than
 NOT > Not greater than
 >= Greater than or equal to
 => Greater than or equal to
 ~< Not less than
 NOT < Not less than

During logical evaluation, any non-zero value indicates a true condition, and a null (blank) string or zero
value indicates a false condition.

Example:
Logical Expression Result
A = B True when A is equal to B
A < B True when A is less than B
A > B True when A is greater than B
A <> B, A ~= B, A NOT = B True when A is not equal to B
A ~< B, A >= B, A NOT < B True when A is not less than B
A ~> B, A <= B, A NOT > B True when A is not greater than B
~ A,NOT A True when A is null or zero
A AND B True when A is true and B is true
A OR B True when A is true,or B is true,or both true
A XOR B True when A is true or B is true, but not both

Numeric Constants
Numeric constants are fixed numeric values. They may occur in data declarations, in expressions, and as
parameters of procedures, functions, or attributes. A numeric constant may be represented in decimal
(base 10--the default), binary (base 2), octal (base 8), hexadecimal (base 16), or scientific notation
formats. Formatting characters, such as dollar signs and commas, are not permitted in numeric constants.

Decimal (base ten) numeric constants may contain an optional leading minus sign (hyphen character), an
integer, and an optional decimal with a fractional component. Binary (base two) numeric constants may
contain an optional leading minus sign, the digits 0 and 1, and a terminating B or b character. Octal (base
eight) numeric constants contain an optional leading minus sign, the digits 0 through 7, and a terminating
O or o character. Hexadecimal (base sixteen) numeric constants contain an optional leading minus sign,
the digits 0 through 9, alphabet characters A through F (representing the numbers 10 through 15) and a
terminating H or h character. If the left-most character is a letter A through F, a leading zero must be used.

Example:
-924 !Decimal constants
76.346
1011b!Binary constants
-1000110B
3403o!Octal constants
-7041312O
-1FFBh!Hexadecimal constants
0CD1F74FH

Numeric Expressions
Numeric expressions may be used as parameters of procedures or functions, the condition of IF, CASE,
LOOP, or EXECUTE structures, or as the source portion of an assignment statement where the
destination is a numeric variable. A numeric expression may contain arithmetic operators and the
concatenation operator, but they may not contain logical operators. When used in a numeric expression,
string constants and variables are converted to numeric intermediate values. If the concatenation operator
is used, the intermediate value is converted to numeric after the concatenation occurs.

Example:
Count + 1 !Add 1 to Count
(1 - N * N) / R !N times N subtracted from 1 then divided by R
305 & 7854555 !Concatenate area code with phone number

See Also:

Data Conversion Rules

String Constants
A string constant is a set of characters enclosed in single quotes (apostrophes). The maximum length of a
string constant is 255 characters. Characters that cannot be entered from the keyboard may be inserted
into a string constant by enclosing their ASCII character codes in angle brackets (<>). ASCII character
codes may be represented in decimal or hexadecimal numeric constant format.

In a string constant, a left angle bracket (<) initiates a scan for a right angle bracket. Therefore, to
include a left angle bracket in a string constant requires two left angle brackets in succession. To include
an apostrophe as part of the value inside a string constant requires two apostrophes in succession. Two
apostrophes (´´), with no characters (or just spaces) between them, represents a null, or blank, string.
Consecutive occurrences of the same character within a string constant may be represented by repeat
count notation. The number of times the character is to be repeated is placed within curly braces ({ })
immediately following the character to repeat. To include a left curly brace ({) as part of the value inside a
string constant requires two left curly braces ({{) in succession.

Example:
´string constant´ !A string constant
´It´´s a girl!´ !With embedded apostrophe
´<27,15>´ !Using decimal ASCII codes
´A << B´ !With embedded left angle, A < B
´*{20}´ !Twenty asterisks, repeat-count notation
´´ !A null (blank) string

The Concatenation Operator
The concatenation operator (&) is used to append one string or variable to another. The length of the
result string is the sum of the lengths of the two values being concatenated. Numeric data types may be
concatenated with strings or other numeric variables or constants. In many cases, the CLIP function
should be used to remove any trailing spaces from a string being concatenated to another string.

Example:
CLIP(FirstName) & ´ ´ Initial & ´. ´ & LastName !Concatenate full name
´Clarion Software´ & ´, Inc.´ !Concatenate two constants

See Also:

CLIP

Numeric Expressions

Data Conversion Rules

String Expressions
String expressions may be used as parameters of procedures, functions, and attributes, or as the source
portion of an assignment statement when the destination is a string variable. String expressions may
contain a single string or numeric variable, or a complex combination of sub-expressions, functions, and
operations.

Example:
StringVar STRING(30)
Name STRING(10)
Weight STRING(3)
Phone LONG
CODE
StringVar= ´Address:´ & Cus:Address !Concatenate a constant and variable
StringVar = ´Phone:´ & ´ 305-´ & FORMAT(Phone,@P###-####P)
 !Concatenate constant valuess

! and FORMAT function´s return value
StringVar = Weight & ´lbs.´ !Concatenate a constant and variable

Implicit String Arrays and String Slicing
In addition to their explicit declaration, all STRING, CSTRING and PSTRING variables have an implicit
array declaration of one character strings, dimensioned by the length of the string. This is directly
equivalent to declaring a second variable as:

StringVar STRING(10)
StringArray STRING(1),DIM(SIZE(StringVar)),OVER(StringVar)

This implicit array declaration allows each character in the string to be directly addressed as an array
element, without the need of the second declaration.

If the string also has a DIM attribute, this implicit array declaration is the last (optional) dimension of the
array (to the right of the explicit dimensions). The MAXIMUM function does not operate on the implicit
dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the "string slicing" technique. This
technique performs a similar function to the SUB function, but is much more flexible and efficient. It is
more flexible because a "string slice" may be used as either the destination or source sides of an
assignment statement, while the SUB function can only be used as the source. It is more efficient
because it takes less memory than either individual character assignments or the SUB function.

To take a "slice" of the string, the beginning and ending character numbers are separated by a colon (:)
and placed in the implicit array dimension position within the square brackets ([]) of the string. The
position numbers may be integer constants, variables, or expressions. If variables are used, there must
be at least one blank space between the variable name and the colon separating the beginning and
ending number (to prevent PREfix confusion).

Example:
Name STRING(15)
CONTACT STRING(15),DIM(4)
CODE
Name = ´Tammi´ !Assign a value
Name[5] = ´y´ ! then change fifth letter
Name[6] = ´s´ ! then add a letter
Name[0] = ´<6>´ ! and handle length byte
Name[5:6] = ´ie´ ! and change a "slice"

! -- the fifth and sixth letters
Contact[1] = ´First´ !Assign value to first element
Contact[1,2] = ´u´ !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to first element 2nd & 3rd characters

See Also:

STRING

CSTRING

PSTRING

Logical Expressions
Logical expressions evaluate true-false conditions in IF, LOOP UNTIL, and LOOP WHILE control
structures. Control is determined by the final result (true or false) of the expression. Logical expressions
are evaluated from left to right. The right operand of an AND, OR, or XOR logical expression will only be
evaluated if it could affect the result. Parentheses should be used to eliminate ambiguous evaluation and
to control evaluation precedence. The level or precedence for the logical operators is as follows:

Level 1 Conditional operators
Level 2 ~, NOT
Level 3 AND
Level 4 OR, XOR

Example:
LOOP UNTIL KEYBOARD() !True when user presses any key
 !some statements
END
IF A = B THEN RETURN. !RETURN if A is equal to B
LOOP WHILE ~ Done# !Loop while false (Done# = 0)
 !some statements
END
IF A >= B OR (C > B AND E = D) THEN RETURN.

!True if a >= b, also true if
 ! both c > b and e = d.
 !The second part of the expression
 ! (after OR) is evaluated only if the
 ! first part is not true.

Runtime Expression Strings
Clarion Database Developer for Windows has the ability to evaluate Clarion language expressions
dynamically created at runtime, rather than at development time. This allows a Clarion program to
contruct expressions "on the fly." This also makes it possible to allow an end-user to enter the
expression to evaluate.

An expression is a mathematical or logical formula that produces a value; it is not a complete Clarion
language statement. Expressions may only contain constant values, variables, or function calls connected
by logical and/or arithmetic operators. An expression may be used as the source side of an assignment
statement, a parameter of a procedure or function, a subscript of an array (a dimensioned variable), or the
conditions of IF, CASE, LOOP, or EXECUTE structures.

Any program variable, and most of the internal Clarion functions, can be used as part of a runtime
expression string. User-defined functions that fall within certain specific guidelines (described in the BIND
statement documentation) may also be used in runtime expression strings.

All of the standard Clarion expression syntax is available for use in runtime expression strings. This
includes parenthetical grouping and all the arithmetic, logical, and string operators. Dynamic expressions
are evaluated just as any other Clarion expression and all the standard operator precedence level rules
described in the Expression Evaluation section apply.

It takes three steps to use runtime expression strings:

 The variables that are allowed to be used in the expressions must be explicitly declared
with the BIND statement.

 The expression must be built. This may involve concatenating user choices or allowing
the user to directly type in their own expression.

 The expression is passed to the EVALUATE function which returns the result. If the
expression is not a valid Clarion expression, ERRORCODE is set.

Once the expression is evaluated, its result is used just as the result of any hard-coded expression would
be. For example, a runtime expression string could provide a filter expression to eliminate certain records
when viewing or printing a database (the FILTER expression of a VIEW structure is an implicit runtime
expression string).

See Also:
BIND (declare runtime expression string variable)

UNBIND (free runtime expression string variable)

EVALUATE (return runtime expression string result)

BIND (declare runtime expression string variable)
BIND(| name,variable |)

| name,function |
| group |

BIND Identifies variables allowed to be used in dynamic expressions.

name A string constant containing the identifier used in the dynamic expression. This may be
the same as the variable or function label.

variable The label of any variable (including fields in FILE, GROUP, or QUEUE structures) or
passed parameter. If it is an array, it must have only one dimension.

function The label of a Clarion language FUNCTION that returns a STRING, REAL, or LONG
value. If parameters are passed to the function, they must be STRING value-parameters
(passed by value, not by address).

group The label of a GROUP, RECORD, or QUEUE structure declared with the BINDABLE
attribute.

The BIND statement declares the logical name used to identify a variable or user-defined function in
runtime expression strings. A variable or user-defined function must be identified with the BIND statement
before it can be used in an expression string.

 BIND(name,variable)
The specified name is used in the expression in place of the label of the variable.

 BIND(name,function)
The specified name is used in the expression in place of the label of the function.

 BIND(group) Declares all the variables within the GROUP, RECORD, or QUEUE (with the
BINDABLE attribute) available for use in a dynamic expression. The contents of each
variable´s NAME attribute is the logical name used in the dynamic expression. If no
NAME attribute is present, the label of the variable (including prefix) is used.

A GROUP, RECORD, or QUEUE structure declared with the BINDABLE attribute has space allocated in
the .EXE for the names of all of the data elements in the structure. This creates a larger program that
uses more memory than it normally would. Also, the more variables that are bound at one time, the slower
the EVALUATE function will work. Therefore, BIND(group) should only be used when a large proportion of
the constituent fields are going to be used.

Example:
PROGRAM
MAP
AllCapsFunc(STRING),STRING !Clarion function

END
Header FILE,DRIVER(´Clarion´),PRE(Hea) !header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)

ShipToZip STRING(20)
 . .

Detail FILE,DRIVER(´Clarion´),PRE(Dtl),BINDABLE !Bindable RECORD structure
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .
CODE
BIND(´ShipName´,Hea:ShipToName) !BIND a single variable
BIND(Dtl:Record) !BIND a RECORD structure
BIND(´SomeFunc´,AllCapsFunc) !BIND a Clarion language function
IF EVALUATE(´ShipName = SomeFunc(ShipName)´)
MESSAGE(´Name is in ALL CAPS´)

END
AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

UNBIND

EVALUATE

UNBIND (free runtime expression string variable)
UNBIND([name])

UNBIND Frees variables from use in runtime expression strings.

name A string constant that specifies the identifier used by the dynamic expression evaluator. If
omitted, all bound variables are unbound.

The UNBIND statement frees logical names previously bound by the BIND statement. The more variables
that are bound at one time, the slower the EVALUATE function works. Therefore, UNBIND should be used
to free all variables and user-defined functions not currently available for use in runtime expression
strings.

Example:
 PROGRAM
 MAP
 AllCapsFunc(STRING),STRING !Clarion function

 END
Header FILE,DRIVER(´Clarion´),PRE(Hea) ! header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

 . .
Detail FILE,DRIVER(´Clarion´),PRE(Dtl),BINDABLE !Bindable RECORD structure
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .
CODE
BIND(´ShipName´,Hea:ShipToName)
BIND(Dtl:Record)
BIND(´SomeFunc´,AllCapsFunc)
UNBIND(´ShipName´) !UNBIND the variable
UNBIND(´SomeFunc´) !UNBIND the Clarion language function
UNBIND !UNBIND all bound variables

AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

BIND

EVALUATE

EVALUATE (return runtime expression string result)
EVALUATE(expression)

EVALUATE Evaluates runtime expression strings.

expression A string constant or variable containing the expression to evaluate.
The EVALUATE function returns the result of the expression as a STRING value. If the expression does
not meet the rules of a valid Clarion expression, the result will be a null string, and the ERRORCODE
function is set.

The more variables are bound at one time, the slower the EVALUATE function works. Therefore,
BIND(group) should only be used when most of the group´s fields are needed, and UNBIND should be
used to free all variables and user-defined functions not currently required for use in dynamic
expressions.

Return Data Type: STRING

Errors Posted: 800 Illegal Expression
801 Variable Not Found

Example:
 PROGRAM
 MAP
 AllCapsFunc(STRING),STRING !Clarion function

 END
Header FILE,DRIVER(´Clarion´),PRE(Hea),BINDABLE !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

 . .
StringVar STRING(20)
CODE
BIND(´ShipName´,Hea:ShipToName)
BIND(´SomeFunc´,AllCapsFunc)
StringVar = ´SMITH´
IF EVALUATE(´StringVar = SomeFunc(ShipName)´)
DO SmithProcess

END
AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also:

BIND

UNBIND

Assignment Statements
Simple Assignment Statements

Operating Assignment Statements

Deep Assignment Statements

Reference Assignment Statements

CLEAR (clear a variable)

Simple Assignment Statements
destination = source

destination The label of a variable or data structure property.

source A numeric or string constant, variable, function, expression, or data structure property.
The = sign assigns the value of source to the destination; it copies the value of the source expression into
the destination variable. If destination and source are different data types, the value the destination
receives from the source is dependent upon the Data Conversion Rules.

Example:
Name = ´JONES´ !Variable = string constant
PI = 3.14159 !Variable = numeric constant
Cosine = SQRT(1 - Sine * Sine) !Variable = function return value
A = B + C + 3 !Variable = numeric expression
Name = CLIP(FirstName) & ´ ´ Initial & ´. ´ & LastName

!Variable = string expression

See Also:

Data Conversion Rules

Operating Assignment Statements
destination += source
destination -= source
destination *= source
destination /= source
destination ^= source
destination %= source

destination Must be the label of a variable.

source A constant, variable, function, or expression.
Operating assignment statements perform their operation on the destination and source, assigning the
result to the destination. Operating assignment statements are more efficient than their equivalent
operations.

Example:
 Operating AssignmentFunctional Equivalent
 A += 1 A = A + 1
 A -= B A = A - B
 A *= -5 A = A * -5
 A /= 100 A = A / 100
 A ^= I + 1 A = A ^ (I + 1)
 A %= 7 A = A % 7

Deep Assignment Statements
destination :=: source

destination The label of a GROUP, RECORD, or QUEUE data structure, or an array.

source The label of a GROUP, RECORD, or QUEUE data structure, or a numeric or string
constant, variable, function, or expression.

The :=: sign executes a deep assignment statement which performs multiple individual component
variable assignments from one data structure to another. The assignments are only performed between
the variables within each structure that have exactly matching labels, ignoring all prefixes. The compiler
looks within nested GROUP structures to find matching labels. Any variable in the destination which does
not have a label exactly matching a variable in the source, is not changed.

Deep assignments are performed just as if each matching variable were individually assigned to its
matching variable. This means that all normal data conversion rules apply to each matching variable
assignment. For example, the label of a nested source GROUP may match a nested destination GROUP
or simple variable. In this case, the nested source GROUP is assigned to the destination as a STRING,
just as normal GROUP assignment is handled.

The name of a source array may match a destination array. In this case, each element of the source array
is assigned to its corresponding element in the destination array. If the source array has more or fewer
elements than the destination array, only the matching elements are assigned to the destination.

If the destination is an array variable that is not part of a GROUP, RECORD, or QUEUE, and the source is
a constant, variable, or expression, then each element of the destination array is initialized to the value of
the source. This is a much more efficient method of initializing an array to a specific value than using a
LOOP structure and assigning each element in turn.

Example:
Group1 GROUP,PRE(G1)
S SHORT
L LONG

END
Group2 GROUP,PRE(G2)
L SHORT
S REAL
T LONG

END
ArrayField SHORT,DIM(1000)
CODE
Group2 :=: Group1 !Is equivalent to:

! G2:S = G1:S
 ! G2:L = G1:L
! and performs all necessary data conversion

ArrayField :=: 7 !Is equivalent to:
! LOOP I# = 1 to 1000
! ArrayField[I#] = 7
! END

Reference Assignment Statements
destination &= source

destination The label of a reference variable.

source The label of another reference variable of the same type as the destination, or the label of
a variable or data structure of the type referenced by the destination. This cannot be an
expression, only a data label.

The &= sign executes a reference assignment statement which assigns to the destination reference
variable the reference to the source variable. Depending upon the data type, the destination reference
variable may receive the source´s memory address, or a more complex internal data structure (describing
the location and type of source data).

The declarations of the destination reference variable and its source must match exactly; reference
assignment does not perform automatic type conversion. For example, a reference assignment statement
to a destination declared as &GROUP must have a source that is either another &GROUP reference
variable, or the label of a GROUP structure.

Example:
Group1 GROUP,PRE(G1)
ShortVar SHORT
LongVar1 LONG
LongVar2 LONG

END
GroupRef&GROUP !Reference a GROUP, only
LongRef &LONG !Reference a LONG, only
CODE
GroupRef &= Group1 !Assign GROUP reference
IF SomeCondition !Evaluate some condition
LongRef &= G1:LongVar1 ! and reference an appropriate variable

ELSE
LongRef &= G1:LongVar2

END
LongRef += 1 !Increment either LongVar1 or LongVar2

 ! depending upon which variable is referenced

See Also:

Reference Variables

CLEAR (clear a variable)
CLEAR(label [,n])

CLEAR Clears any value from a variable.

label The label of a variable.

n A numeric constant; 1 or -1. This parameter indicates a cleared value other than zero or
blank. If n is 1, the variable is set to the highest possible value for that data type. For
STRING, PSTRING and CSTRING, that is ASCII 255. If n is -1, the variable is set to the
lowest possible value for that data type. For STRING, PSTRING and CSTRING, that is
ASCII 0.

The CLEAR statement clears any value from the label variable. If n is omitted, numeric variables are
cleared to zero, and string variables are cleared to spaces. If the label parameter is a GROUP, RECORD,
or QUEUE structure name, all variables in the structure are cleared. If the variable has a DIM attribute,
the entire array is cleared. A single element of an array cannot be CLEARed.

Example:
CLEAR(Count) !Clear a variable
CLEAR(Cus:Record) !Clear the record structure
CLEAR(Amount,1) !Clear variable to highest possible value
CLEAR(Amount,-1) !Clear variable to lowest possible value

Data Conversion Rules
The Clarion language provides automatic conversion between data types. However, some assignments
can produce an unequal source and destination. Assigning an "out of range" value can produce
unpredictable results.

Base Types

BCD Operations and Functions

Type Conversion and Intermediate Results

Base Types
To facilitate automatic data type conversion, Clarion internally uses four Base Types to which all data
items are automatically converted when any operation is performed on the data. These types are:
STRING, LONG, DECIMAL, and REAL.These are all standard Clarion data types.

The STRING Base Type is used as the intermediate type for all string operations. The LONG, DECIMAL,
and REAL Base Types are used in all arithmetic operations. Which numeric type is used, and when, is
determined by the original data types of the operands and the type of operation being performed on them.

The "normal" Base Type for each data type is:
Base Type LONG:

BYTE
SHORT
USHORT
LONG
DATE
TIME
Integer Constants

Base Type DECIMAL:
ULONG
DECIMAL
PDECIMAL
STRING(@Nx.y)
Decimal Constants

Base Type REAL:
SREAL
REAL
BFLOAT4
BFLOAT8
STRING(@Ex.y)
Scientific Notation Constants
Untyped (? and *?) Parameters

Base Type STRING:
STRING
CSTRING
PSTRING
String Constants

DATE and TIME data types are first converted to Clarion Standard Date and Clarion Standard Time
intermediate values and have a LONG Base Type for all operations.

For the most part, Clarion´s internal use of these Base Types is transparent to the programmer and do not
require any consideration when planning applications. However, for business programming with numeric
data containing fractional portions (currency, for instance), using data types that have the DECIMAL Base
Type has some significant advantages over REAL Base Types.

 Ž DECIMAL supports 31 significant digits of accuracy for data storage while REAL only
supports 15.

 Ž DECIMAL automatically rounds to the precision specified by the data declaration, while
REAL can create rounding problems due to the transalation of decimal (base 10) numbers
to binary (base 2) for processing by the CPU´s Floating Point Unit (or Floating Point
emulation software).

 Ž On machines without a Floating Point Unit, DECIMAL is substantially faster than REAL.

 Ž DECIMAL operations are closely linked with conventional (decimal) arithmetic.

BCD Operations and Functions
Clarion has a Binary Coded Decimal (BCD) library of operations and functions that execute in a manner
similar to the manner in which decimal arithmetic is performed on paper. These operations use internal
intermediate values with 31 digits accuracy on both sides of the decimal point.

The big advantage of the BCD operations is that it is very easy to "see" what is happening because they
execute just as you would with pencil and paper. Simply imagine doing the computation long hand and
throwing away numbers that go off the end of the page (rounding to the right).

Having 31 fixed decimal places either side of the decimal point there are numbers that cannot be
represented in a BCD system which can be represented by a REAL. Therefore, understanding what is
going on is useful.

Generally, the only cases where underflow will affect you is in division operations, usually when dividing
by a multiple of 3. For example:

100000/3 = 33333.3333333333333333333333333333333
(100000/3)-INT(100000/3)*100000 =
33333.3333333333333333333333333300000

BCD computation times are very data sensitive; the time taken is proportional to how long the
computation would take you by hand. Therefore, the longer the numbers involved, the longer the
execution times. However, standard "tricks of the trade" (such as multiplying by a power of ten by shifting
the decimal point) are spotted, making the BCD libraries fast in real world applications.

On a 486DX computer, BCD addition and subtraction is fractionally faster than casting to and from
REALs. On chips without a math co-processor, the BCD libraries are MUCH faster than floating point
operations.

The following operations may execute as BCD operations:

Addition (+), Subtraction (-), Multiplication (*)
Performed as a BCD operation when neither operand has a REAL Base Type (both are
LONG or DECIMAL) and one has the DECIMAL Base Type. Any digits appearing to the
right of 1e31 disappear (wrap), and any to the left of 1e-30 are rounded up.

Division (/) Performed as a BCD operation when neither operand has a REAL Base Type (both are
LONG or DECIMAL). Any digits appearing to the right of 1e31 disappear (wrap), and
any to the left of 1e-30 are rounded up.

Exponentiation (^)
Performed as a BCD operation when the first operand is a DECIMAL or LONG Base
Type and the second operand is a LONG Base Type. Any digits appearing to the right of
1e31 disappear (wrap), and any to the left of 1e-30 are rounded.

ABS() Removes the sign from a DECIMAL variable or intermediate value and returns the
DECIMAL value.

INT() Truncates a DECIMAL intermediate value and returns a DECIMAL value.

ROUND() If the second parameter is a LONG or DECIMAL Base Type, then rounding is performed
as a BCD operation which returns a DECIMAL value. ROUND is very efficient as a
BCD operation and should be used to compare REALs to DECIMALs at decimal width.

Type Conversion and Intermediate Results
Internally, a BCD intermediate result may have up to 31 digits of accuracy on both sides of the decimal
point, so any two DECIMALs can be added with complete accuracy. Therefore, storage from BCD
intermediate results to a data type can result in loss of precision. This is handled as follows :-

Decimal(x,y) = BCD
First the BCD value is rounded to y decimal places. If the result overflows x digits then
leading digits are removed (this corresponds to "wrapping around" a decimal counter).

Integer = BCD Any digits to the right of the decimal point are ignored. The decimal is then converted to
an integer with complete accuracy and then taken modulo 2^32.

String(@Nx.y) = BCD
The BCD value is rounded to y decimal places, the result is fitted into the pictured string.
If overflow occurs, an invalid picture (####) results.

Real = BCD The most significant 15 digits are taken and the decimal point ´floated´ accordingly.
For those operations and functions that do not support DECIMAL types, the DECIMAL is converted to
REAL first. In cases where more than 15 digits were available in the DECIMAL value, there is a loss of
accuracy.

Note: Untyped parameters have an implicit REAL Base Type, therefore DECIMAL
Base Type data passed as an Untyped Parameters will only have 15 digits of
precision. DECIMAL Base Types can be passed as *DECIMAL parameters
with no loss of precision.

When EVALUATEing a expression (or processing a VIEW FILTER) the REAL
Base Type is used.

Simple Assignment Data Conversion
BYTE =

SHORT =

USHORT =

LONG =

DATE =

TIME =

ULONG =

REAL =

SREAL =

BFLOAT8 =

BFLOAT4 =

DECIMAL =

PDECIMAL =

STRING =

CSTRING =

PSTRING =

BYTE =

(SHORT, USHORT, LONG, or ULONG)
The destination receives the low-order 8 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion, then the
destination receives the low-order 8 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting characters. The source is
converted to a LONG, which truncates any decimal portion, then the destination receives
the low-order 8 bits of the LONG.

SHORT =

BYTE The destination receives the value of the source.

(USHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion, then the
destination receives the low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting characters. The source is first
converted to a LONG, which truncates any decimal portion, then the destination receives
the low-order 16 bits of the LONG.

USHORT =

BYTE The destination receives the value of the source.

(SHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion, then the
destination receives the low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters. The source
is first converted to a LONG, which truncates any decimal portion, then the destination
receives the low-order 16 bits of the LONG.

LONG =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the value and the sign of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the value of the source, including the sign, up to 231. If the
number is greater than 231, the destination receives the result of modulo 231. Any decimal
portion is truncated.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters. The source
is first converted to a REAL, which is then converted to the LONG.

DATE =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Date for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion Standard Date, which truncates any
decimal portion, then the destination receives the Btrieve format for the Clarion Standard
Date.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters. The source
is first converted to a LONG as a Clarion Standard Date, which truncates any decimal
portion, then the destination receives the Btrieve format for the Clarion Standard Date.

TIME =

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Time for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion Standard Time, which truncates any
decimal portion, then the destination receives the Btrieve format for the Clarion Standard
Time.

(STRING, CSTRING, PSTRING)
The source must be a numeric value with no embedded formatting characters. The source
is first converted to a LONG as a Clarion Standard Time, which truncates any decimal
portion, then the destination receives the Btrieve format for the Clarion Standard Time.

ULONG =

(BYTE, SHORT, or USHORT)
The source is first converted to a LONG, then the
destination receives the entire 32 bits of the LONG.

LONG The destination receives the entire 32 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates any decimal portion, then the
destination receives the entire 32 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded formatting characters. The source
is first converted to a LONG, which truncates any decimal portion, then the destination
receives the entire 32 bits of the LONG.

REAL =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the full integer portion and the
sign of the source.

(DECIMAL, PDECIMAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer portion, and the decimal portion of the source.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

SREAL =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

BFLOAT8 =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

BFLOAT4 =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

DECIMAL =

(BYTE, SHORT, USHORT, LONG, ULONG, or PDECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, or SREAL)
The destination receives the sign, integer, and the high order part of the fraction from the
source. The high order fractional portion is rounded in the destination.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

PDECIMAL =

(BYTE, SHORT, USHORT, LONG, ULONG, or DECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and the high order part of the fraction from the
source. The high order fractional portion is rounded in the destination.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no embedded formatting characters. The
destination receives the sign, integer, and decimal portion of the number. Trailing spaces
are ignored.

STRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source (rounded
into the string´s picture format). The value is left justified in the destination.

CSTRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source (rounded
into the string´s picture format). The value is left justified in the destination.

PSTRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional portion of the source (rounded
into the string´s picture format). The value is left justified in the destination.

Program Control Statements
Control Structures

CASE (conditional execution structure)

EXECUTE (statement selection structure)

IF (conditional execution structure)

LOOP (iteration structure)

Control Statements

BREAK (immediately leave loop)

CHAIN (execute another program)

CYCLE (go to top of loop)

DO (call a ROUTINE)

EXIT (leave a ROUTINE)

GOTO (go to a label)

HALT (exit program)

IDLE (arm periodic procedure)

RETURN (return to caller)

RUN (execute command)

STOP (suspend program execution)

Control Structures
CASE (conditional execution structure)

EXECUTE (statement selection structure)

IF (conditional execution structure)

LOOP (iteration structure)

CASE (conditional execution structure)
CASE condition
OF expression [TO expression]
 statements
[OROF expression [TO expression]]
 statements
[ELSE]
 statements
END

CASE Initiates a selective execution structure.

condition A numeric or string variable or expression.

OF The statements following an OF are executed when the expression following the OF
option is equal to the condition of the CASE. There may be many OF options in a CASE
structure.

expression A numeric or string constant, variable, or expression.

TO TO allows a range of values in an OF or OROF. The statements following the OF (or
OROF) are executed if the value of the condition falls within the inclusive range
specified by the expressions. The expression following OF (or OROF) must contain the
lower limit of the range. The expression following TO must contain the upper limit of the
range.

OROF The statements following an OROF are executed when either the expression following
the OROF or the OF option is equal to the condition of the CASE. There may be many
OROF options associated with one OF option. An OROF may optionally be put on a
separate line. An OROF does not terminate preceding statements groups, so control "falls
into" the OROF statements.

ELSE The statements following ELSE are executed when all preceding OF and OROF options
have been evaluated as not equivalent. ELSE is not required; however, when used, it must
be the last option in the CASE structure.

statements Any valid Clarion executable source code.
A CASE structure selectively executes statements based on equivalence between the condition and
expression or range of expressions. CASE structures may be nested within other executable structures
and other executable structures may be nested within CASE structures.

Example:
CASE ACCEPTED() !Evaluate field edit routine
OF ?Name !If field is Name
ERASE(?Address,?Zip) ! erase Address through Zip
GET(NameFile,NameKey) ! get the record
CASE Action !Evaluate Action
OF 1 ! adding record - does not exist
IF NOT ERRORCODE() ! should be a file error
ErrMsg = ´ALREADY ON FILE´ ! otherwise display error message
DISPLAY(?Address,?Zip) ! display address through zipcode
SELECT(?Name) ! re-enter the name

END
OF 2 OROF 3 ! change or delete - record exists
DISPLAY(?Address,?Zip) ! display address through zipcode

END ! end case action

CASE Name[1] !Get first letter of name
OF ´A´ TO ´M´ !Process first half of alphabet
OROF ´a´ TO ´m´
DO FirstHalf

OF ´N TO ´Z´ OROF ´n´ TO ´z´ !Process second half of alphabet
DO SecondHalf

END !End case sub(name
OF ?Address !If field is address
DO AddressVal ! call validation routine

END !End case accepted()

EXECUTE (statement selection structure)
EXECUTE expression
 statement 1
 statement 2
 [BEGIN

statements
 END]
 statement n
END

EXECUTE Initiates a single statement execution structure.

expression A numeric expression or a variable that contains a numeric integer.

statement 1 A single statement that executes only when the expression is equal to 1.

statement 2 A single statement that executes only when the expression is equal to 2.

BEGIN BEGIN marks the beginning of a structure containing a number of lines of code. The
BEGIN structure will be treated as a single statement by the EXECUTE structure. The
BEGIN structure is terminated by a period or the keyword END.

statement n A single statement that executes only when the expression is equal to n.
An EXECUTE structure selects a single executable statement (or executable code structure) based on
the value of the expression.

If the expression equals 1, the first statement (statement 1) executes. If expression equals 2, the second
statement (statement 2) executes, and so on. If the value of the expression is zero, or greater than the
total number of statements (or structures) within the EXECUTE structure, the EXECUTE is ignored.

EXECUTE structures may be nested within other executable structures and other executable structures
(IF, CASE, LOOP, EXECUTE, and BEGIN) may be nested within an EXECUTE.

Example:
EXECUTE Transact !Evaluate Transact
ADD(Customer) !Execute if Transact = 1
PUT(Customer) !Execute if Transact = 2
DELETE(Customer) !Execute if Transact = 3

END !End execute
EXECUTE CHOICE() !Evaluate CHOICE() function
OrderPart !Execute if CHOICE() = 1
BEGIN !Execute if CHOICE() = 2
SavVendor" = Vendor
UpdVendor
IF Vendor <> SavVendor"
Mem:Message = ´VENDOR NAME CHANGED´

. .
CASE VendorType !Execute if CHOICE() = 3
OF 1
UpdPartNo1

OF 2
UpdPartNo2

END
RETURN !Execute if CHOICE() = 4

END !End execute

See Also:

BEGIN

IF (conditional execution structure)
IF logical expression [THEN]
 statements
[ELSIF logical expression [THEN]
 statements]
[ELSE
 statements]
END

IF Initiates a conditional statement execution structure.

logical expression A numeric or string variable, expression, or function. A logical expression
evaluates a condition. Control is determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else is true.

THEN The statements following THEN are executed when the preceding logical expression is
evaluated as true. If used, THEN must only be placed on the same line as the IF or
ELSIF.

statements An executable statement, or a sequence of executable statements.

ELSIF The logical expression following an ELSIF is evaluated only when all preceding IF or
ELSIF conditions were evaluated as false.

ELSE The statements following ELSE are executed when all preceding IF and ELSIF options
were evaluated as false. ELSE is not required, however, when it is used, it must be the
last option in the IF structure.

An IF structure controls program execution based on the outcome of one or more logical expressions. IF
structures may have any number of ELSIF THEN statement groups. IF structures may be "nested" within
other executable structures, and other executable structures may be nested within an IF structure.

Example:
IF Cus:TransCount = 1 !If new customer
AcctSetup ! call account setup procedure

ELSIF Cus:TransCount > 10 AND Cus:TransCount < 100 !If regular customer
DO RegularAcct ! process the account

ELSIF Cus:TransCount > 100 !If special customer
DO SpecialAcct ! process the account

ELSE !Otherwise
DO NewAcct ! process the account
IF Cus:Credit THEN CheckCredit ELSE CLEAR(Cus:CreditStat).

! verify credit status
END
IF ERRORCODE() THEN ErrHandler(Cus:AcctNumber,Trn:InvoiceNbr). !Handle errors

LOOP (iteration structure)
| count TIMES |

LOOP [| i = initial TO limit [BY step] |]
| UNTIL logical expression |
| WHILE logical expression |

 statements
END

LOOP Initiates an iterative statement execution structure.

count A numeric constant, variable, or expression that determines the number of TIMES the
statements in the LOOP are executed.

TIMES Executes count number of iterations of the statements.

i The label of a variable which is automatically incremented on each iteration of the LOOP.

= Assigns a new value to the increment (i) variable for each cycle of the LOOP.

initial A numeric constant, variable, or expression that specifies the initial value assigned to the
increment variable (i) on the first pass through the LOOP structure.

TO A syntax conjunctive for the limit parameter.

limit When i is greater than limit, the LOOP structure control sequence terminates.

BY A syntax conjunctive for the step parameter.

step A numeric constant, variable, or expression. The step determines the quantity by which
the i variable increments on each iteration of the LOOP. If the BY step parameter is
omitted, i increments by 1.

UNTIL Evaluates the logical expression before each iteration of the LOOP. If the logical
expression evaluates to true, the LOOP control sequence terminates.

WHILE Evaluates the logical expression before each iteration of the LOOP. If the logical
expression evaluates to false, the LOOP control sequence terminates.

logical expression A numeric or string variable, expression, or function. A logical expression
evaluates a condition. Control is determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else is true.

statements An executable statement, or a sequence of executable statements.
A LOOP structure repetitively executes the statements within its structure. LOOP conditions are always
evaluated at the top of the LOOP, before the LOOP is executed. LOOP structures may be nested within
other executable code structures, and other executable code structures may be nested within a LOOP.

A LOOP with no parameters iterates continuously, unless a BREAK or RETURN statement is executed.
BREAK discontinues the LOOP and continues program execution with the statement following the LOOP
structure. All statements within a LOOP structure are executed unless a CYCLE statement is executed.
CYCLE immediately sends program execution back to the top of the LOOP for the next iteration, without
executing any statements following the CYCLE in the LOOP.

Example:
LOOP !Continuous loop
Char = GetChar() ! get a character
IF Char <> CarrReturn ! if it´s not a carriage return
Field = CLIP(Field) & Char ! append the character

ELSE ! otherwise

BREAK ! break out of the loop
. . !End if, end loop
IF ERRORCODE() !On error
LOOP 3 TIMES ! loop three times
BEEP ! sound the alarm

. . !End loop, end if
LOOP I# = 1 TO 365 BY 7 !Loop, increment I# by 7 each time
GET(DailyTotal,I#) ! read every 7th record
DO WeeklyJob ! do the routine

END !End loop
SET(MasterFile) !Point to first record
LOOP UNTIL EOF(MasterFile) !Process all the records
NEXT(MasterFile) ! read a record
ProcMaster ! call the procedure

END
LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK ! without processing keystrokes

END

See Also:

BREAK

CYCLE

Control Statements
BREAK (immediately leave loop)

CHAIN (execute another program)

CYCLE (go to top of loop)

DO (call a ROUTINE)

EXIT (leave a ROUTINE)

GOTO (go to a label)

HALT (exit program)

IDLE (arm periodic procedure)

RETURN (return to caller)

RUN (execute command)

STOP (suspend program execution)

BREAK (immediately leave loop)
BREAK

The BREAK statement immediately terminates the LOOP or ACCEPT and transfers control to the first
statement following the LOOP or ACCEPT loop structure. BREAK may only be used in a LOOP or
ACCEPT loop structure.

Example:
LOOP !Loop
ASK ! wait for a keystroke
IF KEYCODE() = 256 ! if Esc key pressed
BREAK ! break out of the loop

ELSE ! otherwise
BEEP ! sound the alarm

END
END
ACCEPT !ACCEPT loop structure
CASE ACCEPTED()
OF ?Ok
CallSomeProc

OF ?Cancel
BREAK ! break out of the loop

END
END

See Also:

LOOP

CYCLE

ACCEPT

CHAIN (execute another program)
CHAIN(program)

CHAIN Terminates the current program and executes another.

program A string constant or variable containing the name of the program to execute. This may be
any .EXE or .COM program.

CHAIN terminates the current program, closing all files and returning its memory to the operating system,
and executes another program.

Example:
 PROGRAM !MainMenu program code
CODE
EXECUTE CHOICE()
CHAIN(´Ledger´) !Execute LEDGER.EXE
CHAIN(´Payroll´) !Execute PAYROLL.EXE
RETURN !Return to DOS

END
 PROGRAM !Ledger program code
CODE
EXECUTE CHOICE()
CHAIN(´MainMenu´) !Return to MainMenu program
RETURN !Return to DOS

END
PROGRAM !Payroll program code
CODE
EXECUTE CHOICE()
CHAIN(´MainMenu´) !Return to MainMenu program
RETURN !Return to DOS

END

CYCLE (go to top of loop)
CYCLE

The CYCLE statement passes control immediately back to the top of the LOOP or ACCEPT loop, where
the LOOP condition is evaluated. CYCLE may only be used in a LOOP or ACCEPT loop structure.

In an ACCEPT loop, for certain events, CYCLE terminates an automatic action before it is performed
(such as EVENT:Move).

Example:
SET(MasterFile) !Point to first record
LOOP !Process all the records
NEXT(MasterFile) ! read a record
IF ERRORCODE() THEN BREAK. !Get out of loop at end of file
DO MatchMaster ! check for a match
IF NoMatch ! if match not found
CYCLE ! jump to top of loop

END
DO TransVal ! validate the transaction
PUT(MasterFile) ! write the record

END

See Also:

LOOP

BREAK

ACCEPT

DO (call a ROUTINE)
DO label

DO Executes a ROUTINE.

label The label of a ROUTINE statement.
The DO statement is used to execute a ROUTINE local to a PROGRAM, PROCEDURE, or FUNCTION.
When a ROUTINE completes execution, program control reverts to the statement following the DO
statement. A ROUTINE may only be called within the CODE section containing the ROUTINE´s source
code.

Example:
DO NextRecord !Call the next record routine
DO CalcNetPay !Call the calc net pay routine

EXIT (leave a ROUTINE)
EXIT

The EXIT statement immediately leaves a ROUTINE and returns program control to the statement
following the DO statement that called it. An EXIT statement is not required. A ROUTINE with no EXIT
statement terminates automatically when the entire sequence of statements in the ROUTINE is complete.

Example:
CalcNetPay ROUTINE
IF GrossPay = 0 !If no pay
EXIT ! exit the routine

END
NetPay = GrossPay - FedTax - Fica
QtdNetPay += NetPay
YtdNetPay += NetPay

GOTO (go to a label)
GOTO label

GOTO Unconditionally transfers program control to another statement.

label The label of another executable statement within the PROGRAM, PROCEDURE,
FUNCTION, or ROUTINE.

The GOTO statement unconditionally transfers control from one statement to another. The target label of
a GOTO must not be the label of a ROUTINE, PROCEDURE, or FUNCTION.

The scope of GOTO is limited to the currently executing ROUTINE, PROCEDURE, or FUNCTION; it may
not target a label outside the ROUTINE, PROCEDURE, or FUNCTION in which it is used.

Example:
ComputeIt FUNCTION(Level)
CODE
IF Level = 0 THEN GOTO PassCompute. !Skip rate calculation if no Level
Rate = Level * MarkUp !Compute Rate
RETURN(Rate) ! and return it

PassCompute RETURN(999999) !Return bogus number

HALT (exit program)
HALT([errorlevel] [,message])

HALT Immediately terminates the program.

errorlevel A positive integer constant or variable (range: 0 - 250) which is the exit code to pass to
DOS, setting the DOS ERRORLEVEL. If omitted,the default is zero.

message A string constant or variable which is typed on the screen after program termination.
The HALT statement immediately returns to the operating system, setting the errorlevel and optionally
displaying a message after the program terminates. If a SHUTDOWN procedure is armed, it is executed
before program termination.

If the program being HALTed was launched by a RUN or RUNSMALL statement within another Clarion
program, the errorlevel exit code HALT sets may be determined by using the RUNCODE function in the
launching program.

Example:
PasswordProc PROCEDURE
PasswordSTRING(10)
Window WINDOW,CENTER

ENTRY(@s10),AT(5,5),USE(Password),HIDE
 END

CODE
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Password
IF Password <> ´Pay$MeMoRe´
HALT(0,´Incorrect Password entered.´)

END
END

END

See Also:   

RUN

RUNCODE

IDLE (arm periodic procedure)
IDLE([procedure] [,separation])

IDLE Arms a procedure that periodically executes.

procedure The label of a PROCEDURE. The procedure may not take any parameters.

separation An integer that specifies the minimum wait time (in seconds) between calls to the
procedure. A separation of 0 specifies continuous calls. If separation is omitted, the
default value is 1 second.

An IDLE procedure is active while ASK or ACCEPT are waiting for user input. Only one IDLE procedure
may be active at a time, and it executes on thread zero (0). Naming a new IDLE procedure overrides the
previous one. An IDLE statement with no parameters disarms the IDLE process.

An IDLE procedure is usually prototyped in the PROGRAM´s MAP (not a MEMBER MAP). If prototyped in
a MEMBER MAP, the IDLE statements which activate and de-activate it must be contained in a procedure
or function within the same MEMBER module.

Example:
IDLE(ShoTime,10) !Call shotime every 10 seconds
IDLE(CheckNet) !Check network activity every 1 second
IDLE !Disarm idle procedure

See Also:

ASK

ACCEPT

PROCEDURE

MAP

RETURN (return to caller)
RETURN([expression])

RETURN Terminates a PROGRAM, PROCEDURE, or FUNCTION.

expression The expression passes the return value of a FUNCTION back to the expression in which
the FUNCTION was used. The expression is required for a FUNCTION and may not be
used in a PROCEDURE or PROGRAM.

The RETURN statement terminates a PROGRAM, PROCEDURE, or FUNCTION, and passes control
back to the caller. When RETURN is executed from the CODE section of a PROGRAM, the program is
terminated, all files and windows are closed, and control is passed to the operating system.

RETURN is required in a FUNCTION and optional in a PROCEDURE or PROGRAM. If RETURN is not
used in a PROCEDURE or PROGRAM, an implicit RETURN occurs at the end of the executable code.
The end of executable code is defined as the end of the source file, or the beginning of another
PROCEDURE, FUNCTION, or ROUTINE.

RETURN from a PROCEDURE or FUNCTION (whether explicit or implicit) automatically closes any local
APPLICATION, WINDOW, REPORT, or VIEW structure opened in the PROCEDURE or FUNCTION. It
does not automatically close any Global or Module Static APPLICATION, WINDOW, REPORT, or VIEW. It
also closes and frees any local QUEUE structure declared without the STATIC attribute.

Example:
IF Done# THEN RETURN. !Quit when done

DayOfWeek FUNCTION(Date) !Function to return the day of the week
CODE
EXECUTE (Date % 7) + 1 !Determine what day of week Date is
RETURN(´Sunday´) ! and RETURN the correct day string
RETURN(´Monday´)
RETURN(´Tuesday´)
RETURN(´Wednesday´)
RETURN(´Thursday´)
RETURN(´Friday´)
RETURN(´Saturday´)

END

RUN (execute command)
RUN(command)

RUN Executes a command as if it were entered on the DOS command line.

command A string constant or variable containing the command to execute. This may include a full
path and command line parameters.

The RUN statement executes a command to execute a DOS or Windows program. When the command
executes, the new program is loaded as the ontop and active program. Execution control in the launching
program returns immediately to the statement following RUN and the program continues executing as a
background application. The user can return to the launching program by either terminating the launched
program, or switching back to it through the Windows Task List.

If the command does not contain a path to the program, the following search sequence is followed:

 1. The DOS current directory
 2. The Windows directory
 3. The Windows system directory
 4. Each directory in the DOS PATH
 5. Each directory mapped in a network

The successful execution of the command may be verified with the RUNCODE function, which returns the
DOS exit code of the command. If unsuccessful, RUN posts the error to the ERROR and ERRORCODE
functions.

Errors Posted: RUN may post any possible error (see Appendix B)

Example:
RUN(´notepad.exe readme.txt´) !Run Notepad, automatically loading readme.txt file
RUN(ProgName) !Run the command in the ProgName variable

See Also:

RUNCODE

STOP (suspend program execution)
STOP([message])

STOP Suspends program execution and displays a message window.

message An optional string expression (up to 64K) which displays in the error window.
STOP suspends program execution and displays a message window. It offers the user the option of
continuing the program or exiting. When exiting, it closes all files and frees the allocated memory.

Example:
PswdScreen WINDOW
 STRING(´ Please Enter the Password ´),AT(5,5)
 ENTRY(@10),AT(20,5),USE(Password),HIDE !Password storage field

 END
CODE
OPEN(PswdScreen) !Open the password screen
ACCEPT ! and get user input
CASE ACCEPTED
OF ?Password)
IF Password <> ´PayMe$moRe´ !Correct password?
STOP(´Incorrect Password Entered -- Access Denied´)
HALT(0,´Incorrect password´) !If not, throw them out

END
END

END

Window Structures
Clarion Windows

Window Overview

Control Fields and Input Focus

Field Equate Labels

Window Structure Statements

APPLICATION (declare an MDI frame window)

WINDOW (declare a dialog window)

APPLICATION and WINDOW Attributes

ALRT (set window hot keys)

AT (set window position and size)

AUTO (set USE variable automatic re-display)

CENTER (set position and size)

CURSOR (set mouse cursor type)

DOUBLE, NOFRAME, RESIZE (set window border)

FONT (set window default font)

GRAY (set 3-D look background)

HLP (set windows on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

ICON (set window icon)

ICONIZE (set window open as icon)

IMM (set immediate resize event notification)

MASK (set pattern editing data entry)

MAX (set maximize control)

MAXIMIZE (set window open maximized)

MDI (set MDI child window)

MODAL (set system modal window)

MSG (set window status bar message)

PALETTE (set number of hardware colors)

STATUS (set status bar)

SYSTEM (set system menu)

TOOLBOX (set toolbox window behavior)

TIMER (set periodic event)

MENUBAR and TOOLBAR Structures

MENUBAR (declare a pulldown menu)

TOOLBAR (declare a tool bar)

MENUBAR and TOOLBAR Attributes

CURSOR (set toolbar mouse cursor type)

FONT (set toolbar default font)

NOMERGE (set merging behavior)

MENUBAR Controls

MENU (declare a menu box)

ITEM (declare a menu item)

TOOLBAR and WINDOW Control Fields

BOX (declare a window box control)

BUTTON (declare a pushbutton control)

CHECK (declare a window checkbox control)

COMBO (declare an entry/list control)

CUSTOM (declare a window .VBX custom control)

ELLIPSE (declare a window ellipse control)

ENTRY (declare a data entry control)

GROUP (declare a group of window controls)

IMAGE (declare a window graphic image control)

LINE (declare a window line control)

LIST (declare a window list control)

OPTION (declare a group of window RADIO controls)

PROMPT (declare a prompt control)

RADIO (declare a window radio button control)

REGION (declare a window region control)

SPIN (declare a spinning list control)

STRING (declare a window string control)

TEXT (declare a multi-line data entry control)

Control Field Attributes

ALRT (set control hot keys)

AT (set control position and size in window)

BOXED (set window controls group border)

CAP, UPR (set display case)

CHECK (set on/off ITEM)

CLASS (set .VBX custom control class)

COLOR (set control display color)

COLUMN (set list box highlight bar)

CURSOR (set control mouse cursor type)

DEFAULT (set enter key button)

DISABLE (set control dimmed at open)

DROP (set list box behavior)

DRAGID (set drag-and-drop host signatures)

DROPID (set drag-and-drop target signatures)

FILL (set display fill color)

FIRST, LAST (set MENU or ITEM position)

FONT (set control font)

FORMAT (set LIST or COMBO layout)

FROM (set window listbox data source)

FULL (set full-screen)

HIDE (set control hidden at open)

HLP (set controls on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)

ICON (set control icon)

IMM (set immediate event notification)

INS, OVR (set typing mode)

KEY (set control execution keycode)

LEFT, RIGHT, CENTER, DECIMAL (set display justification)

MARK (set multiple selection mode)

MSG (set control status bar message)

NOBAR (set no highlight bar)

PASSWORD (set data non-display)

RANGE (set SPIN range limits)

READONLY (set display-only)

REQ (set required entry)

RIGHT (set MENU position)

ROUND (set round-cornered window BOX)

SCROLL (set scrolling control)

SEPARATOR (set separator line ITEM)

SKIP (set Tab key skip)

STD (set standard behavior)

STEP (set SPIN increment)

TRN (set transparent window string)

USE (set control variable or equate label)

VCR (set VCR control)

Clarion Windows
Window Overview

Control Fields and Input Focus

Field Equate Labels

Window Overview
In most Windows programs there are three types of screen windows used: application windows,
document windows, and dialog boxes. An application window is the first window opened in a Windows
program, and it usually contains the main menu as the entry point to the rest of the program. All other
windows in the program are document windows or dialog boxes.

Along with these three screen window types, there are two user interface design conventions that are
used in Windows programs: the Single Document Interface (SDI), and the Multiple Document Interface
(MDI).

An SDI program usually only contains linear logic that allows the user to take only one execution path
(thread) at a time; it does not open separate execution threads which the user may move between. This is
the same type of program logic used in most DOS programs. An SDI program would not contain a Clarion
APPLICATION structure as its application window. The Clarion WINDOW structure (without an MDI
attribute) is used to define an SDI program´s application window, and the subsequent document windows
or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths (threads) and change from one to
another at any time. This is a very common Windows program user interface. It is used by applications as
a way of organizing and grouping windows which present several execution paths for the user to take.

A Clarion APPLICATION structure defines the MDI application window. The MDI application window acts
as a parent for all the MDI child windows (document windows and dialog boxes), in that the child windows
are clipped to its frame and automatically moved when the application frame is moved. They can also be
concealed en masse by minimizing the parent. There may be only one APPLICATION open at any time in
a Clarion Windows program.

Document windows and dialog boxes are very similar in that they are both defined as Clarion WINDOW
structures. They differ in the conventional context in which they are commonly used and the conventions
regarding appearance and attributes. In many cases, the difference is not distinguishable and does not
matter. The generic term for both document windows and dialog boxes is "window" and that is the term
used throughout this text.

Document windows usually display data. By convention they are movable and resizable. They usually
have a title, a system menu, and maximize button. For example, in the Windows environment, the "Main"
program group window that appears when you DOUBLE-CLICK on the "Main" icon in the Program Manager
´s desktop, is a document window.

Dialog boxes usually request information from the user or alert the user to some condition, usually prior to
performing some action requested by the user. They may or may not be movable, and so, may or may not
have a system menu and title. By convention, they are not resizable, although they can have a maximize
button which gives the dialog two alternate sizes. A dialog box may be system modal (the user must
respond before doing anything else in Windows), application modal (the user must respond before doing
anything in the application), or modeless. For example, in the Clarion environment, the window that
appears from the File menu´s Open selection is an application modal dialog box that requests the name
of the file to open.

Control Fields and Input Focus
The objects placed in an APPLICATION or WINDOW structure are "control fields." "Control" is a
standard Windows term used to refer to any screen object--command buttons, text entry fields, radio
buttons, list boxes, etc. In most DOS programs, the term "field" is usually used to refer to these objects. In
this document, the terms "control" and "field" are generally interchangeable.

Controls appear only in MENUBARs, TOOLBARs, or WINDOW structures. Controls are available to the
user to select and/or edit the data they contain only when it has "input focus." This occurs when the user
uses the TAB key, the mouse, or an accelerator key combination to highlight the control.

A WINDOW also has "input focus" when it is the top WINDOW in the currently active execution thread.
Since Clarion for Windows allows multi-threaded programs, the concept of which WINDOW currently has
focus is important. Only the thread whose uppermost WINDOW has focus is active. The user may edit
data in the WINDOW´s control fields only when it has focus.

Field Equate Labels
In WINDOW structures, every control field with a USE variable is assigned a field number by the compiler.
By default, these field numbers begin with one (1) and are assigned to controls in the order they appear in
the WINDOW structure code. The actual assigned numbers can be overridden by the second parameter
of the USE attribute. The order of appearance in code determines the "natural" selection order of control
fields for the ACCEPT structure (which may be altered with the SELECT statement). The order of
appearance in code is independent of the control´s placement on the screen. Therefore, there is not
necessarily any correlation between a control´s position on screen and the field number assigned by the
compiler.

There are a number of statements that use these field numbers as parameters. It would be very tedious to
"hard code" these numbers in order to use these statements. Therefore, Clarion provides a mechanism to
address this problem: Field Equate Labels.

Field Equate Labels always begin with a question mark (?) followed by the name of the control´s USE
variable. The leading question mark indicates to the compiler a Field Equate Label. They are very similar
to normal EQUATE compiler directives. The compiler substitutes the field number for the Field Equate
Label at compile time. This makes it unnecessary to know field numbers in advance.

Field Equate Labels for USE variables which are array elements always begin with a question mark (?)
followed by the name of the USE variable followed by an underscore and a number (?ArrayField_1). Array
elements from the same array are incrementally numbered beginning with one (1) for each element used
in the same structure (?ArrayField_1, ?ArrayField_2, ...). Multi-dimensioned arrays are treated similarly (?
ArrayField_1_1, ?ArrayField_1_2, ...).

Two or more controls with exactly the same USE variable in one WINDOW or APPLICATION structure
would create the same Field Equate Label for all. Therefore, when the compiler encounters this condition,
all Field Equate Labels for that USE variable are discarded. This makes it impossible to reference any of
these controls in executable code, preventing confusion about which control you really want to reference.
It also allows you to deliberately create this condition to display the contents of the variable in multiple
controls using different display pictures. Some fields may have USE variables that can only be Field
Equate Labels (a unique label with a leading question mark). This provides a way of referencing these
fields in code statements.

In APPLICATION structures, every menu selection in the MENUBAR, and every control with a USE
variable placed in the TOOLBAR, is assigned a number by the compiler. By default, these numbers begin
with negative one (-1) and are decremented by one (1) in the order the menu selections and controls
appear in the APPLICATION structure code.

Window Structure Statements
APPLICATION (declare an MDI frame window)

WINDOW (declare a dialog window)

APPLICATION (declare an MDI frame window)
label APPLICATION(´title´) [,AT()] [,CENTER] [,SYSTEM] [,MAX] [,ICON()] [,STATUS()] [,HLP()]

[,CURSOR()] [,TIMER()] [,ALRT()] [,ICONIZE] [,MAXIMIZE] [,MASK] [,FONT()]
[,MSG()] [,IMM] [,AUTO] [, | HSCROLL |] [, | DOUBLE |]

| VSCROLL | | NOFRAME |
| HVSCROLL | | RESIZE |

 [MENUBAR
 multiple menu and/or item declarations

 END]
 [TOOLBAR
 multiple control field declarations
 END]
END

APPLICATION Declares a Multiple Document Interface (MDI) frame.

label A valid Clarion label. A label is required on the APPLICATION statement.

title Specifies the title text for the application window.

AT Specifies the initial size and location of the application window. If omitted, default values
are selected by the runtime library.

CENTER Specifies that the window´s initial position is centered in the screen by default. This
attribute takes effect only if at least one parameter of the AT attribute is omitted.

SYSTEM Specifies the presence of a system menu.

MAX Specifies the presence of a maximize control.

ICON Specifies the presence of a minimize control, and names a file or standard icon identifier
for the icon displayed when the window is minimized.

STATUS Specifies the presence of a status bar at the base of the application window.

HLP Specifies the "Help ID" associated with the APPLICATION window and provides the
default for any child windows.

CURSOR Specifies a mouse cursor to be displayed when the mouse is positioned over the
APPLICATION window. If omitted, the Windows default cursor is used.

TIMER Specifies periodic timed event generation.

ALRT Specifies "hot" keys active for the APPLICATION.

ICONIZE Specifies the APPLICATION is opened as an icon.

MAXIMIZE Specifies the APPLICATION is maximized when opened.

MASK Specifies pattern input editing mode of all ENTRY controls in the TOOLBAR.

FONT Specifies the default font for all controls in the toolbar.

MSG Specifies a string constant containing the default text to display in the status bar for all
controls in the APPLICATION.

IMM Specifies the window generates events whenever it is moved or resized.

AUTO Specifies all toolbar controls´ USE variables re-display on screen each time through the
ACCEPT loop.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the application frame when
any portion of a child window lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added to the application frame when
any portion of a child window lies vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the
application frame when any portion of a child window lies outside the visible area.

DOUBLE Specifies a double-width frame around the window. A window with this type of frame
may not be resized.

NOFRAME Specifies a window with no frame. A window with this type of frame may not be resized.

RESIZE Specifies a thick frame around the window which does allow window resizing.

MENUBAR Defines the menu structure (optional). The menu specified in an APPLICATION is the
"Global menu."

TOOLBAR Defines a toolbar structure (optional). The toolbar specified in an APPLICATION is the
"Global toolbar."

APPLICATION declares a Multiple Document Interface (MDI) frame window. MDI is a part of the standard
Windows interface, and is used by Windows applications to present several "views" in different windows.
This is a way of organizing and grouping these. The MDI frame window (APPLICATION structure) acts as
a "parent" for all the MDI "child" windows (WINDOW structures with the MDI attribute). These MDI "child"
windows are clipped to the APPLICATION frame and automatically moved when the frame is moved, and
can be totally concealed by minimizing the parent.

There may be only one APPLICATION window open at any time in a Clarion Windows program, and it
must be opened before any MDI "child" windows may be opened. However, non-MDI windows may be
opened before or after the APPLICATION is opened, and may be on the same execution thread as the
APPLICATION.

An MDI "child" window must not be on the same execution thread as the APPLICATION. Therefore, any
MDI "child" window called directly from the APPLICATION must be in a separate procedure so the START
function can be used to begin a new execution thread. Once started, multiple MDI "child" windows may be
called in the new thread.

A "conventional" APPLICATION window would have the ICON, MAX, STATUS, RESIZE, and SYSTEM
attributes. This creates an application frame window with minimize and maximize buttons, a status bar, a
resizable frame, and a system menu. It would also have a MENUBAR structure containing the global
menu items, and may have a TOOLBAR with "shortcuts" to global menu items. These attributes create a
standard Windows look and feel for the application frame.

An APPLICATION window may not contain controls except within its MENUBAR and TOOLBAR
structures, and cannot be used for any output. For output, document windows or dialog boxes are
required (defined using the WINDOW structure).

When the APPLICATION window is first opened, it remains hidden until the first DISPLAY statement or
ACCEPT loop is encountered. This enables any changes to be made to the appearance before it is
displayed. For example, the caption or size can be adjusted via runtime property assignment.

Example:
!An MDI application frame window with system menu, minimize and maximize
! buttons, a status bar, scroll bars, and a resizable frame, containing the
! main menu and toolbar for the application:

MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(´&File´),USE(?FileMenu)

ITEM(´&Open...´),USE(?OpenFile)
ITEM(´&Close´),USE(?CloseFile),DISABLE
ITEM(´E&xit´),USE(?MainExit)

END
MENU(´&Edit´),USE(?EditMenu)
ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM(´&Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM(´&Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU(´&Window´),STD(STD:WindowList),LAST
ITEM(´&Tile´),STD(STD:TileWindow)
ITEM(´&Cascade´),STD(STD:CascadeWindow)
ITEM(´&Arrange Icons´),STD(STD:ArrangeIcons)

END
MENU(´&Help´),USE(?HelpMenu)
ITEM(´&Contents´),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(´&Search...´),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(´&How to Use Help´),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(´&About MyApp...´),USE(?HelpAbout)

END
END
TOOLBAR
BUTTON(´E&xit´),USE(?MainExitButton)
BUTTON(´&Open´),USE(?OpenButton),ICON(ICON:Open)

END
END

CODE
OPEN(MainWin) !Open APPLICATION
ACCEPT !Display APPLICATION and accept user input
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION

WINDOW (declare a dialog window)
label WINDOW(´title´) [,AT()] [,CENTER] [,SYSTEM] [,MAX] [,ICON()] [,STATUS()] [,HLP()]

[,CURSOR()] [,MDI] [,MODAL] [,MASK] [,FONT()] [,GRAY][,TIMER()] [,ALRT()]
[,ICONIZE] [,MAXIMIZE] [,MSG()] [,TOOLBOX][,PALETTE()] [,DROPID()] [,IMM]
[,AUTO] [, | HSCROLL |] [, | DOUBLE |]

| VSCROLL | | NOFRAME |
| HVSCROLL | | RESIZE |

 [MENUBAR
 menus and/or items
 END]
 [TOOLBAR
 controls
 END]
 controls
END

WINDOW Declares a document window or dialog box.

label A valid Clarion label. A label is required.

title A string constant containing the window´s title text.

AT Specifies the initial size and location of the window. If omitted, default values are
selected by the runtime library.

CENTER Specifies that the window´s initial position is centered on screen relative to its parent
window, by default. This attribute takes effect only if at least one parameter of the AT
attribute is omitted.

SYSTEM Specifies the presence of a system menu.

MAX Specifies the presence of a maximize control.

ICON Specifies the presence of a minimize control, and names a file or standard icon identifier
for the icon displayed when the window is minimized.

STATUS Specifies the presence of a status bar for the window.

HLP Specifies the "Help ID" associated with the window.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the window. This
cursor is inherited by the WINDOW´s controls unless overridden.

MDI Specifies that the window conforms to normal MDI child-window behavior.

MODAL Specifies the window is "system modal" and must be closed before the user may do
anything else.

MASK Specifies pattern input editing mode of all ENTRY controls in this window.

FONT Specifies the default font for all controls in this window.

GRAY Specifies that the window has a gray background for use with 3-D look controls.

TIMER Specifies periodic timed event generation.

ALRT Specifies "hot" keys active when the window has focus.

ICONIZE Specifies the window is opened as an icon.

MAXIMIZE Specifies the window is maximized when opened.

MSG Specifies a string constant containing the default text to display in the status bar for all

controls in the window.

TOOLBOX Specifies the window is "always on top" and its controls never retain focus.

PALETTE Specifies the number of hardware colors used for graphics in the window.

DROPID Specifies the window may serve as a drop target for drag-and-drop actions.

IMM Specifies the window generates events whenever it is moved or resized.

AUTO Specifies all toolbar controls´ USE variables re-display on screen each time through the
ACCEPT loop.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the window when any
scrollable portion of the window lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added to the window when any
scrollable portion of the window lies vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the
window when any scrollable portion of the window lies outside the visible area.

DOUBLE Specifies a double-width frame around the window. A window with this type of frame
may not be resized.

NOFRAME Specifies a window with no frame. A window with this type of frame may not be resized.

RESIZE Specifies a thick frame around the window, which does allow window resizing.

MENUBAR Defines a menu structure (optional).

menus and/or items
MENU and/or ITEM declarations that define the menu selections.

TOOLBAR Defines a toolbar structure (optional).

controls Control field declarations that define tools available on the TOOLBAR, or the control
fields in the WINDOW.

A WINDOW declares a document window or dialog box which may contain controls, and may be used to
display output to the user. When the WINDOW is first opened, it remains hidden until the first DISPLAY
statement or ACCEPT loop is encountered. This enables any changes to be made to the appearance
before it is displayed. For example, the caption or size can be adjusted via runtime property assignment.
Any previously opened WINDOW on the same execution thread is disabled.

A WINDOW automatically receives a single-width border frame unless one of the DOUBLE, NOFRAME,
or RESIZE attributes are specified. Screen coordinates are measured in dialog units. A dialog unit is
defined as one-quarter the average character width and one-eighth the average character height of the
font specified in the WINDOW´s FONT attribute (or the system font, if no FONT attribute is specified on
the WINDOW).

A WINDOW with the MODAL attribute is system modal; it takes exclusive control of the computer. This
means that any other progam running in the background halts its execution until the MODAL WINDOW is
closed. Therefore, the MODAL attribute should be used only when absolutely necessary. Also, the
RESIZE attribute is ignored, and the WINDOW cannot be moved when the MODAL attribute is present.

A WINDOW without the MDI attribute, when opened in an MDI program, is application modal. This means
that the user must respond before moving to any other window in the application. The user may, however,
move to any other program running in Windows at the time. Non-MDI windows may be opened either
before or after an APPLICATION is opened, and may be on the same execution thread as the
APPLICATION.

A WINDOW with the MDI attribute is an MDI "child" window. MDI "child" windows are clipped to the
APPLICATION frame and automatically moved when the frame is moved, and can be totally concealed by
minimizing the parent APPLICATION. MDI "child" windows are modeless; the user may change to the top
window of another execution thread, within the same application or any other application running in
Windows, at any time. An MDI "child" window must not be on the same execution thread as the
APPLICATION. Therefore, any MDI "child" window called directly from the APPLICATION must be in a
separate procedure so the START function can be used to begin a new execution thread. Once started,
multiple MDI "child" windows may be called in the new thread.

The MENUBAR specified in a WINDOW with the MDI attribute is automatically merged into the "Global
menu" (from the APPLICATION) when the WINDOW receives focus unless either the WINDOW´s or
APPLICATION´s MENUBAR has the NOMERGE attribute. A MENUBAR specified in a WINDOW without
the MDI attribute is never merged into the "Global menu"--it always appears in the window itself.

The TOOLBAR specified in a WINDOW with the MDI attribute is automatically merged into the "Global
toolbar" (from the APPLICATION) when the WINDOW receives focus, unless either the WINDOW´s or
APPLICATION´s TOOLBAR has the NOMERGE attribute. The toolbar specified in a WINDOW without the
MDI attribute is never merged into the "Global toolbar"--it always appears in the window itself.

A WINDOW with the TOOLBOX attribute is automatically "always on top" and its controls do not retain
focus (just as if they all had the SKIP attribute). This creates a window whose controls all behave in the
same manner as controls in the toolbar. Normally, a WINDOW with the TOOLBOX attribute would be
executed in its own thread.

Example:
 !MDI child window with system menu, minimize and maximize buttons, status bar,
 ! scroll bars, a resizable frame, with menu and toolbar which are merged into the
 !application´s menubar and toolbar:
MDIChild WINDOW(´Child One´),MDI,SYSTEM,MAX,ICON(´Icon.ICO´),STATUS,HVSCROLL,RESIZE

MENUBAR
MENU(´File´),USE(?FileMenu)
ITEM(´Close´),USE(?CloseFile)

END
 MENU(´Edit´),USE(?EditMenu)

ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)

 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)
END

 END
 TOOLBAR

BUTTON(´Cut´),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON(´Copy´),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy)

 BUTTON(´Paste´),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste)
 END
 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(´&OK´),USE(?Exit),DEFAULT
END

 !Non-MDI, system menu, maximize button, status bar, non-resizable frame,
NonMDI WINDOW(´Dialog Window´),SYSTEM,MAX,STATUS
 TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
 BUTTON(´&OK´),USE(?Exit),DEFAULT

 END
 !System-modal window with non-resizable frame, with only a message and Ok button:
ModalWinWINDOW(´Modal Window´),MODAL

IMAGE(ICON:Exclamation)
 STRING(´An ERROR has occurred´)

 BUTTON(´&OK´),USE(?Exit),DEFAULT
 END

APPLICATION and WINDOW Attributes
ALRT (set window hot keys)

AT (set window position and size)

AUTO (set USE variable automatic re-display)

CENTER (set position and size)

CURSOR (set mouse cursor type)

DOUBLE, NOFRAME, RESIZE (set window border)

FONT (set window default font)

GRAY (set 3-D look background)

HLP (set windows on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

ICON (set window icon)

ICONIZE (set window open as icon)

IMM (set immediate resize event notification)

MASK (set pattern editing data entry)

MAX (set maximize control)

MAXIMIZE (set window open maximized)

MDI (set MDI child window)

MODAL (set system modal window)

MSG (set window status bar message)

PALETTE (set number of hardware colors)

STATUS (set status bar)

SYSTEM (set system menu)

TOOLBOX (set toolbox window behavior)

TIMER (set periodic event)

ALRT (set window "hot" keys)
ALRT(keycode)

ALRT Specifies a "hot" key active while the APPLICATION or WINDOW has focus.

keycode A numeric constant keycode or keycode equate.
The ALRT attribute specifies a "hot" key active while the APPLICATION or WINDOW has focus. When
the user presses an ALRT "hot" key for the APPLICATION or WINDOW, two field-independent events,
EVENT:PreAlertKey and EVENT:AlertKey, are generated. If the code executes a CYCLE statement when
processing EVENT:PreAlertKey, you "shortstop" the EVENT:AlertKey, preventing library´s default action
on the alerted keypress for the window.

You may have multiple ALRT attributes on one APPLICATION or WINDOW. The ALERT statement and
the ALRT attribute of a window or control are completely separate. This means that clearing ALERT keys
has no effect on any keys alerted by ALRT attributes.

Example:
Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted

LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON(´&Ok´),AT(111,108,,),USE(?Ok)
BUTTON(´&Cancel´),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF FOCUS() <> ?LIST !Allow execution only on the list
CYCLE !Terminate alert processing on other controls

END
OF EVENT:AlertKey !Alert processing
CASE KEYCODE()
OF F9Key !Check for F9
F9HotKeyProc !Call hot key procedure

OF F10Key !Check for F10
F10HotKeyProc !Call hot key procedure

END
END

END

AT (set window position and size)
AT([x] [,y] [,width] [,height])

AT Specifies the initial position and size of the window.

x An integer constant or constant expression that specifies the initial horizontal position of
the top left corner. If omitted, the runtime library provides a default value.

y An integer constant or constant expression that specifies the initial vertical position of the
top left corner. If omitted, the runtime library provides a default value.

width An integer constant or constant expression that specifies the initial width. If omitted, the
runtime library provides a default value.

height An integer constant or constant expression that specifies the initial height. If omitted, the
runtime library provides a default value.

The AT attribute defines the initial position and size of an APPLICATION or WINDOW. If any parameter is
omitted, the runtime library provides a default value. The x and y parameters are relative to the top left
hand corner of the video screen when the AT attribute is placed on an APPLICATION structure, or a
WINDOW without the MDI attribute that is opened before any APPLICATION structure is opened by the
program. They are relative to the top left hand corner of the APPLICATION when the AT attribute is placed
on a WINDOW with the MDI attribute, or a WINDOW without the MDI attribute opened after an
APPLICATION structure has been opened.

The width and height parameters specify the size of the "client area" or "workspace" of an APPLICATION.
This is the area below the MENUBAR and above the status bar which defines the area in which the
TOOLBAR is placed and MDI "child" windows are opened. On a WINDOW, they specify the size of the
"workspace" which may contain control fields.

The values contained in the x, y, width, and height parameters are mreasured in to dialog units. Dialog
units are defined as one-quarter the average character width by one-eighth the average character height.
The size of a dialog unit is dependent upon the size of the default font for the window. This measurement
is based on the font specified in the FONT attribute of the window, or the system default font specified by
Windows.

Example:
WinOne WINDOW,AT(0,0,380,200),MDI !top left corner, relative to app frame

 END

WinTwo WINDOW,AT(0,0,380,200) !Top left corner, relative to video screen

 END

AUTO (set USE variable automatic re-display)
AUTO

The AUTO attribute specifies all window controls´ USE variables re-display on screen each time through
the ACCEPT loop. This incurs some overhead, but ensures the data displayed is current, without
requiring explicit DISPLAY statements.

Example:
WinOne WINDOW,AT(,,380,200),MDI,CENTER,AUTO !All controls values always display

 !controls
 END

CODE
ACCEPT !ACCEPT automatically re-dislays changed USE variables
END

CENTER (set position and size)
CENTER

The CENTER attribute indicates that the window´s default width and height are centered. A WINDOW
structure with the MDI attribute is centered on the APPLICATION. An APPLICATION structure is centered
on the screen. A non-MDI WINDOW is centered on its parent (the window currently with focus when the
non-MDI WINDOW is opened).

This attribute has no meaning unless at least one parameter of the AT attribute is omitted. This means
that the CENTER attribute provides a default value for any omitted AT parameter.

Example:
 !Window centered relative to application frame:
WinOne WINDOW,AT(,,380,200),MDI,CENTER

 END
 !Window centered relative to its parent:
WinTwo WINDOW,AT(,,380,200),CENTER

 END

CURSOR (set mouse cursor type)
CURSOR(file)

CURSOR Specifies a mouse cursor to display for the window.

file A string constant containing the name of a .CUR file, or an EQUATE naming a Windows-
standard mouse cursor. The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the mouse is positioned over the
window. This cursor is inherited by the controls in the window unless overridden.

The Windows standard mouse cursors contained in EQUATES.CLW are:

 CURSOR:None No mouse cursor
 CURSOR:Arrow The normal windows arrow cursor
 CURSOR:IBeam A capital "I" like a steel I-beam
 CURSOR:Wait An hourglass
 CURSOR:Cross A large plus sign
 CURSOR:UpArrow A vertical arrow
 CURSOR:Size A four-headed arrow
 CURSOR:Icon A box within a box
 CURSOR:SizeNWSE A double-headed arrow slanting left
 CURSOR:SizeNESW A double-headed arrow slanting right
 CURSOR:SizeWE A double-headed horizontal arrow
 CURSOR:SizeNS A double-headed vertical arrow
 CURSOR:DragWE A double-headed horizontal arrow

Example:
 !Window with Windows-standard large plus sign cursor
WinOne WINDOW,CURSOR(CURSOR:Cross)

 END
 !Window with custom cursor
WinTwo WINDOW,CURSOR(´CUSTOM.CUR´)

 END

DOUBLE, NOFRAME, RESIZE (set window border)
DOUBLE
NOFRAME
RESIZE

The DOUBLE, NOFRAME, and RESIZE attributes specify a WINDOW or APPLICATION border frame
style other than the default single-width border. The DOUBLE attribute places a double-width border
around the window and the NOFRAME attribute places no border on the window. A window with these
frame types may not be resized.

The RESIZE attribute places a thick border frame around the window. This is the only type that allows the
user to dynamically resize the window. RESIZE is ignored on any WINDOW with the MODAL attribute.

The RESIZE frame type is normally used on APPLICATION structures and WINDOW structures used as
document windows, not dialog boxes. NOFRAME is usually used on "hidden" windows used only to
activate an ACCEPT loop. DOUBLE is a common dialog box frame type.

Example:
 !A Window with a single-width border:
Win1 WINDOW

 END
 !A resizable Window:
Win2 WINDOW,RESIZE

 END
 !A Window with a double-width border:
Win3 WINDOW,DOUBLE

 END
 !A Window without a border:
Win4 WINDOW,NOFRAME

 END

FONT (set window default font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default display font for the window.

typeface A string constant containing the name of the font. If omitted, the system font is used.

size An integer constant containing the size (in points) of the font. If omitted, the system
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, black is used.

style An integer constant or constant expression or EQUATE specifying the strike weight and
style of the font. If omitted, the weight is normal.

The FONT attribute on a WINDOW or APPLICATION structure specifies the default display font for all
controls in the WINDOW or APPLICATION that do not have a FONT attribute. This is also the default font
for newly created controls on the window, and is the font used by the SHOW and TYPE statements when
writing to the window.

The typeface may name any font registered in the Windows system. The EQUATES.CLW file contains
EQUATE values for standard style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may add to that values that indicate italic, underline, or strikeout text. The
following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:fixed EQUATE (0800H)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

Example:
 !A Window using 14 point Times New Roman
Win1 WINDOW,FONT(´Times New Roman´,14,00H)

 END
 !A Window using 14 point Times New Roman, Bold and Italic
Win2 WINDOW,FONT(´Times New Roman´,14,00H,FONT:italic+FONT:bold)

 END

GRAY (set 3-D look background)
GRAY

The GRAY attribute indicates that the WINDOW has a gray background, suitable for use with three-
dimensional dialog controls. All controls on a WINDOW with the GRAY attribute are automatically given a
three-dimensional appearance. Controls in a TOOLBAR are always automatically given a three-
dimensional appearance, without the GRAY attribute.

This attribute is not valid on an APPLICATION structure.

The three-dimensional look may be disabled by SET3DLOOK.

Example:
 !A Window with 3-D controls
Win1 WINDOW,GRAY

 END

HLP (set window´s on-line help identifier)
HLP(helpID)

HLP Specifies the helpID for the APPLICATION, WINDOW, or control.

helpID A string constant specifying the key used to access the Help system. This may be either a
Help keyword or a "context string."

The HLP attribute specifies the helpID for the APPLICATION or WINDOW. Help, if available, is
automatically displayed by Windows whenever the user presses F1.

If the user presses F1 to request help when the APPLICATION window is foremost and no menus are
active, the APPLICATION´s helpID is used to locate the Help text. Otherwise, the library automatically
uses the helpID of the active menu of uppermost control or window, searching up the hierarchy until an
object with that helpID is found. The helpID of the APPLICATION is at the top of the hierarchy.

The helpID may contain a Help keyword or a "context string." A Help keyword is a keyword or phrase
that is displayed in the Help Search dialog. When the user presses F1, if only one topic in the help file
specifies this keyword, the help file is opened at that topic; if more than one topic specifies the keyword,
the search dialog is opened for the user.

A "context string" is identified by a leading tilde (~) in the helpID, followed by a unique identifier (no
spaces allowed) associated with exactly one help topic. When the user presses F1, the help file is opened
at the specific topic associated with that "context string." If the tilde is missing, the helpID is assumed to
be a help keyword.

Example:
 !A Window with a help context string:
Win1 WINDOW,HLP(´~Win1Help´)

 END
 !A Window with a help keyword:
Win2 WINDOW,HLP(´Window One Help´)

 END

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)
HSCROLL
VSCROLL
HVSCROLL

The HSCROLL, VSCROLL, and HVSCROLL parameters place scroll bars on an APPLICATION or
WINDOW. HSCROLL adds a horizontal scroll bar to the bottom, VSCROLL adds a vertical scroll bar on
the right side, and HVSCROLL adds both.

The vertical scroll bar allows a mouse to scroll up or down. The horizontal scroll bar allows a mouse to
scroll left or right. The scroll bars appear whenever any scrollable portion of the APPLICATION or
WINDOW lies outside the visible area on screen.

Example:
 !A Window with a horizontal scroll bar:
Win1 WINDOW,HSCROLL

 END
 !A Window with a vertical scroll bar:
Win2 WINDOW,VSCROLL

 END
 !A Window with both scroll bars:
Win2 WINDOW,HVSCROLL

 END

ICON (set window icon)
ICON([file])

ICON Specifies an icon to display for the APPLICATION or WINDOW.

file A string constant containing the name of an .ICO file, or an EQUATE for the Windows-
standard icon to display. The .ICO file is automatically linked into the .EXE as a
resource.

The ICON attribute specifies an icon to display for the APPLICATION or WINDOW. On an APPLICATION
or WINDOW, ICON also specifies the presence of a minimize control. The minimize control appears in the
top right corner of the window as a downward pointing triangle (usually). When the user clicks the mouse
on it, the window shrinks to an icon without halting its execution. When an APPLICATION or non-MDI
WINDOW is minimized, the icon file is displayed in the operating system´s desktop; when a WINDOW
with the MDI attribute is minimized, the icon file is displayed in the APPLICATION.

EQUATE statements for the Windows-standard icons are contained in the EQUATES.CLW file. The
following list is a representative sample of these (see EQUATES.CLW for the complete list):

ICON:None No icon
ICON:Application
ICON:Question ?
ICON:Exclamation !
ICON:Asterisk *
ICON:VCRtop >>|
ICON:VCRrewind <<
ICON:VCRback <
ICON:VCRplay >
ICON:VCRfastforward >>
ICON:VCRbottom |<<
ICON:VCRlocate ?

Example:
 !A Window with a minimize button:
WinOne WINDOW,ICON(´MyIcon.ICO´)

 END
 !A Window with a minimize button:
WinTwo WINDOW,ICON(ICON:Application)

 END

ICONIZE (set window open as icon)
ICONIZE

The ICONIZE attribute specifies the APPLICATION or WINDOW is opened minimized as the icon
specified by the ICON attribute. When an APPLICATION or non-MDI WINDOW is minimized, the icon file
is displayed in the operating system´s desktop; when a WINDOW with the MDI attribute is minimized, the
icon file is displayed in the APPLICATION.

Example:
 !A Window with a minimize button, opened as the icon:
Win2 WINDOW,ICON(´MyIcon.ICO´),ICONIZE

 END

IMM (set immediate resize event notification)
IMM

The IMM attribute on a WINDOW or APPLICATION specifies immediate event generation whenever the
user moves or resizes the window. It generates one the following events before the action is executed:

EVENT:Move
EVENT:Size
EVENT:Restore
EVENT:Maximize
EVENT:Iconize

If the code that handles these events executes a CYCLE statement, the action is not performed. This
allows you to prevent the user from moving or resizing the window. Once the action has been performed,
one or more of the following events are generated:

EVENT:Moved
EVENT:Sized
EVENT:Restored
EVENT:Maximized
EVENT:Iconized

Multiple post-action events are generated because some of the actions have multiple results. For
example, if the user CLICKS on the maximize button, EVENT:Maximize is generated. If there is no CYCLE
statement executed as a result of this event, the action is performed, then EVENT:Maximized,
EVENT:Moved, and EVENT:Sized are generated. This occurs because the window has been maximized,
which also moves and resizes it at the same time.

Example:
Win2 WINDOW(´Some Window´),AT(58,11,174,166),MDI,DOUBLE,MAX,IMM

 LIST,AT(109,48,50,50),USE(?List),FROM(´Que´),IMM
 BUTTON(´&Ok´),AT(111,108,,),USE(?Ok)
 BUTTON(´&Cancel´),AT(111,130,,),USE(?Cancel)

 END
CODE
OPEN(Win2)
ACCEPT
CASE EVENT()
OF EVENT:Move !Prevent user from moving window
CYCLE

OF EVENT:Maximized !When Maximized
?List{PROP:Height} = 100 ! resize the list

OF EVENT:Restored !When Restored
?List{PROP:Height} = 50 ! resize the list

END
END

MASK (set pattern editing data entry)
MASK

The MASK attribute specifies pattern input editing mode of all controls in this window. This means that, as
the user types in data, each character is automatically validated against the control´s picture for proper
input (numbers only in numeric pictures, etc.). This forces the user to enter data in the format specified by
the control´s display picture.

If omitted, Windows free-input is allowed in the controls. Free-input means the user´s data is formatted to
the control´s picture only after entry. This allows users to enter data as they choose and it is automatically
formatted to the control´s picture after entry. If the user types in data in a format different from the control
´s picture, the libraries attempt to determine the format the user used, and convert the data to the control
´s display picture. For example, if the user types "January 1, 1995" into a control with a display picture of
@D1, the runtime library formats the user´s input to "1/1/95." This action occurs only after the user
completes data entry and moves to another control. If the runtime library cannot determine what format
the user used, it will not update the USE variable. It then beeps and leaves the user on the same control
with the data they entered, to allow them to try again.

Example:
 !A Window with pattern input editing enabled
Win2 WINDOW,MASK

 END

MAX (set maximize control)
MAX

The MAX attribute specifies a maximize control on the APPLICATION or WINDOW. The maximize control
appears in the top right corner of the window as a box containing either an upward pointing triangle, or an
upward pointing triangle above a downward pointing triangle (in Windows 3.1). When the user clicks the
mouse on it, an APPLICATION or non-MDI WINDOW expands to occupy the full screen, an MDI
WINDOW expands to occupy the entire APPLICATION. Once expanded, the maximize control appears as
an upward pointing triangle above a downward pointing triangle. Click the mouse on it again, and the
window returns to its previous size and the maximize control appears as an upward pointing triangle.

Example:
 !A Window with a maximize button:
Win2 WINDOW,MAX

 END

MAXIMIZE (set window open maximized)
MAXIMIZE

The MAXIMIZE attribute specifies the APPLICATION or WINDOW is opened maximized.When
maximized, an APPLICATION or non-MDI WINDOW expands to occupy the full screen, and an MDI
WINDOW expands to occupy the entire APPLICATION. Once expanded, the maximize control appears as
an upward pointing triangle above a downward pointing triangle (in Windows 3.1).

Example:
 !A Window with a maximize button, opened maximized:
Win2 WINDOW,MAX,MAXIMIZE

 END

MDI (set MDI child window)
MDI

The MDI attribute specifies a WINDOW structure that acts as a "child" window to the APPLICATION. MDI
"child" windows are clipped to the APPLICATION frame--they scroll only within the boundaries set by the
display size of the APPLICATION. MDI "child" windows are automatically moved when the APPLICATION
frame is moved, and can be totally concealed by minimizing the APPLICATION. A WINDOW with the MDI
attribute cannot be opened unless there is a currently open APPLICATION.

MDI "child" windows are modeless; the user may change to the top window of another execution thread,
within the same application or any other application running in Windows, at any time. An MDI "child"
window must not be on the same execution thread as the APPLICATION. Therefore, any MDI "child"
window called directly from the APPLICATION must be in a separate procedure so the START function
can be used to begin a new execution thread. Once started, multiple MDI "child" windows may be called
in the new thread.

A non-MDI WINDOW operates independently of any previously opened APPLICATION. It will, however,
disable an APPLICATION if it or any of its MDI "child" windows are on the same execution thread. This
makes a non-MDI window opened in an MDI program an "application modal" window which effectively
disables the application while the user has the window open (unless it is opened in its own execution
thread). It does not, however, prevent the user from changing to another application running under
Windows.

Example:
 !An MDI child Window:
Win2 WINDOW,MDI

 END

MODAL (set system modal window)
MODAL

The MODAL attribute specifies the WINDOW is "system modal." This means that no other window (in
the same or any other concurrent program) can receive focus while the MODAL window has focus--the
MODAL window has exclusive control of the computer. MODAL windows are usually used for error
messages, or messages which require immediate attention by the user, such as: "Please insert a disk in
drive A:."

A WINDOW without the MODAL attribute, may be "application-modal" or "modeless." An application-
modal window is a non-MDI window opened as the top window of an MDI execution thread. An
application-modal window restricts the user from moving to another execution thread in the same
application, but does not restrict them from changing to another Windows program.

A modeless window is an MDI "child" WINDOW (with the MDI attribute) without the MODAL attribute.
From a modeless window, The top window on other execution threads may be selected by the mouse,
keyboard, or menu commands. If so, the other window takes focus and becomes uppermost on the video
display. Any window not on the top of its execution thread may not be selected to receive focus, even
from a modeless window.

Example:
 Win2 WINDOW,MODAL!A system-modal Window

END

MSG (set window status bar message)
MSG(text)

MSG Specifies text to display in the status bar.

text A string constant containing the message to display in the status bar.
The MSG attribute on an APPLICATION or WINDOW structure specifies the text to display in the first
zone of the status bar when the control with focus has no MSG attribute of its own.

Example:
WinOne WINDOW,AT(0,0,160,400),MSG(´Enter Data´) !Default MSG to use

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(´Enter or Select´)
TEXT,AT(20,0,40,40),USE(E2) !Default MSG used
ENTRY(@S8),AT(100,200,20,20),USE(E2) !Default MSG used
CHECK(´&A´),AT(0,120,20,20),USE(?C7),MSG(´On or Off´)
OPTION(´Option 1´),USE(OptVar),MSG(´Pick One or Two´)
RADIO(´Radio 1´),AT(120,0,20,20),USE(?R1)
RADIO(´Radio 2´),AT(140,0,20,20),USE(?R2)

END
END

PALETTE (set number of hardware colors)
PALETTE(colors)

PALETTE Specifies the number of hardware colors displayed in the window.

colors An integer constant specifying the number of hardware colors displayed in the window.
The PALETTE attribute on a WINDOW specifies the number of hardware colors used in the window for
graphics display. This enforces a particular set of colors for the graphics.

Example:
WinOne WINDOW,AT(0,0,160,400),PALETTE(256) !Display 256-color

IMAGE,AT(120,120,20,20),USE(ImageField)
END

STATUS (set status bar)
STATUS([widths])

STATUS Specifies the presence of a status bar.

widths A list of integer constants (separated by commas) specifying the size of each zone in the
status bar. If omitted, the status bar has one zone the width of the window.

The STATUS attribute specifies the presence of a status bar at the base of the APPLICATION or
WINDOW. The status bar of an MDI WINDOW is always displayed at the bottom of the APPLICATION. A
WINDOW without the MDI attribute displays its status bar at the base of the WINDOW. If the STATUS
attribute is not present on the APPLICATION or WINDOW, there is no status bar.

The status bar may be divided into multiple zones specified by the widths parameters. The size of each
zone is specified in dialog units. A negative value indicates the zone is expandable, but has a minimum
width indicated by the parameter´s absolute value. If no widths parameters are specified, a single
expanding zone with no minimum width is created, which is equivalent to a STATUS(-1).

The first zone of the status bar is always used to display MSG attributes. The MSG attribute string is
displayed in the status bar as long as its control field still has input focus. A control or menu item without a
MSG attribute causes the status bar to revert to its former state (either blank or displaying the text
previously displayed in the zone).

Text may be placed in, or retrieved from, any zone of the status bar using the runtime property
assignment syntax. The text remains present until replaced. The status bar configuration can also be
changed dynamically by using the runtime property assignment syntax.

Example:
 !An APPLICATION with a one-zone status bar:
MainWin APPLICATION,STATUS

END
 !A WINDOW with a two-zone status bar:
Win1 WINDOW,STATUS(160,160)

 END

SYSTEM (set system menu)
SYSTEM

The SYSTEM attribute specifies the presence of a Windows system menu (also called the control menu)
on the APPLICATION or WINDOW. This menu contains standard Windows menu selections, such as:
Close, Minimize, Maximize (the window), and Switch To (another window). The actual selections available
on a given window depend upon the attributes set for that window.

Example:
 !An APPLICATION with a system menu:
MainWin APPLICATION,SYSTEM

END
 !A WINDOW with a system menu:
Win1 WINDOW,SYSTEM

 END

TOOLBOX (set toolbox window behavior)
TOOLBOX

The TOOLBOX attribute specifies a WINDOW that is "always on top." Neither the WINDOW nor its
controls retain input focus. This creates control behavior as if all the controls in the WINDOW had the
SKIP attribute. Normally, a WINDOW with the TOOLBOX attribute executes in its own execution thread to
provide a set of tools to the window with input focus. The MSG attributes of the controls in the window
appear in the status bar when the mouse cursor is positioned over the control.

Example:
 PROGRAM
MainWin APPLICATION(´My Application´)

MENUBAR
MENU(´File´),USE(?FileMenu)
ITEM(´E&xit´),USE(?MainExit),LAST

END
MENU(´Edit´),USE(?EditMenu)
ITEM(´Use Tools´),USE(?UseTools)

. . .
Pre:Field STRING(400)
UseToolsThread BYTE
ToolsThread BYTE
CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?MainExit
BREAK

OF ?UseTools
UseToolsThread = START(UseTools)

. .
UseTools PROCEDURE !A procedure that uses a toolbox
MDIChild WINDOW(´Use Tools Window´),MDI

 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(´&OK´),USE(?Exit),DEFAULT

 END
CODE
OPEN(MDIChild) !Open the window
DISPLAY ! and display it
ToolsThread = START(Tools) !Pop up the toolbox
ACCEPT
CASE EVENT() !Check for user-defined events
OF 401h ! posted by toolbox controls
Pre:Field += ´ ´ & FORMAT(TODAY(),@D1) ! append date to end of field

OF 402h
Pre:Field += ´ ´ & FORMAT(CLOCK(),@T1) ! append time to end of field

END
CASE ACCEPTED()
OF ?Exit
POSTEVENT(400h,,ToolsThread) !Signal to close tools window
BREAK

. .
CLOSE(MDIChild)

Tools PROCEDURE !The toolbox procedure
Win1 WINDOW(´Tools´),TOOLBOX

 BUTTON(´Date´),USE(?Button1)

 BUTTON(´Time´),USE(?Button2)
 END

CODE
OPEN(Win1)
ACCEPT
IF EVENT() = 400h THEN BREAK. !Check for close window signal
CASE ACCEPTED()
OF ?Button1
POSTEVENT(401h,,UseToolsThread) !Post datestamp signal

OF ?Button2
POSTEVENT(402h,,UseToolsThread) !Post timestamp signal

. .
CLOSE(Win1)

TIMER (set periodic event)
TIMER(period)

TIMER Specifies a periodic event.

period An integer constant or constant expression specifying the interval between timed events,
in hundredths of a second.

The TIMER attribute specifies generation of a periodic field-independent event whenever the time period
passes. EQUATES.CLW contains EVENT:Timer which equates the timer-generated event. The FOCUS()
function returns the number of the control that currently has focus at the time of the event.

Example:
RunClock PROCEDURE
ShowTime LONG
 !A WINDOW with a timed event occurring every second:
Win1 WINDOW,TIMER(100)

 STRING(@T4),USE(ShowTime)
 END

CODE
OPEN(Win1)
ShowTime = CLOCK()
ACCEPT
CASE EVENT()
OF EVENT:Timer
ShowTime = CLOCK()
DISPLAY

END
END
CLOSE(Win1)

MENUBAR and TOOLBAR Structures
MENUBAR (declare a pulldown menu)

TOOLBAR (declare a tool bar)

MENUBAR (declare a pulldown menu)
MENUBAR [, NOMERGE]
 [MENU()
 [ITEM()]
 [MENU()
 [ITEM()]
 END]
 END]
 [ITEM()]
END

MENUBAR Declares the menu for an APPLICATION or WINDOW.

NOMERGE Specifies menu merging behavior.

MENU A menu item with an associated drop box containing other menu selections.

ITEM A menu item for selection.
The MENUBAR structure declares the pulldown menu selections displayed for an APPLICATION or
WINDOW. MENUBAR must appear in the source code before any TOOLBAR or controls.

On an APPLICATION, the MENUBAR defines the Global menu selections for the program. These are
active and available on all MDI "child" windows (unless the window´s own MENUBAR structure has the
NOMERGE attribute). If the NOMERGE attribute is specified on the APPLICATION´s MENUBAR, then
the menu is a local menu displayed only when no MDI child windows are open and there is no global
menu.

On an MDI WINDOW, the MENUBAR defines menu selections that are automatically merged with the
Global menu. Both the Global and the window´s menu selections are then active while the MDI "child"
window has input focus. Once the window loses focus, its specific menu selections are removed from the
Global menu. If the NOMERGE attribute is specified on an MDI WINDOW´s MENUBAR, the menu
overwrites and replaces the Global menu.

On a non-MDI WINDOW, the MENUBAR is never merged with the Global menu. A MENUBAR on a non-
MDI WINDOW always appears in the WINDOW, not on any APPLICATION which may have been
previously opened.

Events generated by local menu items are sent to the WINDOW´s ACCEPT loop in the normal way.
Events generated by global menu items are sent to the active event loop of the thread which opened the
APPLICATION (in a normal multi-thread application this means the APPLICATION´s own ACCEPT loop).

Dynamic changes to menu items which reference the currently active window affect only the currently
displayed menu, even if global items are changed. Changes made to the Global menu items when the
APPLICATION is the current window, or which reference the global APPLICATION window affect the
global portions of all menus, whether already open or not.

When a WINDOW´s MENUBAR is merged into an APPLICATION´s MENUBAR, the global menu
selections appear first, followed by the local menu selections, unless the FIRST or LAST attributes are
specified on individual menu selections.

Example:
 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(´My Application´)

MENUBAR
MENU(´File´),USE(?FileMenu)
ITEM(´Open...´),USE(?OpenFile)

ITEM(´Close´),USE(?CloseFile),DISABLE
ITEM(´E&xit´),USE(?MainExit),LAST

END
MENU(´Edit´),USE(?EditMenu)
 ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE
END
MENU(´Help´),USE(?HelpMenu),LAST
ITEM(´Contents´),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(´Search for Help On...´),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(´How to Use Help´),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(´About MyApp...´),USE(?HelpAbout)

END
END

END
 !An MDI child window with menu for the window, merged into the
 ! application´s menubar:
MDIChild WINDOW(´Child One´),MDI

 MENUBAR
 MENU(´File´),USE(?FileMenu) !Merges into File menu
 ITEM(´Close´),USE(?CloseFile) !Supercedes main menu selection
 ITEM(´Pick...´),USE(?PickFile) !Added to menu selections

 END
 MENU(´Edit´),USE(?EditMenu) !Merges into Edit menu
 ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo) !Added to menu

!These items supercede main menu selections:
 ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

 END
 MENU(´Window´),STD(STD:WindowList),LAST
 ITEM(´Tile´),STD(STD:TileWindow)
 ITEM(´Cascade´),STD(STD:CascadeWindow)

 END
 END
 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(´&OK´),USE(?Exit),DEFAULT

 END
 !An MDI window with its own menu, overwriting the main menu:
MDIChild2 WINDOW(´Dialog Window´),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU(´File´),USE(?FileMenu)
ITEM(´Close´),USE(?CloseFile)

END
MENU(´Edit´),USE(?EditMenu)
ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END

TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
BUTTON(´&OK´),USE(?Exit),DEFAULT

END
 !A non-MDI window with its own menu:
NonMDI WINDOW(´Dialog Window´),SYSTEM,MAX,STATUS

 MENUBAR

 MENU(´File´),USE(?FileMenu)
 ITEM(´Close´),USE(?CloseFile)

 END
 MENU(´Edit´),USE(?EditMenu)
 ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
 ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

 END
 END
 TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
 BUTTON(´&OK´),USE(?Exit),DEFAULT

 END

TOOLBAR (declare a tool bar)
TOOLBAR [,AT()] [,CURSOR()] [,FONT()] [,NOMERGE]

controls
END

TOOLBAR Declares tools for an APPLICATION or WINDOW.

AT Specifies the initial size of the toolbar. If omitted, default values are selected by the
runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the TOOLBAR. If
omitted, the WINDOW or APPLICATION structure´s CURSOR attribute is used, else the
Windows default cursor is used.

FONT Specifies the default display font for the controls in the TOOLBAR.

NOMERGE Specifies tools merging behavior.

controls Control field declarations that define the available tools.
The TOOLBAR structure declares the tools displayed for an APPLICATION or WINDOW. On an
APPLICATION, the TOOLBAR defines the Global tools for the program. If the NOMERGE attribute is
specified on the APPLICATION´s TOOLBAR, the tools are local and are displayed only when no MDI child
windows are open; there are no global tools. Global tools are active and available on all MDI "child"
windows unless an MDI "child" window´s TOOLBAR structure has the NOMERGE attribute. If so, the
"child" window´s tools overwrite the Global tools.

On an MDI WINDOW, the TOOLBAR defines tools that are automatically merged with the Global toolbar.
Both the Global and the window´s tools are then active while the MDI "child" window has input focus.
Once the window loses focus, its specific tools are removed from the Global toolbar. If the NOMERGE
attribute is specified on an MDI WINDOW´s TOOLBAR, the tools overwrite and replace the Global
toolbar. On a non-MDI WINDOW, the TOOLBAR is never merged with the Global menu. A TOOLBAR on
a non-MDI WINDOW always appears in the WINDOW, not on any APPLICATION which may have been
previously opened.

Events generated by local tools are sent to the WINDOW´s ACCEPT loop in the normal way. Events
generated by global tools are sent to the active event loop of the thread which opened the APPLICATION.
In a normal multi-thread application, this means the APPLICATION´s own ACCEPT loop.

TOOLBAR controls generate events in the normal manner. However, they do not keep the focus, and
cannot be operated from the keyboard unless accelerator keys are provided. As soon as user interaction
with a TOOLBAR control is done, focus returns to the window and local control which previously had it.

Dynamic changes to tools which reference the currently active window affect only the currently displayed
toolbar, even if global tools are changed. Changes made to the Global toolbar when the APPLICATION is
the current window, or which reference the global APPLICATION´s window affect the global portions of all
toolbars, whether already open or not.

When a WINDOW´s TOOLBAR is merged into an APPLICATION´s TOOLBAR, the global tools appear
first, followed by the local tools. The toolbars are merged so that the fields in the WINDOW´s toolbar
begin just right of the position specified by the value of the width parameter of the APPLICATION
TOOLBAR´s AT attribute. The height of the displayed toolbar is the maximum height of the "tallest" tool,
whether global or local. If any part of a control falls below the bottom, the height is increased accordingly.

Example:
 !An MDI application frame window containing the
 ! main menu and toolbar for the application:

MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(´E&xit´),USE(?MainExit)

END
 TOOLBAR
 BUTTON(´Exit´),USE(?MainExitButton)
 END

 END
 !An MDI child window with toolbar for the window, merged into the
 ! application´s toolbar:
MDIChildWINDOW(´Child One´),MDI

TOOLBAR
BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
BUTTON(´Copy´),USE(?CopyButton),STD(STD:Copy)
BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)

 END
 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(´&OK´),USE(?Exit),DEFAULT
 END

 !An MDI window with its own toolbar, overwriting the main toolbar:
MDIChild2 WINDOW(´Dialog Window´),MDI,SYSTEM,MAX,STATUS

TOOLBAR,NOMERGE
 BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
 BUTTON(´Copy´),USE(?CopyButton),STD(STD:Copy)
 BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)
END

 TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
BUTTON(´&OK´),USE(?Exit),DEFAULT

END
 !A non-MDI window with its own toolbar:
NonMDI WINDOW(´Dialog Window´),SYSTEM,MAX,STATUS

TOOLBAR
BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
BUTTON(´Copy´),USE(?CopyButton),STD(STD:Copy)
BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)

 END
 TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
 BUTTON(´&OK´),USE(?Exit),DEFAULT
 END

MENUBAR and TOOLBAR Attributes
CURSOR (set toolbar mouse cursor type)

FONT (set toolbar default font)

NOMERGE (set merging behavior)

CURSOR (set toolbar mouse cursor type)
CURSOR(file)

CURSOR Specifies a mouse cursor to display for the TOOLBAR.

file A string constant containing the name of a .CUR file, or an EQUATE naming a Windows-
standard mouse cursor. The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the mouse is positioned over the
TOOLBAR. This cursor is inherited by the controls in the toolbar unless overridden.

EQUATE statements for the Windows-standard mouse cursors are contained in the EQUATES.CLW file.
The following list is a representative sample of these (see EQUATES.CLW for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital "I" like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow
 CURSOR:DragWE Double-headed horizontal arrow

Example:
 !Toolbar with large plus sign cursor
WinOne WINDOW

 TOOLBAR,CURSOR(´CURSOR:Cross´)
 BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
 BUTTON(´Copy´),USE(?CopyButton),STD(STD:Copy)
 BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)
 END

 END

FONT (set toolbar default font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default display font for the TOOLBAR.

typeface A string constant containing the name of the font. If omitted, the system font is used.

size An integer constant containing the size (in points) of the font. If omitted, the system
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, black is used.

style An integer constant or constant expression or EQUATE specifying the strike weight and
style of the font. If omitted, the weight is normal.

The FONT attribute on a TOOLBAR structure specifies the default display font for all controls in the
TOOLBAR that do not have a FONT attribute. The typeface may name any font registered in the Windows
system. The EQUATES.CLW file contains EQUATE values for standard style values. A style on the range
zero (0) to one thousand (1000) specifies the strike weight of the font. You may add to that values that
indicate italic, underline, or strikeout text. The following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE(100)
FONT:regular EQUATE(400)
FONT:bold EQUATE(700)
FONT:fixed EQUATE (0800H)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

Example:
Win1 WINDOW !A toolbar using 14 point Times New Roman

 TOOLBAR,FONT(´Times New Roman´,14,00H)
BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)

 BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)
 END
END

Win2 WINDOW !14 point Times New Roman, Bold and Italic
 TOOLBAR,FONT(´Times New Roman´,14,00H,FONT:italic+FONT:bold)
 BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
 BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)
 END

 END

NOMERGE (set merging behavior)
NOMERGE

The NOMERGE attribute indicates that the MENUBAR or TOOLBAR on a WINDOW should not be
merged with the Global menu or toolbar.

The NOMERGE attribute on an APPLICATION´s MENUBAR indicates that the menu is local and to be
displayed only when no MDI "child" windows are open and that there is no Global menu. The NOMERGE
attribute on an APPLICATION´s TOOLBAR indicates that the tools are local and to be displayed only
when no MDI "child" windows are open and that there are no Global tools.

Without the NOMERGE attribute, an MDI WINDOW´s menu and toolbar are automatically merged with
the global menu and toolbar, and then displayed in the APPLICATION menu and toolbar. When
NOMERGE is specified, the WINDOW´s menu and toolbar overwrite the Global menu and toolbar. The
menu and toolbar displayed when the WINDOW has focus are only the WINDOW´s own menu and
toolbar. However, they are still displayed on the APPLICATION.

A MENUBAR or TOOLBAR specified in a non-MDI WINDOW is never merged with the Global menu or
toolbar--they appear in the WINDOW.

Example:
 !An MDI application frame window with local-only menu and toolbar:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS

MENUBAR,NOMERGE
ITEM(´E&xit´),USE(?MainExit)

END
 TOOLBAR,NOMERGE

BUTTON(´Exit´),USE(?MainExitButton)
END

END
 !MDI window with its own menu and toolbar, overwriting the application´s:
MDIChildWINDOW(´Dialog Window´),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU(´Edit´),USE(?EditMenu)
ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END

 TOOLBAR,NOMERGE
 BUTTON(´Cut´),USE(?CutButton),STD(STD:Cut)
 BUTTON(´Copy´),USE(?CopyButton),STD(STD:Copy)
 BUTTON(´Paste´),USE(?PasteButton),STD(STD:Paste)
END

 TEXT,HVSCROLL,USE(Pre:Field),MSG(´Enter some text here´)
 BUTTON(´&OK´),USE(?Exit),DEFAULT
 END

MENUBAR Controls
MENU (declare a menu box)

ITEM (declare a menu item)

MENU (declare a menu box)
MENU(text) [,USE()] [,KEY()] [,MSG()] [,HLP()] [,STD()] [,RIGHT] [,DISABLE]

[, | FIRST |]
| LAST |

MENU Declares a menu box within a MENUBAR.

text A string constant containing the display text for the menu selection.

USE A field equate label to reference the menu selection in executable code.

KEY Specifies an integer constant or keycode equate that immediately opens the menu.

MSG Specifies a string constant containing the text to display in the status bar when the menu
is pulled down.

HLP Specifies a string constant containing the help system identifier for the menu.

STD Specifies an integer constant or equate that identifies a "Windows standard behavior" for
the menu.

RIGHT Specifies the MENU appears at the far right of the action bar.

FIRST Specifies the MENU appears at the left or top of the menu when merged.

LAST Specifies the MENU appears at the right or bottom of the menu when merged.

DISABLE Specifies the menu appears dimmed when the WINDOW or APPLICATION is first
opened.

MENU declares a drop-down or cascading menu box structure within a MENUBAR structure. When the
MENU is selected, the MENU and/or ITEM statements within the structure are displayed in a menu box. A
MENU is not required to have any MENUs or ITEMs in it. A menu box usually appears (drops down)
immediately below its text on the menu bar (or above, if there is no room below). When selected with
ENTER or RIGHT ARROW, any subsequent menu drop-box appears (cascades) immediately to the right of
the MENU text in the preceding menu box (or left, if there is no room to the right). LEFT ARROW backs up
to the preceding menu. The KEY attribute designates a separate accelerator key for the field. This may be
any valid Clarion keycode to immediately pull down the MENU.

The text string may contain an ampersand (&) which designates the following character as the
accelerator "hot" key which is automatically underlined. If the MENU is on the menu bar, pressing the Alt
key together with the accelerator key highlights and displays the MENU. If the MENU is within another
MENU, pressing the accelerator key, alone, highlights and executes the MENU. If there is no ampersand
in the text, the first non-blank character in the text string is the accelerator key for the MENU, but it will not
be underlined. To include an ampersand as part of the text, place two ampersands together (&&) in the
text string and only one will display.

Example:
 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(´File´),USE(?FileMenu),FIRST
ITEM(´Open...´),USE(?OpenFile)
ITEM(´Close´),USE(?CloseFile),DISABLE
ITEM(´E&xit´),USE(?MainExit)

END
 MENU(´Edit´),USE(?EditMenu),KEY(CtrlE),HLP(´EditMenuHelp´)
 ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE

 ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE
END

 MENU(´Window´),STD(STD:WindowList),MSG(´Arrange or Select Window´),LAST
ITEM(´Tile´),STD(STD:TileWindow)
ITEM(´Cascade´),STD(STD:CascadeWindow)
ITEM(´Arrange Icons´),STD(STD:ArrangeIcons)

END
 MENU(´Help´),USE(?HelpMenu),LAST,RIGHT

ITEM(´Contents´),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(´Search for Help On...´),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(´How to Use Help´),USE(?HelpOnHelp),STD(STD:HelpOnHelp)

 ITEM(´About MyApp...´),USE(?HelpAbout)
END

END
END

ITEM (declare a menu item)
ITEM(text) [,USE()] [,KEY()] [,MSG()] [,HLP()] [,STD()] [,CHECK] [,DISABLE]

[, | FIRST |] [,SEPARATOR]
| LAST |

ITEM Declares a menu choice within a MENUBAR or MENU structure.

text A string constant containing the display text for the menu item.

USE A field equate label to reference the menu item in executable code, or the variable used
with CHECK.

KEY Specifies an integer constant or keycode equate that immediately executes the menu item.

MSG Specifies a string constant containing the text to display in the status bar when the menu
item is highlighted.

HLP Specifies a string constant containing the help system identifier for the menu item.

STD Specifies an integer constant or equate that identifies a "Windows standard action" the
menu item executes.

CHECK Specifies an on/off ITEM.

DISABLE Specifies the menu item appears dimmed when the WINDOW or APPLICATION is first
opened.

FIRST Specifies the ITEM appears at the top of the menu when menus are merged.

LAST Specifies the ITEM appears at the bottom of the menu when menus are merged.

SEPARATOR Specifies the ITEM displays a solid horizontal line across the menu box at run-time to
delimit groups of menu selections. No other attributes may be specified with
SEPARATOR.

ITEM declares a menu choice within a MENUBAR or MENU structure. The text string may contain an
ampersand (&) which designates the following character as an accelerator "hot" key which is
automatically underlined. If the ITEM is on the menu bar, pressing the Alt key together with the
accelerator key highlights and executes the ITEM. If the ITEM is in a MENU, pressing the accelerator key,
alone, when the menu is displayed, highlights and executes the ITEM. If there is no ampersand in the
text, the first non-blank character in the text string is the accelerator key for the ITEM, which will not be
underlined. To include an ampersand as part of the text, place two ampersands together (&&) in the text
string and only one will display.

The KEY attribute designates a separate "hot" key for the field. This may be any valid Clarion keycode to
immediately execute the ITEM´s action.

A cursor bar highlights individual ITEMs within the MENU structure. Each ITEM is usually associated with
some code to be executed upon selection of that ITEM, unless the STD attribute is present. The STD
atribute specifies a standard Windows action the menu item performs, such as Tile or Cascade the
windows.

The SEPARATOR attribute creates an ITEM which serves only to delimit groups of menus selections so it
should not have a text parameter, nor any other attributes. It creates a solid horizontal line across the
menu box.

An ITEM that is not within a MENU structure is placed on the menu bar. This creates a menu bar
selection which has no related drop-down menu. The normal convention to indicate this to the user is to
terminate the text displayed for the item with an exclamation point (!). For example, the text for the ITEM

might contain ´Exit!´ to alert the user to the executable nature of the menu choice.

Example:
 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(´E&xit!´),USE(?MainExit),FIRST
MENU(´File´),USE(?FileMenu),FIRST
ITEM(´Open...´),USE(?OpenFile) ,HLP(´OpenFileHelp´) ,FIRST
ITEM(´Close´),USE(?CloseFile),HLP(´CloseFileHelp´),DISABLE
ITEM(´Auto Increment´),USE(ToggleVar),CHECK

END
 MENU(´Edit´),USE(?EditMenu),KEY(CtrlE),HLP(´EditMenuHelp´)

ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE
ITEM,SEPARATOR

 ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
 ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
 ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE
END

 MENU(´Window´),STD(STD:WindowList),MSG(´Arrange or Select Window´),LAST
 ITEM(´Tile´),STD(STD:TileWindow)
 ITEM(´Cascade´),STD(STD:CascadeWindow)
 ITEM(´Arrange Icons´),STD(STD:ArrangeIcons)
 ITEM,SEPARATOR

 END
MENU(´Help´),USE(?HelpMenu),LAST,RIGHT
 ITEM(´Contents´),USE(?HelpContents),STD(STD:HelpIndex)
 ITEM(´Search for Help On...´),USE(?HelpSearch),STD(STD:HelpSearch)
 ITEM(´How to Use Help´),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
 ITEM(´About MyApp...´),USE(?HelpAbout),MSG(´Copyright Info´),LAST

 END
 END

 END

TOOLBAR and WINDOW Control Fields
BOX (declare a window box control)

BUTTON (declare a pushbutton control)

CHECK (declare a window checkbox control)

COMBO (declare an entry/list control)

CUSTOM (declare a window .VBX custom control)

ELLIPSE (declare a window ellipse control)

ENTRY (declare a data entry control)

GROUP (declare a group of window controls)

IMAGE (declare a window graphic image control)

LINE (declare a window line control)

LIST (declare a window list control)

OPTION (declare a group of window RADIO controls)

PROMPT (declare a prompt control)

RADIO (declare a window radio button control)

REGION (declare a window region control)

SPIN (declare a spinning list control)

STRING (declare a window string control)

TEXT (declare a multi-line data entry control)

BOX (declare a window box control)
BOX ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FILL()] [,ROUND] [,FULL] [,SCROLL] [,HIDE]

BOX Places a rectangular box on the window.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW (or APPLICATION) is first
opened.

COLOR Specifies the color for the border of the control. If omitted, the border is black.

FILL Specifies the fill color for the control. If omitted, the box is not filled with color.

ROUND Specifies the box corners are rounded. If omitted, the corners are square.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

The BOX control places a rectangular box on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute. This control cannot receive input focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 BOX,FILL(COLOR:MENU),FULL !Filled, full screen, black border
 BOX,AT(0,0,20,20) !Unfilled, black border
 BOX,AT(0,20,20,20),USE(?Box1),DISABLE

!Unfilled, black border, dimmed
 BOX,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
 BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
 BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

 !Unfilled, active border color border
 BOX,AT(480,180,20,20),SCROLL !Scrolls with screen

 END

BUTTON (declare a pushbutton control)
BUTTON(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

[,STD()] [,FONT()] [,ICON()] [,DEFAULT] [,IMM][,REQ] [,FULL] [,SCROLL] [,ALRT()]
[,HIDE] [DROPID()]

BUTTON Places a pushbutton on the WINDOW or TOOLBAR.

text A string constant containing the text to display on the button. This may contain an
ampersand (&) to indicate the "hot" letter (accelerator key) for the button.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to and
presses the button.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control does not receive input focus and may only be accessed with the
mouse or accelerator key.

STD Specifies an integer constant or equate that identifies a "Windows standard action" the
control executes.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the button face.

DEFAULT Specifies the BUTTON is automatically pressed when the user presses the ENTER key.

IMM Specifies the control generates an event when the left mouse button is pressed, continuing
as long as it is depressed. If omitted, an event is generated only when the left mouse
button is pressed and released on the control.

REQ Specifies that when the BUTTON is pressed, the runtime library automatically checks all
ENTRY controls in the same WINDOW with the REQ attribute to ensure they contain
data other than blanks or zeroes.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

The BUTTON control places a pushbutton on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute.

A BUTTON with the IMM attribute generates an event as soon as the left mouse button is pressed on the
control and continues to do so until it is released. This allows the BUTTON control´s executable code to
execute continuously until the mouse button is released. A BUTTON without the IMM attribute generates
an event only when the left mouse button is pressed and released on the control.

A BUTTON with the REQ attribute is a "required control fields check" button. REQ attributes of ENTRY or
TEXT control fields are not checked until a BUTTON with the REQ attribute is pressed or the
INCOMPLETE function is called. Focus is given to the first required control which is blank or zero.

A BUTTON with an ICON attribute displays the icon on the button face in place of its text parameter. The
text parameter then serves only for accelerator "hot" key definition.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been pressed by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

BUTTON(´1´),AT(0,0,20,20),USE(?B1)
 BUTTON(´2´),AT(20,0,20,20),USE(?B2),KEY(F10Key)
 BUTTON(´3´),AT(40,0,20,20),USE(?B3),MSG(´Button 3´)
 BUTTON(´4´),AT(60,0,20,20),USE(?B4),HLP(´Button4Help´)
 BUTTON(´5´),AT(80,0,20,20),USE(?B5),STD(STD:Cut)
 BUTTON(´6´),AT(100,0,20,20),USE(?B6),FONT(´Arial´,12)
 BUTTON(´7´),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
 BUTTON(´8´),AT(140,0,20,20),USE(?B8),DEFAULT
 BUTTON(´9´),AT(160,0,20,20),USE(?B9),IMM
 BUTTON(´10´),AT(180,0,20,20),USE(?B10),CURSOR(CURSOR:Wait)
 BUTTON(´11´),AT(200,0,20,20),USE(?B11),REQ
 BUTTON(´12´),AT(220,0,20,20),USE(?B12),ALRT(F10Key)
 BUTTON(´13´),AT(240,0,20,20),USE(?B13),SCROLL

 END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?B1
!Perform some action

END
END

CHECK (declare a window checkbox control)
CHECK(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

[,FONT()] [,ICON()] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [DROPID()]
[, | LEFT |]

| RIGHT |

CHECK Places a check box on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the check box. This may contain an
ampersand (&) to indicate the "hot" letter for the check box.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of a numeric variable to receive the value of the check box, zero (0 = OFF) or
one (1 = ON).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to and
toggles the box.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control does not receive input focus and may only be accessed with the
mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the button face of a "latching"
pushbutton.

LEFT Specifies that the text appears to the left of the check box.

RIGHT Specifies that the text appears to the right of the check box (the default position).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.
The CHECK control places a check box on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute.

A CHECK with an ICON attribute appears as a "latched" button with the icon displayed on the button face.
When the button appears "up" the CHECK is off and the USE variable receives a zero (0); when it

appears "down" the CHECK is on and the USE variable receives a one (1).

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been toggled by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

CHECK(´1´),AT(0,0,20,20),USE(C1)
 CHECK(´2´),AT(0,20,20,20),USE(C2),KEY(F10Key)
 CHECK(´3´),AT(0,40,20,20),USE(C3),MSG(´Button 3´)
 CHECK(´4´),AT(0,60,20,20),USE(C4),HLP(´Check4Help´)
 CHECK(´5´),AT(20,80,20,20),USE(C5),LEFT
 CHECK(´6´),AT(0,100,20,20),USE(C6),FONT(´Arial´,12)
 CHECK(´7´),AT(0,120,20,20),USE(C7),ICON(ICON:Question)
 CHECK(´8´),AT(0,140,20,20),USE(C8),DEFAULT
 CHECK(´9´),AT(0,160,20,20),USE(C9),IMM
 CHECK(´10´),AT(0,180,20,20),USE(C10),CURSOR(CURSOR:Wait)
 CHECK(´11´),AT(0,200,20,20),USE(C11),ALRT(F10Key),DISABLE

 END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
IF C1 = 1
ENABLE(?C11)

ELSE
DISABLE(?C11)

END
END

END

COMBO (declare an entry/list control)
COMBO(picture) ,FROM() ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()]

[,HLP()] [,SKIP] [,FONT()] [,FORMAT()] [,DROP] [,COLUMN] [,VCR] [,FULL]
[,SCROLL] [,ALRT()] [,HIDE] [,READONLY] [,REQ] [,NOBAR] [DROPID()]
[, | MARK() |][, | HSCROLL |][, | LEFT |][, | INS |][, | UPR |]

| IMM | | VSCROLL | | RIGHT | | OVR | | CAP |
| HVSCROLL | | CENTER |

| DECIMAL |

COMBO Places a data entry field with an associated list of data items on the WINDOW or
TOOLBAR.

picture A display picture token that specifies the input format for the data entered into the
control.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the initial size and location of the control. If omitted, the runtime library
chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code or the label of the variable
that receives the value selected by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control receives input focus to enter text only with the mouse or accelerator
key and does not retain focus.

FONT Specifies the display font for the control.

FORMAT Specifies the display format of the data.

DROP Specifies a drop-down list box and the number of elements the drop-down portion
contains.

COLUMN Specifies a field-by-field highlight bar on multi-column list boxes.

VCR Specifies a VCR-type control to the left of the horizontal scroll bar (if present).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry.

NOBAR Specifies the highlight bar is displayed only when the LIST has focus.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

REQ Specifies the control may not be left blank or zero.

MARK Specifies multiple item selection mode.

IMM Specifies generation of an event whenever the user presses any key.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the list box when any
portion of the data item lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added to the list box when any data
items lie vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the list
box when any portion of the data items lies outside the visible area.

LEFT Specifies that the data is left justified within the list.

RIGHT Specifies that the data is right justified within the list.

CENTER Specifies that the data is centered within the list.

DECIMAL Specifies that the data is aligned on the decimal point within the list.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on windows with the MASK
attribute).

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized) entry.

The COMBO control places a data entry field with an associated list of data items on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute (a combination of an ENTRY and LIST
control). The user may type in data or select an item from the list. The entered data is not automatically
validated against the entries in the list. The data entry portion of the COMBO acts as an "incremental
locator" to the list--as the user types each character, the highlight bar is positioned to the closest matching
entry.

A COMBO with the DROP attribute displays only the currently selected data item on screen until the
control has focus and the user presses the down arrow key, or CLICKS ON the the icon to the right of the
displayed data item. When either of these occurs, the selection list appears ("drops down") to allow the
user to select an item.

A COMBO with the IMM attribute generates an event every time the user moves the highlight bar to
another selection, or pressed any key that causes the displayed entries to scroll. This allows an
opportunity for the source code to re-fill the display QUEUE, or get the currently highlighted record to
display other fields from the record. A COMBO with the VCR attribute has scroll control buttons like a
Video Cassette Recorder to the left of the horizontal scroll bar (if there is one). These buttons allow the
user to use the mouse to scroll through the list.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected an entry.

EVENT:NewSelection
The current selection in the list has changed (highlight has moved up or down).

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

 A COMBO with the IMM attribute also generates the following events:

EVENT:ScrollUp The highlight bar has attempted to move off the top of the LIST.

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom of the LIST.

EVENT:PageUp The user pressed PgUp.

EVENT:PageDown
The user pressed PgDn.

EVENT:ScrollTop The user pressed Ctrl-PgUp.

EVENT:ScrollBottom
The user pressed Ctrl-PgDn.

EVENT:PreAlertKey
The user pressed a printable character or an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character or an ALRT attribute hot key.

EVENT:Locate The user pressed the locator VCR button.
Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

COMBO(@S8),AT(0,0,20,20),USE(C1),FROM(Que)
 COMBO(@S8),AT(20,0,20,20),USE(C2),FROM(Que),KEY(F10Key)
 COMBO(@S8),AT(40,0,20,20),USE(C3),FROM(Que),MSG(´Button 3´)
 COMBO(@S8),AT(60,0,20,20),USE(C4),FROM(Que),HLP(´Check4Help´)
 COMBO(@S8),AT(80,0,20,20),USE(C5),FROM(Q) |

 ,FORMAT(´5C~List~15L~Box~´),COLUMN
 COMBO(@S8),AT(100,0,20,20),USE(C6),FROM(Que),FONT(´Arial´,12)
 COMBO(@S8),AT(120,0,20,20),USE(C7),FROM(Que),DROP(8)
 COMBO(@S8),AT(140,0,20,20),USE(C8),FROM(Que),HVSCROLL,VCR
 COMBO(@S8),AT(160,0,20,20),USE(C9),FROM(Que),IMM
 COMBO(@S8),AT(180,0,20,20),USE(C10),FROM(Que),CURSOR(CURSOR:Wait)
 COMBO(@S8),AT(200,0,20,20),USE(C11),FROM(Que),ALRT(F10Key)
 COMBO(@S8),AT(220,0,20,20),USE(C12),FROM(Que),LEFT
 COMBO(@S8),AT(240,0,20,20),USE(C13),FROM(Que),RIGHT
 COMBO(@S8),AT(260,0,20,20),USE(C14),FROM(Que),CENTER
 COMBO(@N8.2),AT(280,0,20,20),USE(C15),FROM(Que),DECIMAL
END

CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
LOOP X# = 1 to RECORDS(Que) !Check for user´s entry in Que
GET(Que,X#)
IF C1 = Que THEN BREAK. !Break loop if present

END
IF X# > RECORDS(Que) !Check for BREAK

Que = C1 ! and add the entry
ADD(Que)

END
END

END

See Also:

LIST

ENTRY

CUSTOM (declare a window .VBX custom control)
CUSTOM(text) ,AT() [,CLASS()] [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()]

[,HLP()] [,SKIP] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [,FONT()] [DROPID()]
[,property(value)]

CUSTOM Places a Visual Basic .VBX control on the WINDOW or TOOLBAR.

text A string constant containing the title for the control.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the control.

CLASS Specifies the .VBX filename and type of control.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of a variable to receive the value of the control.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control does not receive input focus and may only be accessed with the
mouse or accelerator key.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

FONT Specifies the display font for the control.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

property A string constant containing the name of a custom property setting for the control.

value A string constant containing the property value number or EQUATE for the property.
The CUSTOM control places a Visual Basic .VBX control on the WINDOW (or TOOLBAR) at the position
and size specified by its AT attribute.

The property attribute allows you to specify any additional property settings the .VBX control may require.
These are properties that need to be set for the .VBX control to properly function, and are not standard
Clarion properties (such as AT, CURSOR, or USE). The custom control should only receive values for
these properties that are defined for that control. Valid properties and values for those properties would be
defined in the custom control´s documentation. You may have multiple property attributes on a single
CUSTOM control.

Events Generated:

EVENT:VBXevent A VBX-specific event occurred. Interrogate the PROP:VBXEvent and
PROP:VBXEventArg properties for the event.

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed using the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 CUSTOM,AT(0,0,120,320),USE(C1), |
CLASS(´graph.vbx´,´graph´),´graphstyle´(´2´)

 END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
!Perform some action

END
END

ELLIPSE (declare a window ellipse control)
ELLIPSE ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FILL()] [,FULL] [,SCROLL] [,HIDE]

ELLIPSE Places a "circular" figure on the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

COLOR Specifies the color for the border of the ellipse. If omitted, the ellipse has a black border.

FILL Specifies the fill color for the control. If omitted, the ellipse is not filled with color.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

The ELLIPSE control places a "circular" figure on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute. The ellipse is drawn inside a "bounding box" defined by the x, y, width, and
height parameters of it sAT attribute. The x and y parameters specify the starting point, and the width and
height parameters specify the horizontal and vertical size of the "bounding box." This control cannot
receive input focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 ELLIPSE,FILL(COLOR:MENU),FULL !Filled, full screen, black border
 ELLIPSE,AT(0,0,20,20) !Unfilled, black border
 ELLIPSE,AT(0,20,20,20),USE(?Box1),DISABLE !Dimmed
 ELLIPSE,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
 ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
 ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDeR)

 !Unfilled, active border color border
 ELLIPSE,AT(480,180,20,20),SCROLL !Scrolls with screen

 END

ENTRY (declare a data entry control)
ENTRY(picture) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

[,FONT()] [,IMM] [,PASSWORD] [,REQ] [,FULL] [,SCROLL][,ALRT()] [,HIDE]
[,READONLY] [DROPID()] [, | INS |] [, | CAP |] [, | LEFT |]

| OVR | | UPR | | RIGHT |
| CENTER |
| DECIMAL |

ENTRY Places a data entry field on the WINDOW or TOOLBAR.

picture A display picture token that specifies the input format for the data entered into the
control.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of the variable that receives the value entered into the control by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control receives input focus to enter text only with the mouse or accelerator
key and does not retain focus.

FONT Specifies the display font for the control.

IMM Specifies immediate event generation whenever the user presses any key.

PASSWORD Specifies non-display of the data entered (password mode).

REQ Specifies the control may not be left blank or zero.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on windows with the MASK
attribute).

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word

Capitalized) entry.

LEFT Specifies that the data entered is left justified within the area specified by the AT
attribute.

RIGHT Specifies that the data entered is right justified within the area specified by the AT
attribute.

CENTER Specifies that the data entered is centered within the area specified by the AT attribute.

DECIMAL Specifies that the data entered is aligned on the decimal point within the area specified by
the AT attribute.

The ENTRY control places a data entry field on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute. Data entered is formatted according to the picture, and the variable specified
in the USE attribute receives the data entered when the user has completed data entry and moves on to
another control. Data entry scrolls horizontally to allow the user to enter data to the full length of the
variable. Therefore, the right and left arrow keys move within the data in the ENTRY control.

An ENTRY control with the PASSWORD attribute displays asterisks when the user enters data. This is
useful for password-type variables. An ENTRY control with the SKIP attribute is used for seldom-used
data entry. Display-only data should be declared with the READONLY attribute.

The MASK attribute on a WINDOW specifies pattern input editing mode of all controls in the window. This
means that, as the user types in data, each character is automatically validated against the control´s
picture for proper input (numbers only in numeric pictures, etc.). This forces the user to enter data in the
format specified by the control´s display picture. If omitted, Windows free-input is allowed in the controls.
This is Windows´ default data entry mode. Free-input means the user´s data is formatted to the control´s
picture only after entry. This allows users to enter data as they choose and it is automatically formatted to
the control´s picture after entry. If the user types in data in a format different from the control´s picture, the
libraries attempt to determine the format the user used, and convert the data to the control´s display
picture. For example, if the user types "January 1, 1995" into a control with a display picture of @D1, the
runtime library formats the user´s input to "1/1/95." This action occurs only after the user completes data
entry and moves to another control. If the runtime library cannot determine what format the user used, it
will not update the USE variable. It then beeps and leaves the user on the same control with the data they
entered, to allow them to try again.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

 An ENTRY with the IMM attribute also generates the following events:

EVENT:NewSelection
The user has pressed a key.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

ENTRY(@S8),AT(0,0,20,20),USE(E1)
 ENTRY(@S8),AT(20,0,20,20),USE(E2),KEY(F10Key)
 ENTRY(@S8),AT(40,0,20,20),USE(E3),MSG(´Button 3´)
 ENTRY(@S8),AT(60,0,20,20),USE(E4),HLP(´Entry4Help´)
 ENTRY(@S8),AT(80,0,20,20),USE(E5),DISABLE
 ENTRY(@S8),AT(100,0,20,20),USE(E6),FONT(´Arial´,12)
 ENTRY(@S8),AT(120,0,20,20),USE(E7),REQ,INS,CAP
 ENTRY(@S8),AT(140,0,20,20),USE(E8),SCROLL,OVR,UPR
 ENTRY(@S8),AT(160,0,20,20),USE(E9),IMM
 ENTRY(@S8),AT(180,0,20,20),USE(E10),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(200,0,20,20),USE(E11),ALRT(F10Key)
 ENTRY(@S8),AT(220,0,20,20),USE(E12),LEFT
 ENTRY(@S8),AT(240,0,20,20),USE(E13),RIGHT
 ENTRY(@S8),AT(260,0,20,20),USE(E14),CENTER
 ENTRY(@N8.2),AT(280,0,20,20),USE(E15),DECIMAL

 END

GROUP (declare a group of window controls)
GROUP(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,FONT()]

[,BOXED] [,FULL] [,SCROLL] [,HIDE] [,ALRT()] [,SKIP]
 controls
END

GROUP Declares a group of controls that may be referenced as one entity.

text A string constant containing the prompt for the group of controls. This may contain an
ampersand (&) to indicate the "hot" letter for the prompt. The text is displayed on screen
only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control (or any
control within the GROUP). If omitted, the window´s CURSOR attribute is used, else the
Windows default cursor is used.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the GROUP control and the controls in the GROUP appear dimmed when the
WINDOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the first
control in the GROUP.

MSG Specifies a string constant containing the default text to display in the status bar when
any control in the GROUP has focus.

HLP Specifies a string constant containing the default help system identifier for any control in
the GROUP.

FONT Specifies the display font for the control and the default for all the controls in the
GROUP.

BOXED Specifies a single-track border around the group of controls with the text at the top of the
border.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the GROUP control and the controls in the GROUP scroll with the window.

HIDE Specifies the GROUP control and the controls in the GROUP do not appear when the
WINDOW or APPLICATION is first opened. UNHIDE must be used to display them.

ALRT Specifies "hot" keys active for the controls in the GROUP.

SKIP Specifies the controls in the GROUP do not receive input focus and may only be accessed
with the mouse or accelerator key.

controls Control declarations that may be referenced as the GROUP.
The GROUP control declares a group of controls that may be referenced as one entity. GROUP allows
the user to use the cursor keys instead of the TAB key to move between the controls in the GROUP, and
provides default MSG and HLP attributes for all controls in the GROUP.

This control cannot receive input focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 GROUP(´Group 1´),USE(?G1),KEY(F10Key)
 ENTRY(@S8),AT(0,0,20,20),USE(?E1)
 ENTRY(@S8),AT(20,0,20,20),USE(?E2)

 END
 GROUP(´Group 2´),USE(?G2),MSG(´Group 2´)
 ENTRY(@S8),AT(40,0,20,20),USE(?E3)
 ENTRY(@S8),AT(60,0,20,20),USE(?E4)

 END
 GROUP(´Group 3´),USE(?G3),AT(80,0,20,20),BOXED
 ENTRY(@S8),AT(80,0,20,20),USE(?E5)
 ENTRY(@S8),AT(100,0,20,20),USE(?E6)

 END
 GROUP(´Group 4´),USE(?G4),FONT(´Arial´,12)
 ENTRY(@S8),AT(120,0,20,20),USE(?E7)
 ENTRY(@S8),AT(140,0,20,20),USE(?E8)

 END
 GROUP(´Group 5´),USE(?G5),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(160,0,20,20),USE(?E9)
 ENTRY(@S8),AT(180,0,20,20),USE(?E10)

 END
 GROUP(´Group 6´),USE(?G6),SCROLL
 ENTRY(@S8),AT(200,0,20,20),USE(?E11)
 ENTRY(@S8),AT(220,0,20,20),USE(?E12)

 END
 GROUP(´Group 7´),USE(?G7),HLP(´Group7Help´)

 ENTRY(@S8),AT(240,0,20,20),USE(?E13)
 ENTRY(@S8),AT(260,0,20,20),USE(?E14)

 END
 END

IMAGE (declare a window graphic image control)
IMAGE(file) ,AT() [,USE()] [,DISABLE] [,FULL] [,SCROLL] [,HIDE] [, | HSCROLL |]

| VSCROLL |
| HVSCROLL |

IMAGE Places a graphic image on the WINDOW or TOOLBAR.

file A string constant containing the name of the file to display. The file is linked into
the .EXE as a resource.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the IMAGE control when
the graphic image is wider than the area specified for display.

VSCROLL Specifies that a vertical scroll bar is automatically added to the IMAGE control when the
graphic image is taller than the area specified for display.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the
IMAGE control when the graphic image is larger than the display area.

The IMAGE control places a graphic image on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute. This may be a bitmap (.BMP), icon (.ICO), PaintBrush (.PCX), Graphic
Interchange Format (.GIF), JPEG (.JPG), or Windows metafile (.WMF). This control cannot receive input
focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 IMAGE(´PIC.BMP´),AT(0,0,20,20),USE(?I1)
 IMAGE(´PIC.WMF´),AT(40,0,20,20),USE(?I3),SCROLL

 END

See Also:

How to Assign an Image to Display at Runtime

LINE (declare a window line control)
LINE ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FULL] [,SCROLL] [,HIDE]

LINE Places a straight line on the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

COLOR Specifies the color for the line. If omitted, the color is black.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

The LINE control places a straight line on the WINDOW (or TOOLBAR) at the position and size specified
by its AT attribute. The x and y parameters of the AT attribute specify the starting point of the line. The
width and height parameters of the AT attribute specify the horizontal and vertical distance to the end
point of the line. If these are both positive numbers, the line slopes to the right and down from its starting
point. If the width is negative, the line slopes left; if the height is negative, the line slopes left. If either the
width or height is zero, the line is horizontal or vertical. This control cannot receive input focus and does
not generate events.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
 LINE,AT(480,180,20,20),SCROLL !Scrolls with screen

 END

LIST (declare a window list control)
LIST ,FROM() ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

[,FONT()] [,FORMAT()] [,DROP] [,COLUMN] [,VCR] [,FULL] [,SCROLL] [,NOBAR]
[,ALRT()] [,HIDE] [,DRAGID()] [,DROPID()]
[, | MARK() |] [, | HSCROLL |] [, | LEFT |]

| IMM | | VSCROLL | | RIGHT |
| HVSCROLL | | CENTER |

| DECIMAL |

LIST Places a scrolling list of data items on the WINDOW or TOOLBAR.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the initial size and location of the control. If omitted, the runtime library
chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code, or the label of the
variable that receives the value selected by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control does not receive input focus and may only be accessed with the
mouse or accelerator key.

FONT Specifies the display font for the control.

FORMAT Specifies the display format of the data.

DROP Specifies a drop-down list box and the number of elements the drop-down portion
contains.

COLUMN Specifies a field-by-field highlight bar on multi-column list boxes.

VCR Specifies a VCR-type control to the left of the horizontal scroll bar (if present).

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

NOBAR Specifies the highlight bar is displayed only when the LIST has focus.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-and-drop actions.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

MARK Specifies multiple items selection mode.

IMM Specifies generation of an event whenever the user presses any key.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the list box when any
portion of the data item lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added to the list box when any data
items lie vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the list
box when any portion of the data items lies outside the visible area.

LEFT Specifies that the data is left justified within the LIST.

RIGHT Specifies that the data is right justified within the LIST.

CENTER Specifies that the data is centered within the LIST.

DECIMAL Specifies that the data is aligned on the decimal point within the LIST.
The LIST control places a scrolling list of data items on the WINDOW (or TOOLBAR) at the position and
size specified by its AT attribute. The data items displayed in the LIST come from a QUEUE or STRING
specified by the FROM attribute. The CHOICE function returns the QUEUE entry number (the value
returned by POINTER(queue)) of the selected item when the EVENT:Accepted event has been generated
by the LIST. The data displayed in the LIST is automatically refreshed every time through the ACCEPT
loop, whether the AUTO attribute is present or not.

A LIST with the DROP attribute displays only the currently selected data item on screen until the control
has focus and the user presses the down arrow key, or CLICKS ON the the icon to the right of the displayed
data item. When either of these occurs, the selection list appears ("drops down") to allow the user to
select an item.

A LIST with the IMM attribute generates an event every time the user moves the highlight bar to another
selection, or pressed any key that causes the displayed entries to scroll. This allows an opportunity for the
source code to re-fill the display QUEUE, or get the currently highlighted record to display other fields
from the record. If VSCROLL is also present, the vertical scroll bar is always displayed and when the end-
user CLICKS on the scroll bar, events are generated but the list does not move (executable code should
perfrom this action). You can interrogate the PROP:VscrollPos property to determine the scroll thumb´s
position from 0 (top) to 255 (bottom).

A LIST with the VCR attribute has scroll control buttons like a Video Cassette Recorder to the left of the
horizontal scroll bar (if there is one). These buttons allow the user to use the mouse to scroll through the
list.

A LIST with the DRAGID attribute can serve as a drag-and-drop host, providing information to be moved
or copied to another control. A LIST with the DROPID attribute can serve as a drag-and-drop target,
receiving information from another control. These attributes work together to specify drag-and-drop
"signatures" that define a valid target for the operation. The DRAGID() and DROPID() functions, along
with the SETDROPID procedure, are used to perform the data exchange.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected an entry from the control.

EVENT:NewSelection

The current selection in the list has changed (highlight has moved up or down).

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

 A LIST with the IMM attribute also generates the following events:

EVENT:ScrollUp The highlight bar has attempted to move off the top of the LIST.

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom of the LIST.

EVENT:PageUp The user pressed PgUp.

EVENT:PageDown
The user pressed PgDn.

EVENT:ScrollTop The user pressed Ctrl-PgUp.

EVENT:ScrollBottom
The user pressed Ctrl-PgDn.

EVENT:PreAlertKey
The user pressed a printable character or an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character or an ALRT attribute hot key.

EVENT:Locate The user pressed the locator VCR button.

EVENT:ScrollDrag
The scroll bar "thumb" is being moved.

A LIST with the DRAGID attribute also generates the following events:

EVENT:Dragging The mouse cursor is over a potential drag target.

EVENT:Drag The mouse cursor has been released over a drag target.

A LIST with the DROPID attribute also generates the following events:

EVENT:Drop The mouse cursor has been released over a drag target.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 LIST,AT(0,0,20,20),USE(?L1),FROM(Que),IMM
 LIST,AT(20,0,20,20),USE(?L2),FROM(Que),KEY(F10Key)
 LIST,AT(40,0,20,20),USE(?L3),FROM(Que),MSG(´Button 3´)
 LIST,AT(60,0,20,20),USE(?L4),FROM(Que),HLP(´Check4Help´)
 LIST,AT(80,0,20,20),USE(?L5),FROM(Q),FORMAT(´5C~List~15L~Box~´),COLUMN
 LIST,AT(100,0,20,20),USE(?L6),FROM(Que),FONT(´Arial´,12)
 LIST,AT(120,0,20,20),USE(?L7),FROM(Que),DROP(6)
 LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR

 LIST,AT(180,0,20,20),USE(?L10),FROM(Que),CURSOR(CURSOR:Wait)
 LIST,AT(200,0,20,20),USE(?L11),FROM(Que),ALRT(F10Key)
 LIST,AT(220,0,20,20),USE(?L12),FROM(Que),LEFT
 LIST,AT(240,0,20,20),USE(?L13),FROM(Que),RIGHT
 LIST,AT(260,0,20,20),USE(?L14),FROM(Que),CENTER
 LIST,AT(280,0,20,20),USE(?L15),FROM(Que),DECIMAL

 END

See Also:

COMBO

DRAGID

DROPID

SETDROPID

OPTION (declare a group of window RADIO controls)
OPTION(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,BOXED]

[,FULL] [,SCROLL] [,HIDE] [,FONT()] [,ALRT()] [,SKIP] [DROPID()]
 radios
END

OPTION Declares a group of RADIO controls.

text A string constant containing the prompt for the group of controls. This may contain an
ampersand (&) to indicate the "hot" letter for the prompt. The text is displayed on screen
only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of a string variable to receive the value of the RADIO string (with any
accelerator key ampersand stripped out) selected by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
currently selected RADIO in the OPTION control.

MSG Specifies a string constant containing the default text to display in the status bar when
any control in the OPTION has focus.

HLP Specifies a string constant containing the default help system identifier for any control in
the OPTION.

BOXED Specifies a single-track border around the RADIO controls with the text at the top of the
border.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

FONT Specifies the display font for the control and the default for all the controls in the
OPTION.

ALRT Specifies "hot" keys active for the controls in the OPTION.

SKIP Specifies the controls in the OPTION do not receive input focus and may only be
accessed with the mouse or accelerator key.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

radios Multiple RADIO control declarations.
The OPTION control declares a group of RADIO controls that offer the user a list of choices. The multiple
RADIO controls in the OPTION structure define the choices offered to the user.

Input focus changes between the OPTION´s RADIO controls are signalled only to the individual RADIO
controls affected. This means the events generated when the user changes input focus within an OPTION
structure are field-specific events for the affected RADIO controls, not the OPTION structure which
contains them.

The variable named in the OPTION structure´s USE attribute receives the text of the RADIO control
selected by the user. The CHOICE(?Option) function returns the number of the selected RADIO. No
RADIO button selected is a valid option, which occurs only when the OPTION structure´s USE variable
does not contain a value duplicated by one of its component RADIO controls. This condition only lasts
until the user has selected one of the RADIOs.

Events Generated:

EVENT:Selected One of the OPTION´s RADIO controls has received input focus.

EVENT:Accepted One of the OPTION´s RADIO controls has been selected by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 OPTION(´Option 1´),USE(OptVar1),KEY(F10Key),HLP(´Option1Help´)
 RADIO(´Radio 1´),AT(0,0,20,20),USE(?R1)
 RADIO(´Radio 2´),AT(20,0,20,20),USE(?R2)
END
OPTION(´Option 2´),USE(OptVar2),MSG(´Option 2´),SCROLL
RADIO(´Radio 3´),AT(40,0,20,20),USE(?R3)
RADIO(´Radio 4´),AT(60,0,20,20),USE(?R4)

END
OPTION(´Option 3´),USE(OptVar3),AT(80,0,20,20),BOXED
RADIO(´Radio 5´),AT(80,0,20,20),USE(?R5)
RADIO(´Radio 6´),AT(100,0,20,20),USE(?R6)

END
 OPTION(´Option 4´),USE(OptVar4),FONT(´Arial´,12),CURSOR(CURSOR:Wait)
 RADIO(´Radio 7´),AT(120,0,20,20),USE(?R7)
 RADIO(´Radio 8´),AT(140,0,20,20),USE(?R8)

 END
 END

See Also:

RADIO

PROGRESS (declare a progress control)
PROGRESS, AT() [,CURSOR()] [,USE()] [,DISABLE] [,FULL] [,SCROLL]

[,HIDE] [,DROPID()] [,RANGE()]

PROGRESS Places a control that displays the current progress of a batch process in the WINDOW or
TOOLBAR.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOWs CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of the variable containing the value of the current progress, or a field equate
label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

RANGE Specifies the range of values the progress bar displays. If omitted, the default range is
zero (0) to one hundred (100).

The PROGRESS control declares a control that displays a progress bar. This usually displays the current
percentage of completion of a batch process.

If a variable is named as the USE attribute, the progress bar is automatically updated whenever the value
in that variable changes. If the USE attribute is a field equate label, you must directly update the display
by assigning a value (within the range defined by the RANGE attribute) to the controls PROP:progress
property (an undeclared property equate -- see Undeclared Properties).

This control cannot receive input focus and does not generate events.

Example:
BackgroundProcess PROCEDURE !Background processing batch process
ProgressVariable LONG
Win WINDOW(Batch Processing...),AT(,,400,400),TIMER(1),MDI,CENTER

PROGRESS,AT(100,100,200,20),USE(ProgressVariable),RANGE(0,200)
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON(Cancel),AT(190,300,20,20),STD(STD:Close)

END
CODE
OPEN(Win)
OPEN(File)
?ProgressVariable{PROP:rangehigh} = RECORDS(File)

?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} = ?ProgressBar{PROP:progress} + 1

!Manually update 2nd progress bar
!Perform some batch processing code

. . .
CLOSE(File)

PROMPT (declare a prompt control)
PROMPT(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,FONT()] [,FULL] [,SCROLL]

[,HIDE] [, | LEFT |]
| RIGHT |
| CENTER |

PROMPT Places a prompt for the next active control following it, in the WINDOW or TOOLBAR.

text A string constant containing the text to display. This may contain an ampersand (&) to
indicate the "hot" letter for the prompt.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

FONT Specifies the font used to display the text.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

LEFT Specifies that the prompt is left justified.

RIGHT Specifies that the prompt is right justified.

CENTER Specifies that the prompt is centered.
The PROMPT control places a prompt for the next active control following the PROMPT in the WINDOW
or TOOLBAR structure. The prompt text is placed on the WINDOW (or TOOLBAR) at the position and
size specified by its AT attribute.

The text may contain an ampersand (&) to indicate the letter immediately following the ampersand is the
"hot" letter for the prompt. By default, the "hot" letter displays with an underscore below it to indicate its
special purpose. This "hot" letter, when pressed in conjunction with the ALT key, changes input focus to
the next control following the PROMPT in the WINDOW or TOOLBAR structure, which is capable of
receiving focus.

Disabling or hiding the control directly following the PROMPT in the window structure does not
autmatically disable or hide the PROMPT; it must also be explicitly disabled or hidden, otherwise the
PROMPT will then refer to the next currently active control following the disabled control. This allows you
to place one PROMPT control on the window that will apply to any of multiple controls (if only one will be
active at a time). If the next active control is a BUTTON, it is pressed when the user presses the
PROMPT´s "hot key."

To include an ampersand as part of the prompt text, place two ampersands together (&&) in the text string
and only one will display.

This control cannot receive input focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 PROMPT(´Enter Data:´),AT(10,100,20,20),USE(?P1),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(100,100,20,20),USE(E1)
 PROMPT(´Enter More Data:´),AT(10,200,20,20),USE(?P2),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(100,200,20,20),USE(E2)
 ENTRY(@D1),AT(100,200,20,20),USE(E3)

 END
CODE
OPEN(MDIChild)

 IF SomeCondition
HIDE(?E2) !Prompt will refer to E3

ELSE
HIDE(?E3) !Prompt will refer to E2

END

RADIO (declare a window radio button control)
RADIO(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

 [,FONT()] [,ICON()] [,FULL] [,SCROLL] [,HIDE] [,ALRT()] [DROPID()][, | LEFT |]
| RIGHT |

RADIO Places a radio button on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the radio button. This may contain an
ampersand (&) to indicate the "hot" letter for the radio button.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately selects the radio button.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control does not receive input focus and may only be accessed with the
mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the face of a "latching" button.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

LEFT Specifies the text appears to the left of the radio button.

RIGHT Specifies the text appears to the right of the radio button (this is the default position).

ALRT Specifies "hot" keys active for the control.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.
The RADIO control places a radio button on the WINDOW (or TOOLBAR) at the position and size
specified by its AT attribute. A RADIO control may only be placed within an OPTION control. When
selected by the user, the RADIO text (with any accelerator key ampersand stripped out) is placed in the
OPTION´s USE variable. A RADIO with an ICON attribute appears as a "latched" pushbutton with the icon
on the button face. When the icon appears "up" the RADIO is off; when it appears "down" the RADIO is
on and the OPTION´s USE variable receives the value in the selected RADIO´s text parameter.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been selected by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 OPTION(´Option 1´),USE(OptVar1)
 RADIO(´Radio 1´),AT(0,0,20,20),USE(?R1),KEY(F10Key)
 RADIO(´Radio 2´),AT(20,0,20,20),USE(?R2),MSG(´Radio 2´)

 END
 OPTION(´Option 2´),USE(OptVar2)
 RADIO(´Radio 3´),AT(40,0,20,20),USE(?R3),FONT(´Arial´,12)
 RADIO(´Radio 4´),AT(60,0,20,20),USE(?R4),CURSOR(CURSOR:Wait)

 END
 OPTION(´Option 3´),USE(OptVar3)
 RADIO(´Radio 5´),AT(80,0,20,20),USE(?R5),HLP(´Radio5Help´)
 RADIO(´Radio 6´),AT(100,0,20,20),USE(?R6)

 END
 OPTION(´Option 4´),USE(OptVar4)
 RADIO(´Radio 7´),AT(120,0,20,20),USE(?R7),ICON(´Radio1.ICO´)
 RADIO(´Radio 8´),AT(140,0,20,20),USE(?R8),ICON(´Radio2.ICO´)

 END
 OPTION(´Option 5´),USE(OptVar5)
 RADIO(´Radio 9´),AT(100,20,20,20),USE(?R9),LEFT
 RADIO(´Radio 10´),AT(120,20,20,20),USE(?R10),LEFT

 END
 OPTION(´Option 6´),USE(OptVar6),SCROLL
 RADIO(´Radio 11´),AT(200,0,20,20),USE(?R11),SCROLL
 RADIO(´Radio 12´),AT(220,0,20,20),USE(?R12),SCROLL

 END
END

See Also:

OPTION

REGION (declare a window region control)
REGION ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,FILL] [,COLOR()] [,IMM] [,FULL]

[,SCROLL] [,HIDE] [,DRAGID()] [,DROPID()]

REGION Defines an area in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code.

DISABLE Specifies the control is disabled when the WINDOW or APPLICATION is first opened.

FILL Specifies the red, green, and blue component values that create the fill color for the
control. If omitted, the region is not filled with color.

COLOR Specifies the border color of the control. If omitted, there is no border.

IMM Specifies control generates an event whenever the mouse is moved in the region.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-and-drop actions.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.
The REGION control defines an area on screen at the position and size specified by its AT attribute.
Generally, tracking the position of the mouse is the reason for defining a REGION. The MOUSEX and
MOUSEY functions can be used to determine the exact position of the mouse when the event occurs.
Use of the IMM attribute causes some excess code and speed overhead at runtime, so it should be used
only when necessary. This control cannot receive input focus.

A REGION with the DRAGID attribute can serve as a drag-and-drop host, providing information to be
moved or copied to another control. A REGION with the DROPID attribute can serve as a drag-and-drop
target, receiving information from another control. These attributes work together to specify drag-and-drop
"signatures" that define a valid target for the operation. The DRAGID() and DROPID() functions, along
with the SETDROPID procedure, are used to perform the data exchange. Since a REGION can be
defined over any other control, you can write drag-and-drop code between any two controls. Simply
define REGION controls to handle the required drag-and drop functionality.

Events Generated:

EVENT:Accepted The mouse has been clicked by the user in the region.

A REGION with the IMM attribute also generates the following events:

EVENT:MouseIn The mouse has entered the region.

EVENT:MouseOut The mouse has left the region.

EVENT:MouseMove
The mouse has moved within the region.

A REGION with the DRAGID attribute also generates the following events:

EVENT:Dragging The mouse cursor is over a potential drag target.

EVENT:Drag The mouse cursor has been released over a drag target.

 A REGION with the DROPID attribute also generates the following events:

EVENT:Drop The mouse cursor has been released over a drag target.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 REGION,AT(10,100,20,20),USE(?R1)
 REGION,AT(100,100,20,20),USE(?R2),CURSOR(CURSOR:Wait)
 REGION,AT(10,200,20,20),USE(?R3),IMM
 REGION,AT(100,200,20,20),USE(?R4),COLOR(COLOR:ACTIVEBORDER)
 REGION,AT(10,300,20,20),USE(?R4),FILL(COLOR:ACTIVEBORDER)

 END

SHEET (declare a group of TAB controls)
SHEET ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,FULL] [,SCROLL] [,HIDE]

[,FONT()] [,DROPID()] [,WIZARD] [,SPREAD]
 tabs
END

SHEET Declares a group of TAB controls.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW's CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of a variable to receive the choice. If this is a string variable, it receives the
value of the TAB string (with any accelerator key ampersand stripped out) currently
selected by the user. If a numeric variable, it receives the number of the TAB currently
selected by the user (the value returned by the CHOICE() function).

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
currently selected TAB in the SHEET control.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

FONT Specifies the display font for the control and the default for all the controls in the SHEET.

ALRT Specifies "hot" keys active for controls in the SHEET.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

WIZARD Specifies the SHEET's TAB controls do not appear. The user is moved from TAB to TAB
under the program's control (usually with "Next" and "Previous" buttons).

SPREAD Specifies the TABs are evenly spaced on one line.

tabs Multiple TAB control declarations.
The SHEET control declares a group of TAB controls that offer the user multiple "pages" of controls for
the window. The multiple TAB controls in the SHEET structure define the "pages" displayed to the user.

Input focus changes between the SHEET's TAB controls are signalled only to the individual TAB controls
affected. This means the events generated when the user changes input focus within a SHEET structure
are field-specific events for the affected TAB controls, not the SHEET structure which contains them.

A string variable as the SHEET structure's USE attribute receives the text of the TAB control selected by
the user, and the CHOICE(?Option) function returns the number of the selected TAB control. If the
SHEET structure's USE attribute is a numeric variable, it receives the number of the TAB control selected
by the user (the same value returned by the CHOICE function).

Events Generated:

EVENT:Selected One of the SHEET's TAB controls has received input focus.

EVENT:Accepted One of the SHEET's TAB controls has been selected by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)

 OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
 RADIO('Radio 1'),AT(20,0,20,20),USE(?R1)
 RADIO('Radio 2'),AT(40,0,20,20),USE(?R2)

END
OPTION('Option 2'),USE(OptVar2),MSG('Option 2')
RADIO('Radio 3'),AT(60,0,20,20),USE(?R3)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R4)

END
 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
 ENTRY(@S8),AT(100,140,32,20),USE(E1)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
 ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)

 OPTION('Option 3'),USE(OptVar3)
 RADIO('Radio 1'),AT(20,0,20,20),USE(?R5)
 RADIO('Radio 2'),AT(40,0,20,20),USE(?R6)

END
OPTION('Option 4'),USE(OptVar4)
RADIO('Radio 3'),AT(60,0,20,20),USE(?R7)
RADIO('Radio 4'),AT(80,0,20,20),USE(?R8)

END
 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
 ENTRY(@S8),AT(100,140,32,20),USE(E3)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
 ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)

 BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
 END

See Also: TAB

SPIN (declare a spinning list control)
SPIN(picture) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP]

[,FONT()] [,FULL] [,SCROLL] [,ALRT()] [,HIDE][,READONLY] [,REQ] [,IMM]
[DROPID()] [, | LEFT |] [, | INS |] , | RANGE()[,STEP] | [, | UPR |]

| RIGHT | | OVR | | FROM() | | CAP |
| CENTER |
| DECIMAL |

SPIN Places a "spinning" list of data items on the WINDOW or TOOLBAR.

picture A display picture token that specifies the format for the data displayed in the control.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code or the label of the variable
that receives the value selected by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control receives input focus to enter text only with the mouse or accelerator
key and does not retain focus.

FONT Specifies the display font for the control.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry.

REQ Specifies the control may not be left blank or zero.

IMM Specifies immediate event generation whenever the user presses any key.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

LEFT Specifies that the data is left justified within the area specified by the AT attribute.

RIGHT Specifies that the data is right justified within the area specified by the AT attribute.

CENTER Specifies that the data is centered within the area specified by the AT attribute.

DECIMAL Specifies that the data is aligned on the decimal point within the area specified by the AT
attribute.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on windows with the MASK
attribute).

RANGE Specifies the range of values the user may choose.

STEP Specifies the increment/decrement amount of the choices within the specified RANGE. If
omitted, the STEP is 1.0.

FROM Specifies the origin of the choices displayed for the user.

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized) entry.

The SPIN control places a "spinning" list of data items on the WINDOW (or TOOLBAR) at the position
and size specified by its AT attribute. The "spinning" list displays only the current selection with a pair of
buttons to the right to allow the user to "spin" through the available selections (similar to a slot machine
wheel).

If the SPIN control offers the user regularly spaced numeric choices, the RANGE attribute specifies the
valid range of values from which the user may choose. The STEP attribute then works in conjunction with
RANGE to increment/decrement those values by the specified amount. If the choices are not regular, or
are string values, the FROM attribute is used instead of RANGE and STEP. The FROM attribute provides
the SPIN control its list of choices from a memory QUEUE or a string. Using the FROM attribute, you may
provide the user any type of choices in the SPIN control.

The user may select an item from the list or type in the desired value, so this control also acts as an
ENTRY control.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected a value from the control.

EVENT:NewSelection
The user has changed the displayed value.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 SPIN(@S8),AT(0,0,20,20),USE(SpinVar1),FROM(Que)
 SPIN(@N3),AT(20,0,20,20),USE(SpinVar2),RANGE(1,999),KEY(F10Key)
 SPIN(@N3),AT(40,0,20,20),USE(SpinVar3),RANGE(5,995),STEP(5)
 SPIN(@S8),AT(60,0,20,20),USE(SpinVar4),FROM(Que),HLP(´Check4Help´)
 SPIN(@S8),AT(80,0,20,20),USE(SpinVar5),FROM(Que),MSG(´Button 3´)
 SPIN(@S8),AT(100,0,20,20),USE(SpinVar6),FROM(Que),FONT(´Arial´,12)
 SPIN(@S8),AT(120,0,20,20),USE(SpinVar7),FROM(Que),DROP
 SPIN(@S8),AT(140,0,20,20),USE(SpinVar8),FROM(Que),HVSCROLL,VCR
 SPIN(@S8),AT(160,0,20,20),USE(SpinVar9),FROM(Que),IMM
 SPIN(@S8),AT(180,0,20,20),USE(SpinVar10),FROM(Que),CURSOR(CURSOR:Wait)
 SPIN(@S8),AT(200,0,20,20),USE(SpinVar11),FROM(Que),ALRT(F10Key)
 SPIN(@S8),AT(220,0,20,20),USE(SpinVar12),FROM(Que),LEFT

 SPIN(@S8),AT(240,0,20,20),USE(SpinVar13),FROM(Que),RIGHT
 SPIN(@S8),AT(260,0,20,20),USE(SpinVar14),FROM(Que),CENTER
 SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar15),FROM(Que),DECIMAL

 END

STRING (declare a window string control)
STRING(text) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,FONT()] [,FULL] [,SCROLL] [,HIDE]

[,TRN] [, | LEFT |]
| RIGHT |
| CENTER |
| DECIMAL |

STRING Places the text on the WINDOW or TOOLBAR.

text A string constant containing the text to display, or a display picture token to format the
variable specified in the USE attribute.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE A field equate label to reference the control in executable code, or a variable whose
contents are displayed in the format of the picture token declared instead of string text.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

FONT Specifies the font used to display the text.

LEFT Specifies that the text is left justified within the area specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area specified by the AT attribute.

CENTER Specifies that the text is centered within the area specified by the AT attribute.

DECIMAL Specifies that the text is aligned on the decimal point within the area specified by the AT
attribute.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

TRN Specifies the text or USE variable characters transparently display over the background.
The STRING control places the text on the WINDOW (or TOOLBAR) at the position and size specified by
its AT attribute.

If the text parameter is a picture token instead of a string constant, the contents of the variable named in
the USE attribute are formatted to that display picture, at the position and size specified by the AT
attribute. This makes the STRING with a USE variable a "display-only" control for the variable. The data
displayed in the STRING is automatically refreshed every time through the ACCEPT loop, whether the
AUTO attribute is present or not.

There is a difference between ampersand (&) use in STRING and PROMPT controls. An ampersand in a
STRING displays as part of the text, while an ampersand in a PROMPT defines the prompt´s "hot" letter.

A STRING with the TRN attribute displays characters transparently, without obliterating the background.
This means only the pixels required to create each character are written to screen. This allows the

STRING to be placed directly on top of an IMAGE without destroying the background picture.

This control cannot receive input focus and does not generate events.

Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 STRING(´String Constant´),AT(10,0,20,20),USE(?S1)
 STRING(@S30),AT(10,20,20,20),USE(StringVar1)
 STRING(@S30),AT(10,20,20,20),USE(StringVar2),CURSOR(CURSOR:Wait)
 STRING(@S30),AT(10,20,20,20),USE(StringVar3),FONT(´Arial´,12)

 END

TAB (declare a page of a SHEET control)
TAB(text) [,CURSOR()] [,USE()] [,KEY()] [,MSG()] [,HLP()]

[,REQ] [,SKIP] [DROPID()] [,TIP()]
 controls
END

TAB Declares a group of controls that constitute one of the multiple pages of controls
contained within a SHEET structure.

text A string constant containing the text to display on the TAB.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOWs CURSOR attribute is used, else the Windows default cursor is
used.

USE Specifies a field equate label to reference the control in executable code.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the default text to display in the status bar when
any control in the TAB has focus.

HLP Specifies a string constant containing the default help system identifier for any control in
the TAB.

REQ Specifies that when another TAB is selected, the runtime library automatically checks all
ENTRY controls in the same TAB structure with the REQ attribute to ensure they contain
data other than blanks or zeroes.

SKIP Specifies the controls in the TAB do not receive input focus through the TAB key
sequence and may only be accessed with the mouse or accelerator key.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

TIP Specifies the text that displays as balloon help when the mouse cursor pauses over the
control.

controls Multiple control declarations. This should not contain any SHEET controls (nested
SHEET structures are not supported).

The TAB structure declares a group of controls that constitute one of the multiple pages of controls
contained within a SHEET structure. The multiple TAB controls in the SHEET structure define the pages
displayed to the user. The SHEET structures USE attribute receives the text of the TAB control selected
by the user.

Input focus changes between the SHEETs TAB controls are signalled only to the individual TAB controls
affected. This means the events generated when the user changes input focus within a SHEET structure
are field-specific events for the affected TAB controls, not the SHEET structure which contains them.

Events Generated:

EVENT:Selected The TAB control has received input focus.

EVENT:Accepted The TAB control has been selected by the user.

EVENT:Drop A successful drag-and-drop to the control.
Example:

MDIChild WINDOW(Child One),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(Tab One),USE(?TabOne)

 OPTION(Option 1),USE(OptVar1),KEY(F10Key),HLP(Option1Help)
 RADIO(Radio 1),AT(20,0,20,20),USE(?R1)
 RADIO(Radio 2),AT(40,0,20,20),USE(?R2)

END
OPTION(Option 2),USE(OptVar2),MSG(Option 2)
RADIO(Radio 3),AT(60,0,20,20),USE(?R3)
RADIO(Radio 4),AT(80,0,20,20),USE(?R4)

END
 PROMPT(Enter Data:),AT(100,100,20,20),USE(?P1)
 ENTRY(@S8),AT(100,140,32,20),USE(E1)
 PROMPT(Enter More Data:),AT(100,200,20,20),USE(?P2)
 ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB(Tab Two),USE(?TabTwo)

 OPTION(Option 3),USE(OptVar3)
 RADIO(Radio 1),AT(20,0,20,20),USE(?R5)
 RADIO(Radio 2),AT(40,0,20,20),USE(?R6)

END
OPTION(Option 4),USE(OptVar4)
RADIO(Radio 3),AT(60,0,20,20),USE(?R7)
RADIO(Radio 4),AT(80,0,20,20),USE(?R8)

END
 PROMPT(Enter Data:),AT(100,100,20,20),USE(?P3)
 ENTRY(@S8),AT(100,140,32,20),USE(E3)
 PROMPT(Enter More Data:),AT(100,200,20,20),USE(?P4)
 ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(Ok),AT(100,180,20,20),USE(?Ok)

 BUTTON(Cancel),AT(200,180,20,20),USE(?Cancel)
 END

See Also: SHEET

TEXT (declare a multi-line data entry control)
TEXT ,AT() [,CURSOR()] [,USE()] [,DISABLE] [,KEY()] [,MSG()] [,HLP()] [,SKIP] [,FONT()]

[,REQ] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [,READONLY] [DROPID()] [UPR]
[, | INS |] [, | HSCROLL |] [, | LEFT |]

| OVR | | VSCROLL | | RIGHT |
| HVSCROLL | | CENTER |

TEXT Places a multi-line data entry field on the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If omitted, default values are selected
by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is positioned over the control. If
omitted, the WINDOW´s CURSOR attribute is used, else the Windows default cursor is
used.

USE The label of the variable that receives the value entered into the control by the user.

DISABLE Specifies the control appears dimmed when the WINDOW or APPLICATION is first
opened.

KEY Specifies an integer constant or keycode equate that immediately gives focus to the
control.

MSG Specifies a string constant containing the text to display in the status bar when the control
has focus.

HLP Specifies a string constant containing the help system identifier for the control.

SKIP Specifies the control receives input focus to enter text only with the mouse or accelerator
key and does not retain focus.

FONT Specifies the display font for the control.

REQ Specifies the control may not be left blank or zero.

FULL Specifies the control expands to occupy the entire size of the WINDOW for any missing
AT attribute width or height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies "hot" keys active for the control.

HIDE Specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

READONLY Specifies the control does not allow data entry.

DROPID Specifies the control may serve as a drop target for drag-and-drop actions.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on windows with the MASK
attribute).

UPR Specifies all upper case entry.

HSCROLL Specifies that a horizontal scroll bar is automatically added to the text field when any
portion of the data lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added to the text field when any of the
data lies vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are automatically added to the text

field when any portion of the data lies outside the visible area.

LEFT Specifies that the text is left justified within the area specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area specified by the AT attribute.

CENTER Specifies that the text is centered within the area specified by the AT attribute.
The TEXT control places a multi-line data entry field on the WINDOW (or TOOLBAR) at the position and
size specified by its AT attribute. The variable specified in the USE attribute receives the data entered
when the user has completed data entry and moves on to another control.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 TEXT,AT(0,0,40,40),USE(E1),ALRT(F10Key),CENTER
 TEXT,AT(20,0,40,40),USE(E2),KEY(F10Key),HLP(´Text4Help´)
 TEXT,AT(40,0,40,40),USE(E3),SCROLL,OVR,UPR
 TEXT,AT(60,0,40,40),USE(E4),CURSOR(CURSOR:Wait),RIGHT
 TEXT,AT(80,0,40,40),USE(E5),DISABLE,FONT(´Arial´,12)
 TEXT,AT(100,0,40,40),USE(E6),HVSCROLL,LEFT
 TEXT,AT(120,0,40,40),USE(E7),REQ,INS,CAP,MSG(´Text Field 7´)

 END

Control Field Attributes
ALRT (set control hot keys)

AT (set control position and size in window)

BOXED (set window controls group border)

CAP, UPR (set display case)

CHECK (set on/off ITEM)

CLASS (set .VBX custom control class)

COLOR (set control display color)

COLUMN (set list box highlight bar)

CURSOR (set control mouse cursor type)

DEFAULT (set enter key button)

DISABLE (set control dimmed at open)

DROP (set list box behavior)

DRAGID (set drag-and-drop host signatures)

DROPID (set drag-and-drop target signatures)

FILL (set display fill color)

FIRST, LAST (set MENU or ITEM position)

FONT (set control font)

FORMAT (set LIST or COMBO layout)

FROM (set window listbox data source)

FULL (set full-screen)

HIDE (set control hidden at open)

HLP (set controls on-line help identifier)

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)

ICON (set control icon)

IMM (set immediate event notification)

INS, OVR (set typing mode)

KEY (set control execution keycode)

LEFT, RIGHT, CENTER, DECIMAL (set display justification)

MARK (set multiple selection mode)

MSG (set control status bar message)

NOBAR (set no highlight bar)

PASSWORD (set data non-display)

RANGE (set SPIN range limits)

READONLY (set display-only)

REQ (set required entry)

RIGHT (set MENU position)

ROUND (set round-cornered window BOX)

SCROLL (set scrolling control)

SEPARATOR (set separator line ITEM)

SKIP (set Tab key skip)

STD (set standard behavior)

STEP (set SPIN increment)

TRN (set transparent window string)

USE (set control variable or equate label)

VCR (set VCR control)

ALRT (set control "hot" keys)
ALRT(keycode)

ALRT Specifies a "hot" key active while the control has focus.

keycode A numeric constant keycode or keycode equate.
The ALRT attribute specifies a "hot" key active while the control has focus. When the user presses an
ALRT "hot" key for a control, two field-specific events, EVENT:PreAlertKey and EVENT:AlertKey, are
generated. If the code executes a CYCLE statement when processing EVENT:PreAlertKey, you
"shortstop" the EVENT:AlertKey, preventing library´s default action on the alerted keypress for the control.

You may have multiple ALRT attributes on one control. The ALERT statement and the ALRT attribute of a
window or control are completely separate. This means that clearing ALERT keys has no effect on any
keys alerted by ALRT attributes.

Example:
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(6,40),USE(SomeVar1),ALRT(F9Key) !F9 alerted for control
ENTRY,AT(60,40),USE(SomeVar2),ALRT(F10Key) !F10 alerted for control

END
CODE
OPEN(WinOne)
ACCEPT
CASE FIELD()
OF ?SomeVar1
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF NOT SomeVar1
CYCLE !Terminate alert processing on other controls

END
OF EVENT:AlertKey !Alert processing
DO F9Routine

END
OF ?SomeVar2
CASE EVENT()
OF EVENT:AlertKey !Alert processing
DO F10Routine

END
END

END

AT (set control position and size in window)
AT([x] [,y] [,width] [,height])

AT Defines the position and size of a control.

x An integer constant or constant expression that specifies the horizontal position of the top
left corner. If omitted, the runtime library provides a default value (zero).

y An integer constant or constant expression that specifies the vertical position of the top
left corner. If omitted, the runtime library provides a default value (zero).

width An integer constant or constant expression that specifies the width. If omitted, the
runtime library provides a default value.

height An integer constant or constant expression that specifies the height. If omitted, the
runtime library provides a default value.

The AT attribute defines the position and size of a control. If any parameter is omitted, the runtime library
provides a default value.

The values contained in the x, y, width, and height parameters are measured in dialog units. Dialog units
are defined as one-quarter the average character width by one-eighth the average character height. The
size of a dialog unit is dependent upon the size of the default font for the window. This measurement is
based on the font specified in the FONT attribute of the window, or the system default font specified by
Windows.

Example:
 !Measurement in dialog units
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(8,40,80,8) !Approx. 2 characters in, 5 down, 20 wide, 1 high
END

 !Measurement in Tousandths of an Inch
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(1000,1000,2000,250) !1" in & down, 2" wide, 1/4" high
END

 !Measurement in Millimeters
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(100,100,200,50) !1 cm in and down, 2 cm wide, 50 mm high
END

 !Measurement in Points
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(72,72,144,18) !1" in & down, 2" wide, 1/4" high
END

BOXED (set window controls group border)
BOXED

The BOXED attribute specifies a single-track border around a GROUP or OPTION structure. The text
parameter of the GROUP or OPTION control appears in a gap at the top of the border box. If BOXED is
omitted, the text parameter of the GROUP or OPTION control is not displayed on screen.

CAP, UPR (set display case)
CAP
UPR

The CAP and UPR attributes specify the automatic case of text entered into ENTRY or TEXT controls
when the MASK attribute is on the window. UPR specifies all upper case.

The CAP attribute specifies "Proper Name Capitalization," where the first letter of each word is capitalized
and all other letters are lower case. The user can override this default behavior by pressing the SHIFT key
to allow an upper case letter in the middle of a name (allowing for names such as, "McDowell") or SHIFT
while CAPS-LOCK is on, forcing a lower case first letter (allowing for names such as, "von Richtofen").

CHECK (set on/off ITEM)
CHECK

The CHECK attribute specifies an ITEM that may be either ON or OFF. When ON, a check appears to the
left of the menu selection and the USE variable receives the value one (1). When OFF, the check to the
left of the menu selection disappears and the USE variable receives the value zero (0).

CLASS (set .VBX custom control class)
CLASS(file [,name])

CLASS The specifies the filename and type of .VBX custom control.

file A string constant containing the name of the .VBX file (including the .VBX extension) in
which the custom control is implemented.

name A string constant containing the name of the custom control type from the .VBX file. If
omitted, the first control type defined in the .VBX file is used.

The CLASS attribute specifies the filename and type of .VBX custom control. The name parameter
identifies the specific control to use in a .VBX that contains multiple controls.

Example:
WinOne WINDOW,AT(0,0,160,400)

CUSTOM,AT(0,0,120,320),CLASS(´graph.vbx´,´graph´),´graphstyle´(´2´)
END

COLOR (set control display color)
COLOR(rgb)

COLOR Specifies display color.

rgb A LONG or ULONG integer constant, or constant EQUATE, containing the red, green,
and blue components that create the color in the three low-order bytes (bytes 0, 1, and 2),
or an EQUATE for a standard Windows color value.

The COLOR attribute specifies the display color of a BOX, LINE, ELLIPSE, or REGION control. On a
BOX, ELLIPSE, or REGION, the color specified is the color used for the border.

EQUATEs for Windows´ standard colors are contained in the EQUATES.CLW file. Windows automatically
finds the closest match to the specified rgb color value for the hardware on which the program is run.

Windows standard colors may be reconfigured by the user in the Windows Control Panel. Any control
using a Windows standard color is automatically repainted with the new color when this occurs.

Example:
WinOne WINDOW,AT(0,0,160,400)

BOX,AT(20,20,20,20),COLOR(COLOR:ACTIVEBORDER)
 !Windows´ active border color

BOX,AT(100,100,20,20),COLOR(00FF0000h) !Blue
BOX,AT(140,140,20,20),COLOR(0000FF00h) !Green
BOX,AT(180,180,20,20),COLOR(000000FFh) !Red

END

COLUMN (set list box highlight bar)
COLUMN

The COLUMN attribute specifies a field-by-field highlight bar on a LIST or COMBO control with multiple
display columns.

CURSOR (set control mouse cursor type)
CURSOR(file)

CURSOR Specifies a mouse cursor to display for the control.

file A string constant containing the name of a .CUR file, or an EQUATE naming a Windows-
standard mouse cursor. The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the mouse is positioned over the
control.

EQUATE statements for the Windows-standard mouse cursors are contained in the EQUATES.CLW file.
The following list is a representative sample of these (see EQUATES.CLW for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital "I" like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow
 CURSOR:DragWE Double-headed horizontal arrow

Example:
WinOne WINDOW,AT(0,0,160,400)

REGION,AT(20,20,20,20),CUSOR(CURSOR:IBeam)
REGION,AT(100,100,20,20),CURSOR(´Custom.CUR´)

END

DEFAULT (set enter key button)
DEFAULT

The DEFAULT attribute specifies a BUTTON that is automatically pressed when the user presses the
ENTER key. Only one active BUTTON on a window should have this attribute.

DISABLE (set control dimmed at open)
DISABLE

The DISABLE attribute specifies a control that is disabled when the WINDOW or APPLICATION is
opened. The disabled control may be activated with the ENABLE statement.

DROP (set list box behavior)
DROP(count)

DROP Specifies the list appears only when the user presses an arrow cursor key or clicks on the
drop icon.

count An integer constant that specifies the number of elements displayed.
The DROP attribute specifies that the selection list appears only when the user presses an arrow cursor
key or clicks on the drop icon to the right of the currently selected value display. Once it drops into view,
the list displays count number of elements. If the DROP attribute is omitted, the LIST or COMBO control
always displays the number of data items specified by the height parameter of the control´s AT of the
selection list.

The DROP attribute does not work on a WINDOW with the MODAL attribute and should not be used.

Example:
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),DROP(6)
COMBO(@S8),AT(120,120,20,20),USE(?C7),FROM(Que2),DROP(8)

END

DRAGID (set drag-and-drop host signatures)
DRAGID(signature [, signature])

DRAGID Specifies a LIST or REGION control that can serve as a drag-and-drop host.

signature A string constant containing an identifier used to indicate valid drop targets. Any
signature that begins with a tilde (~) indicates that the information can also be dragged to
an external (Clarion) program. A single DRAGID may contain up to 16 signatures.

The DRAGID attribute specifies a LIST or REGION control that can serve as a drag-and-drop host.
DRAGID works in conjunction with the DROPID attribute. The DRAGID signature strings (up to 16) define
validation keys to match against the signature parameters of the target control´s DROPID. This provides
control over where successful drag-and-drop operations are allowed.

A drag-and-drop operation occurs when the user drags information from a control with the DRAGID
attribute to a control with the DROPID attribute. For a successful drag-and-drop operation, both controls
must have at least one identical signature string in their respective DRAGID and DROPID attributes.

Example:
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´FromList1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´FromList1´)
!Allows drops from List1, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also:

DROPID

DROPID (set drag-and-drop target signatures)
DROPID(signature [, signature])

DROPID Specifies a control that can serve as a drag-and-drop target.

signature A string constant containing an identifier used to indicate valid drag hosts. A single
DROPID may contain up to 16 signatures. Any signature that begins with a tilde (~)
indicates that the information can also be dropped from an external (Clarion) program. A
DROPID signature of ´~FILE´ indicates the target accepts a comma-delimited list of
filenames dragged from the Windows File Manager.

The DROPID attribute specifies a control that can serve as a drag-and-drop target. DROPID works in
conjunction with the DRAGID attribute. The DROPID signature strings (up to 16) define validation keys to
match against the signature parameters of the host control´s DRAGID. This provides control over where
successful drag-and-drop operations are allowed.

A drag-and-drop operation occurs when the user drags information from a control with the DRAGID
attribute to a control with the DROPID attribute. For a successful drag-and-drop operation, both controls
must have at least one identical signature string in their respective DRAGID and DROPID attributes.

Example:
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´FromList1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´FromList1´,´~FILE´)
!Allows drops from List1 or the Window File Manager,
! but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also:

DRAGID

FILL (set display fill color)
FILL(rgb)

FILL Specifies display fill color.

rgb A LONG or ULONG integer constant, or constant EQUATE, containing the red, green,
and blue components that create the color in the three low-order bytes (bytes 0, 1, and 2)
or an EQUATE for a standard Windows color value.

The FILL attribute specifies the display fill color of a BOX, ELLIPSE, or REGION control. If omitted, the
control is not filled with color.

Example:
WinOne WINDOW,AT(0,0,160,400)

BOX,AT(20,20,20,20),FILL(COLOR:ACTIVEBORDER)
 !Windows´ active border color

BOX,AT(100,100,20,20),FILL(00FF0000h) !Blue
BOX,AT(140,140,20,20),FILL(0000FF00h) !Green
BOX,AT(180,180,20,20),FILL(000000FFh) !Red

END

FIRST, LAST (set MENU or ITEM position)
FIRST
LAST

The FIRST and LAST attributes specify menu selection positioning within the global pulldown menu,
when a WINDOW´s MENUBAR is merged into the global menu. The order of priorities is:

1. Global selections with FIRST attribute
2. Local selections with FIRST attribute
3. Global selections without FIRST or LAST attributes
4. Local selections without FIRST or LAST attributes
5. Global selections with LAST attribute
6. Local selections with LAST attribute

FONT (set control font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the display font for a control.

typeface A string constant containing the name of the font. If omitted, the default font is used.

size An integer constant containing the size (in points) of the font. If omitted, the system
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, the default font color is used.

style An integer constant, constant expression, or EQUATE specifying the strike weight and
style of the font. If omitted, the default font weight is used.

The FONT attribute specifies the display font for the control, overriding any FONT specified on the
WINDOW.

The typeface may name any font registered in the Windows system. The EQUATES.CLW file contains
EQUATE values for standard style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may add to that values that indicate italic, underline, or strikeout text. The
following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:fixed EQUATE (0800H)
FONT:italic EQUATE (01000h)
FONT:underline EQUATE (02000h)
FONT:strikeout EQUATE (04000h)

Example:
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),FONT(´Arial´,14,0FFh)
!14 point Arial typeface, Red, normal

LIST,AT(120,120,20,20),USE(?C7),FROM(Que2),FONT(´Arial´,14,0,700)
!14 point Arial typeface, Black, Bold

LIST,AT(120,240,20,20),USE(?C7),FROM(Que2),FONT(´Arial´,14,0,700+01000h)
!14 point Arial typeface, Black, Bold Italic

 END

FORMAT (set LIST or COMBO layout)
FORMAT(format string)

FORMAT Specifies the display format of the data in the LIST or COMBO control.

format string A string constant specifying the display format.
The FORMAT attribute specifies the display format of the data in the LIST or COMBO control. The format
string contains the information for single or multi-column formatting of the data.

The format string contains "field-specifiers" which map to the fields of the QUEUE. Multiple "field-
specifiers" may be grouped together as a "field-group" in square brackets ([]) to display as a single unit.

Only the fields in the QUEUE for which there are "field-specifiers" are included in the display. This means
that, if there are two fields specified in the format string and three fields in the QUEUE, only the two
specified in the format string are displayed in the LIST or COMBO control.

The following describes the components allowed in a format string:

"Field-specifier" format: width justification [(indent)] [modifiers]

width A required integer defining the width of the field. Specified in dialog units.

justification A single capital letter (L , R , C , or D) that specifies Left, Right, Center, or Decimal
justification. One is required.

indent An optional integer, enclosed in parentheses, that specifies the indent from the
justification. This may be negative. With left (L) justification, indent defines a left
margin; with right (R) or decimal (D), it defines a right margin; and with center (C), it
defines an offset from the center of the field (negative = left offset).

modifiers: Optional special characters (listed below) to modify the display format of the field or
group. Multiple modifiers may be used on one field or group.

~header~ [justification [(indent)]] A header string enclosed in tildes, followed by optional
justification and/or indent, displays the header at the top of the list. The header uses the
same justification and indent as the field, if not specifically overidden.

@picture@ The picture formats the field for display. The trailing @ is required to define the end of
the picture, so that display pictures like @N12~Kr~ can be used in the format string
without creating ambiguity.

? A question mark defines the locator field for a COMBO list box with a selector field. For
a drop-down multi-column list box, this is the value displayed in the current-selection
box.

#number# The number enclosed in pound signs (#) indicates the QUEUE field to display. Following
fields in the format string without an explicit #number# are taken in order from the fields
following the #number# field. For example, #2# on the first field in the format string
indicates starting with the second field in the QUEUE, skipping the first. If the number of
fields specified in the format string are >= the number of fields in the QUEUE, the format
"wraps around" to the start of the QUEUE.

_ An underscore underlines the field.

/ A slash causes the next field to appear on a new line (only used on a field within a group).

| A vertical bar places a vertical line to the right of the field.

M An M allows the field or group of fields to be dynamically re-sized at runtime. This
allows the user to drag the right vertical bar (if present) or right edge of the data area.

F An F creates a fixed column in the list that stays on screen when the user horizontally
pages through the fields (by the HSCROLL attribute). Fixed fields or groups must be at
the start of the list. This is ignored if placed on a field within a group.

S(integer) An S followed by an integer in parentheses adds a scroll bar to the group. The integer
defines the total number of dialog units to scroll. This allows large fields to be displayed
in a small column width. This is ignored if placed on a field within a group.

"Field-group" format: [multiple field-specifiers] [(size)] [modifiers]

multiple field-specifiers
A list of field-specifiers contained in square brackets ([]) that cause them to be treated
as a single display unit.

size An optional integer, enclosed in parentheses, that specifies the default width of the group.
If omitted, the size is calculated from the enclosed fields.

modifiers The "field-group" modifiers act on the entire group of fields. These are the same
modifiers listed above.

Example:
StrLists PROCEDURE
ThisFormat STRING(200),AUTO !Current selected display format string
TQ QUEUE,AUTO !Display formats list box FROM queue
TT STRING(200)

END
TD QUEUE,AUTO !Data list box FROM queue
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL
Address STRING(40)
State STRING(10)

END
Win WINDOW(´List Boxes´),AT(0,0,366,181),SYSTEM,DOUBLE,MDI

LIST,AT(13,6,346,12),USE(ThisFormat),FROM(TQ),FORMAT(´400L´),DROP(6)
LIST,AT(0,34,366,146),FORMAT(´80L80L16L60L160L40L´),FROM(TD),USE(?Show) |

,HVSCROLL
END

CODE
LOOP 20 TIMES
RandomAlphaData(FName)
RandomAlphaData(LName)
RandomAlphaData(Init)
Wage = RANDOM(1,5000)
RandomAlphaData(Address)
RandomAlphaData(State)
ADD(TD)

END
TT = ´80L80L16L60L160L40L´ !Single-row data without headers
ThisFormat = TT
ADD(TQ)
TT = ´80C~First Name~80C~Last Name~16L~Intls~60R~Wage~160C~Address~40C~State~|´
ADD(TQ) !Single-row data with headers
 TT = ´80C~First Name~80C~Last Name~16L~Intls~60D(10)~Wage~160C~Address~40C~State~|´

ADD(TQ) !With headers and aligned decimal
TT = ´[80C80C16L]~Name~|M[60D(10)@N$12.2@]~Wage~|M[160C40C]~Address~|M´
ADD(TQ) !Added vertical size bars between columns
TT = ´[80L~ForeName~/80L~Surname~16R~Init~]|M[60D(10)]~Wage~|M[160C40C]~Address~|´
ADD(TQ) !Vertical size bars and multi-line name column
TT = ´[80L~ForeName~/80L~Surname~16R~Init~](60)F|M[60D(10)]´ & |

 ´~Wage~|M[160C40C]~Address~|´
ADD(TQ) !Fixed Multi-line name column w/ Hscroll bar
OPEN(Win)
ACCEPT
CASE ACCEPTED()
OF ?ThisFormat !When user selects a format
?Show{PROP:format} = ThisFormat ! change FORMAT attribute to new format

END
END

RandomAlphaData PROCEDURE(Field) !MAP Prototype is: RandomAlphaData(*STRING)
CODE
y# = RANDOM(1,SIZE(Field)) !Random fill size
LOOP x# = 1 to y# !Fill each character with
Field[x#] = CHR(RANDOM(97,122)) ! a random lower case letter

END

FROM (set window listbox data source)
FROM(source)

FROM Specifies the source of the data elements displayed in a LIST, COMBO, or SPIN.

source The label of a QUEUE, a field within a QUEUE, or a string constant containing the data
items to display in the list.

The FROM attribute specifies the source of the data elements displayed in a LIST, COMBO, or SPIN.

For a SPIN control, the source would usually be a QUEUE field or string. If the source is a QUEUE with
multiple fields, only the first field is displayed in the SPIN.

For LIST and COMBO controls, the data elements are formatted for display according to the information
in the FORMAT attribute. If the label of a QUEUE is specified as the source, all fields in the QUEUE are
displayed. If the label of one field in a QUEUE is specified as the source, only that field is displayed.

If a string constant is specified as the source, the individual data elements to display in the LIST must be
delimited by a vertical bar (|) character. To include a vertical bar as part of one data element, place two
adjacent vertical bars in the string (||), and only one will be displayed. To indicate that an element is
empty, place at least one blank space between the two vertical bars delimiting the elements (| |).

Example:
Que1 QUEUE,PRE(Q1)
F1 LONG
F2 STRING(8)

 END
Win1 WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),FORMAT(´5C~List~15L~Box~´),COLUMN
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q1:F1)
SPIN(@S4),AT(280,0,20,20),USE(SpinVar2),FROM(´Mr.|Mrs.|Ms.|Dr.´)

END

FULL (set full-screen)
FULL

The FULL attribute specifies the control expands to occupy the entire size of the WINDOW for any
missing AT attribute width or height parameter.

FULL may not be specified for TOOLBAR controls.

HIDE (set control hidden at open)
HIDE

The HIDE attribute specifies the control does not appear when the WINDOW or APPLICATION is first
opened. UNHIDE must be used to display it.

HLP (set control´s on-line help identifier)
HLP(helpID)

HLP Specifies the helpID for the control.

helpID A string constant specifying the key used to access the Help system. This may be either a
Help keyword or a "context string."

The HLP attribute specifies the helpID for the control. Help, if available, is automatically displayed by
Windows whenever the user presses F1. If the user presses F1 to request help when the control has input
focus, the library uses the control´s helpID to search the help file until an object with that helpID is found.

The helpID may contain a Help keyword or a "context string." A Help keyword is a keyword or phrase
that is displayed in the Help Search dialog. When the user presses F1, if only one topic in the help file
specifies this keyword, the help file is opened at that topic; if more than one topic specifies the keyword,
the search dialog is opened for the user.

A "context string" is identified by a leading tilde (~) in the helpID, followed by a unique identifier (no
spaces allowed) associated with exactly one help topic. When the user presses F1, the help file is opened
at the specific topic associated with that "context string." If the tilde is missing, the helpID is assumed to
be a help keyword.

Example:
Win1 WINDOW

ENTRY(@s30),USE(SomeVariable),HLP(´~Entry1Help´)!A help context string
ENTRY(@s30),USE(SomeVariable),HLP(´Control Two Help´)!A help keyword

END

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)
HSCROLL
VSCROLL
HVSCROLL

The HSCROLL, VSCROLL, and HVSCROLL attributes place scroll bars on a COMBO, LIST, IMAGE, or
TEXT control. HSCROLL adds a horizontal scroll bar to the bottom; VSCROLL adds a vertical scroll bar
on the right side, and HVSCROLL adds both.

The vertical scroll bar allows a mouse to scroll the control´s display up or down. The horizontal scroll bar
allows a mouse to scroll the control´s display left or right. The scroll bars appear whenever any scrollable
portion of the control lies outside the visible area on screen.

When you place VSCROLL on a LIST with the IMM attribute, the vertical scroll bar is always present,
even when the list is not full. When the user clicks on the scroll bar, events are generated, but the list
contents do not move (executable code should perform this task). You can interrogate the
PROP:VscrollPos property to determine the scroll thumb´s position in the range 0 (top) to 100 (bottom).

ICON (set control icon)
ICON([file])

ICON Specifies an icon to display as the control.

file A string constant or EQUATE containing the name of an .ICO file or Windows standard
icon to display. The .ICO file is automatically linked into the .EXE as a resource.

The ICON attribute specifies an icon to display as the control. The icon is displayed on the button face of
the control. The ICON attribute may be specified on a BUTTON, RADIO, or CHECK control. For RADIO
and CHECK controls, the ICON attribute creates "latched" pushbuttons, where the control button appears
"down" when on and "up" when off.

EQUATE statements for the Windows-standard icons are contained in the EQUATES.CLW file. The
following list is a representative sample of these (see EQUATES.CLW for the complete list):

 ICON:None No icon
 ICON:Application
 ICON:Question ?
 ICON:Exclamation !
 ICON:Asterisk *
 ICON:VCRtop >>|
 ICON:VCRrewind <<
 ICON:VCRback <
 ICON:VCRplay >
 ICON:VCRfastforward >>
 ICON:VCRbottom |<<
 ICON:VCRlocate ?

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

OPTION(´Option´),USE(OptVar)
RADIO(´Radio 1´),AT(120,0,20,20),USE(?R1),ICON(´Radio1.ICO´)
RADIO(´Radio 2´),AT(140,0,20,20),USE(?R2),ICON(´Radio2.ICO´)

END
 CHECK(´&A´),AT(0,120,20,20),USE(?C7),ICON(ICON:Asterisk)
 BUTTON(´&1´),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)

 END

IMM (set immediate event notification)
IMM

The IMM attribute specifies immediate generation of an event.

On a REGION control, the IMM attribute generates an event whenever the mouse enters, moves within,
or leaves the area specified by the REGION´s AT attribute. The exact position of the mouse can be
deteremined by the MOUSEX and MOUSEY functions.

On a BUTTON control, the IMM attribute indicates the BUTTON generates an event when the left mouse
button is pressed down on the control, instead of on its release. The event is continuously generated as
along as the user keeps the mouse button pressed.

The IMM attribute specifies immediate event generation each time the user presses any keystroke on a
LIST or COMBO control, usually requiring the QUEUE to be re-filled. When the user presses a printable
character, EVENT:AlertKey is generated. It does the same thing on an ENTRY or SPIN control.

INS, OVR (set typing mode)
INS
OVR

The INS and OVR attributes specify the typing mode for an ENTRY or TEXT control when the MASK
attribute is present on the window. INS specifies insert mode while OVR specifies overwrite mode. These
modes are only active on windows with the MASK attribute.

KEY (set control execution keycode)
KEY(keycode)

KEY Specifies a "hot" key for the control

keycode A Clarion Keycode or keycode equate label.
The KEY attribute specifies a "hot" key to immediately give focus to the control or execute the control´s
associated action.

The following controls receive focus:

COMBO
CUSTOM
ENTRY
GROUP
LIST
OPTION
PROMPT
SPIN
TEXT

The following controls both receive focus and immediately execute:

BUTTON
CHECK
CUSTOM
RADIO

Example:
WinOne WINDOW,AT(0,0,160,400)

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),KEY(F1Key)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),KEY(F2Key)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),KEY(F3Key)
TEXT,AT(20,0,40,40),USE(E2),KEY(F4Key)
PROMPT(´Enter &Data in E2:´),AT(10,200,20,20),USE(?P2),KEY(F5Key)
ENTRY(@S8),AT(100,200,20,20),USE(E2),KEY(F6Key)
BUTTON(´&1´),AT(120,0,20,20),USE(?B7),KEY(F7Key)
CHECK(´&A´),AT(0,120,20,20),USE(?C7),KEY(F8Key)
OPTION(´Option´),USE(OptVar),KEY(F9Key)
RADIO(´Radio 1´),AT(120,0,20,20),USE(?R1),KEY(F10Key)
RADIO(´Radio 2´),AT(140,0,20,20),USE(?R2),KEY(F11Key)

END
END

Note: Using the Property Assignment Syntax to reset this attribute for a control may be unsuccesful.
(1119)

LEFT, RIGHT, CENTER, DECIMAL (set display justification)
LEFT([indent])
RIGHT([indent])
CENTER([indent])
DECIMAL([indent])

indent An integer constant specifying the amount of offset from the justification point. This is in
dialog units.

The LEFT, RIGHT, CENTER, and DECIMAL attributes specify the justification of data displayed. LEFT
specifies left justification, RIGHT specifies right justification, CENTER specifies centered text, and
DECIMAL specifies numeric data aligned on the decimal point.

The indent parameter on the CENTER attribute specifies an offset from the center (negative = left offset).
On the DECIMAL attribute, indent specifies the offset of the decimal point from the right.

The CHECK and RADIO controls allow LEFT or RIGHT only (without an indent parameter). The TEXT
control allows only LEFT(indent), RIGHT(indent), or CENTER(indent).

The following controls allow LEFT(indent), RIGHT(indent), CENTER(indent), or DECIMAL(indent):

COMBO
ENTRY
LIST
SPIN
STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),RIGHT(4)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),CENTER
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),DECIMAL(8)
TEXT,AT(20,0,40,40),USE(E2),LEFT(8)
ENTRY(@S8),AT(100,200,20,20),USE(E2),LEFT(4)
CHECK(´&A´),AT(0,120,20,20),USE(?C7),LEFT
OPTION(´Option´),USE(OptVar)
RADIO(´Radio 1´),AT(120,0,20,20),USE(?R1),LEFT
RADIO(´Radio 2´),AT(140,0,20,20),USE(?R2),RIGHT

END
END

MARK (set multiple selection mode)
MARK(flag)

MARK Enables multiple items selection.

flag The label of a QUEUE field.
The MARK attribute enables multiple items selection from a LIST or COMBO control. When an item in the
LIST is selected, the appropriate flag field is set to true (1). Each marked entry is automatically highlighted
in the LIST or COMBO. Changing the value of the flag field also changes the screen display for the
related LIST or COMBO entry.

If the MARK attribute is specified on the LIST or COMBO, the IMM attribute may not be.

Example:
Que1 QUEUE,PRE(Q1)
MarkFlag BYTE
F1 LONG
F2 STRING(8)

 END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?L1),FROM(Q1:F1),MARK(Q1:MarkFlag)
COMBO(@S8),AT(120,120,,),USE(?C1),FROM(Q1:F2),MARK(Q1:MarkFlag)

END

MSG (set control status bar message)
MSG(text)

MSG Specifies text to display in the status bar.

text A string constant containing the message to display in the status bar.
The MSG attribute specifies the text to display in the first zone of the status bar when the control has
focus.

Example:
WinOne WINDOW,AT(0,0,160,400)

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(´Enter or Select´)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),MSG(´Select One´)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),MSG(´Choose One´)
TEXT,AT(20,0,40,40),USE(E2),MSG(´Enter Text´)
ENTRY(@S8),AT(100,200,20,20),USE(E2),MSG(´Enter Data´)
CHECK(´&A´),AT(0,120,20,20),USE(?C7),MSG(´On or Off´)
OPTION(´Option 1´),USE(OptVar),MSG(´Pick One or Two´)
RADIO(´Radio 1´),AT(120,0,20,20),USE(?R1)
RADIO(´Radio 2´),AT(140,0,20,20),USE(?R2)

END
OPTION(´Option´),USE(OptVar)
RADIO(´Radio 1´),AT(120,40,20,20),USE(?R1),MSG(´Pick One´)
RADIO(´Radio 2´),AT(140,40,20,20),USE(?R2),MSG(´Pick Two´)

END
END

NOBAR (set no highlight bar)
NOBAR

The NOBAR attribute specifies the currently selected element in the LIST is only highlighted when the
LIST control has focus.

PASSWORD (set data non-display)
PASSWORD

The PASSWORD attribute specifies non-display of the data entered in the ENTRY control. When the user
types in data, asterisks are displayed on screen for each character entered.

RANGE (set SPIN range limits)
RANGE(lower,upper)

RANGE Specifies the valid range of data values the user may select in a SPIN control.

lower A numeric constant that specifies the lower inclusive limit of valid data.

upper A numeric constant that specifies the upper inclusive limit of valid data.
The RANGE attribute specifies the valid range of data values the user may select in a SPIN control. This
attribute works in conjunction with the STEP attribute to provide the user with choices in the SPIN control.
When RANGE and STEP are used, the SPIN control´s FROM attribute is not.

Example:
WinOne WINDOW,AT(0,0,160,400)

SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END

READONLY (set display-only)
READONLY

The READONLY attribute specifies a display-only COMBO, ENTRY, SPIN or TEXT control. The control
may receive input focus with the mouse, but may not enter data. If the user attempts to change the
displayed value, a beep warns the user that data entry is not allowed.

REQ (set required entry)
REQ

The REQ attribute specifies an ENTRY or TEXT control that may not be left blank or zero. The REQ
attribute on an ENTRY or TEXT control is not checked until a BUTTON with the REQ attribute is pressed,
or the INCOMPLETE() function is called.

When a BUTTON with the REQ attribute is pressed, or the INCOMPLETE() function is called, all ENTRY
and TEXT controls with the REQ attribute are checked to ensure they contain data. The first control
encountered in this check that does not contain data inmediately receives input focus.

RIGHT (set MENU position)
RIGHT

The RIGHT attribute specifies the MENU is placed at the right end of the action bar.

ROUND (set round-cornered window BOX)
ROUND

The ROUND attribute specifies a BOX control with rounded corners.

SCROLL (set scrolling control)
SCROLL

The SCROLL attribute specifies a control that moves with the window when the WINDOW scrolls. This
allows "virtual" windows larger than the physical video display.

The presence of the SCROLL attribute means that the control stays fixed at a position in the window
relative to the top left corner of the virtual window, whether that position is currently in view or not. This
means that the control appears to move as the window scrolls.

If the SCROLL attribute is omitted, the control stays fixed at a position in the window relative to the top left
corner of the currently visible portion of the window. This means that the control appears to stay in the
same position on screen while the rest of the window scrolls. This is useful for controls which should stay
visible to the user at all times (such as Ok or Cancel buttons).

Mixing controls with and without the SCROLL attribute on the same WINDOW can result in multiple
controls appearing to occupy the same screen position. This occurs because the controls with SCROLL
move and the controls without SCROLL do not. This condition is temporary and scrolling the window will
correct the situation. The situation can be avoided entirely by careful placement of controls in the window.
For example, you can place all controls without SCROLL at the bottom of the window then place all
controls with SCROLL above them extending to the right and left. This would create a window that only
scrolls horizontally.

SEPARATOR (set separator line ITEM)
SEPARATOR

The SEPARATOR attribute specifies an ITEM in a MENU that displays a horizontal line to group ITEMs
within the MENU. No other attributes may be specified for the ITEM.

SKIP (set Tab key skip)
SKIP

The SKIP attribute specifies the control may only be accessed with the mouse or an accelerator key.
Controls that allow data entry receive input focus only during data entry and the control does not retain
focus. Controls that do not allow data entry do not receive or retain input focus. The effect of this is to
create the same behavior as a control in a toolbar. When the mouse cursor is over a control with the SKIP
attribute, the control´s MSG attribute is displayed in the status bar.

STD (set standard behavior)
STD(behavior)

STD Specifies standard Windows behavior.

behavior An integer constant or EQUATE specifying the identifier of a standard windows
behavior.

The STD attribute specifies the control activates some standard Windows action. This action is
automatically executed by the runtime library and does not generate an event.

EQUATE statements for the standard Windows actions are contained in the EQUATES.CLW file. The
following list is a representative sample of these (see EQUATES.CLW for the complete list):

 STD:WindowList List of open MDI windows
 STD:TileWindow Tile Windows
 STD:CascadeWindow Cascade Windows
 STD:ArrangeIcons Arrange Icons
 STD:HelpIndex Help Contents
 STD:HelpSearch Help Search dialog

Example:
MDIChildWINDOW(´Child One´),MDI,SYSTEM,MAX

MENUBAR
MENU(´Edit´),USE(?EditMenu)
ITEM(´Undo´),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(´Cu&t´),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(´Copy´),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(´Paste´),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR
BUTTON(´Cut´),USE(?OpenButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON(´Copy´),USE(?OpenButton),ICON(ICON:Copy),STD(STD:Copy)
BUTTON(´Paste´),USE(?OpenButton),ICON(ICON:Paste),STD(STD:Paste)

END
END

STEP (set SPIN increment)
STEP(count)

STEP Specifies a SPIN control RANGE attribute´s increment/decrement value.

count A numeric constant specifying the amount to increment or decrement.
The STEP attribute specifies the amount by which a SPIN control´s value is incremented or decremented
within its valid RANGE. The default STEP value is 1.0.

Example:
WinOne WINDOW,AT(0,0,160,400)

 SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
 SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)
END

TIP (set 'balloon help' text)
TIP(string)

TIP Specifies the text to display when the mouse cursor pauses over the control.

string A string constant that specifies the text to display.
The TIP attribute on a control specifies the text.to display in a balloon help box when the mouse cursor
pauses over the control. Although there is no specific limit on the number of characters, the string should
not be longer than can be displayed on the screen.

Although it is valid on any control that can gain focus for user input, this attribute is most commonly used
on BUTTON controls with the ICON attribute that are placed on the TOOLBAR. This allows the user to
quickly determine the controls purpose without accessing the on-line Help system.

Example:
WinOne WINDOW,AT(0,0,160,400)

TOOLBAR
BUTTON(E&xit),USE(?MainExitButton),ICON(ICON:hand),TIP(Exit Window)
BUTTON(&Open),USE(?OpenButton),ICON(ICON:Open),TIP(Open a File)

END
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)

ENTRY(@S8),AT(100,200,20,20),USE(E2)
END

TRN (set transparent window string)
TRN

The TRN attribute on a STRING control specifies the characters display transparently, without obliterating
the background over which the STRING is placed. Only the pixels required to create each character are
written to the screen. This allows the STRING to be placed directly on top of an IMAGE without destroying
the background picture.

Example:
WinOne WINDOW,AT(0,0,160,400)

IMAGE(´PIC.BMP´),USE(?I1),FULL !Full window image
STRING(´String Constant´),AT(10,0,20,20),USE(?S1),TRN

!Transparent string on image
END

USE (set control variable or equate label)
USE(| label | [,number])

| variable |

USE Specifies a variable or field equate label for the control.

label A field equate label to reference the control in executable code.

variable The variable to receive the value entered in the control.

number An integer constant that specifies the number the compiler equates to the field equate
label for the control.

The USE attribute specifies a variable or field equate label for the control. USE with a label parameter
simply provides a mechanism for executable source code statements to reference the control. Some
controls only allow a field equate label as the USE parameter, not a variable. These controls are:
PROMPT, IMAGE, LINE, BOX, ELLIPSE, GROUP, RADIO, REGION, MENU, and BUTTON. USE with a
variable parameter supplies the control with a variable to update by operator entry. This is applicable to
an ITEM with the CHECK attribute, or an ENTRY, OPTION, SPIN, TEXT, LIST, COMBO, CHECK, or
CUSTOM.

All controls in an APPLICATION or WINDOW are automatically assigned numbers by the compiler. For an
APPLICATION´s MENUBAR controls, these numbers start at negative one (-1) and decrement by one (1)
for each MENU and ITEM in the MENUBAR. On a WINDOW, these numbers start at one (1) and
increment by one (1) for each control in the WINDOW.

The USE attribute´s number parameter allows you to specify the actual field number the compiler assigns
to the control. This number also is used as the new starting point for subsequent field numbering for fields
without a number parameter in their USE attribute. Subsequent controls without a number parameter in
their USE attribute are incremented (or decremented) relative to the last number assigned.

Two or more controls with exactly the same USE variable in one WINDOW or APPLICATION structure
would create the same Field Equate Label for all, therefore, when the compiler encounters this condition,
all Field Equate Labels for that USE variable are discarded. This makes it impossible to reference any of
these controls in executable code, preventing confusion about which control you really want to reference.
It also allows you to deliberately create this condition to display the contents of the variable in multiple
controls with different display pictures.

Example:
WinOne WINDOW,AT(0,0,160,400)

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
ENTRY(@S8),AT(100,200,20,20),USE(E2)

END

VALUE (set RADIO control OPTION USE variable assignment)
VALUE(string)

VALUE Specifies the value assigned to the OPTION structures USE variable when the RADIO
control is selected by the user.

string A string constant that specifies the value to assign.
The VALUE attribute specifies the value that is automatically assigned to the OPTION structures USE
variable when the RADIO control is selected by the user. This attribute overrides the RADIO controls text
parameter.

All automatic type conversion rules apply to the string assigned to the OPTION structures USE variable.
Therefore, if the string contains only numeric data and the USE variable is a numeric data type, it receives
the numeric value of the string.

Example:
WinOne WINDOW,AT(0,0,160,400)

OPTION(Option 1),USE(OptVar1),MSG(Pick One or Two)
RADIO(Radio 1),AT(120,0,20,20),USE(?R1),VALUE(10) !OptVar1 receives 10
RADIO(Radio 2),AT(140,0,20,20),USE(?R2),VALUE(20) !OptVar1 receives 20

END
OPTION(Option 2),USE(OptVar2),MSG(Pick One or Two)

RADIO(Radio 1),AT(120,0,20,20),USE(?R1),VALUE(10) !OptVar2 receives 10
RADIO(Radio 2),AT(140,0,20,20),USE(?R2),VALUE(20) !OptVar2 receives 20

END
END

VCR (set VCR control)
VCR([field])

VCR Places Video Cassette Recorder (VCR) style buttons on a LIST or COMBO control.

field A field equate label that specifies the ENTRY control to use as a locator for a LIST (not
valid on a COMBO).

The VCR attribute places Video Cassette Recorder (VCR) style buttons on a LIST or COMBO control.
The VCR style buttons affect the scrolling characteristics of the data displayed in the LIST or COMBO.

There are six buttons displayed as the VCR:

 |< Top of list
 << Page Up
 < Entry Up
 > Entry Down
 >> Page Down
 >| Bottom of list

On a LIST control´s VCR(field), there also appears a button with a question mark (?) in the middle of the
other buttons. This is the locator button that gives focus to the control specified by the field parameter.
When the user enters data and then presses TAB on the locator field, the LIST scrolls to its closest
matching entry.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
ENTRY(@S8),AT(100,200,20,20),USE(E2)
LIST,AT(140,100,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR(?E2)

END

Window Commands
Event Processing

Event-driven programming

ACCEPT (the event processor)

ALERT (set event generation key)

EVENT (return event number)

POST (post user-defined event)

YIELD (allow event processing)

Multi-Threaded Applications

Multi-Threading and MDI

Multi-Threading vs. Multi-Tasking

START (return new execution thread)

THREAD (return current execution thread)

Window Procedures

CHANGE (change control field value)

CLOSE (close window)

CREATE (create new control)

DISABLE (dim a control)

DISPLAY (write USE variables to screen)

ENABLE (re-activate dimmed control)

ERASE (clear screen control and USE variables)

GETFONT (get font information)

GETPOSITION (get control position)

HELP (help window access)

HIDE (blank a control)

OPEN (open window for processing)

SELECT (select next control to process)

SET3DLOOK (set 3D window look)

SETCURSOR (set temporary mouse cursor)

SETFONT (specify font)

SETPOSITION (specify new control position)

SETTARGET (set current window or report)

UNHIDE (show hidden control)

UPDATE (write from screen to USE variables)

Window Functions

ACCEPTED (return control just completed)

CHOICE (return relative item position)

CONTENTS (return contents of USE variable)

FIELD (return control with focus)

FIRSTFIELD (return first window control)

FOCUS (return control with focus)

INCOMPLETE (return empty REQ control)

LASTFIELD (return last window control)

MESSAGE (return message box response)

MOUSEX (return mouse horizontal position)

MOUSEY (return mouse vertical position)

SELECTED (return control that has received focus)

Keyboard Procedures

ALIAS (set alternate keycode)

ASK (get one keystroke)

PRESS (put characters in the buffer)

PRESSKEY (put a keystroke in the buffer)

SETKEYCODE (specify keycode)

Keyboard Functions

KEYBOARD (return keystroke waiting)

KEYCHAR (return ASCII code)

KEYCODE (return last keycode)

KEYSTATE (return keyboard status)

Windows Standard Dialog Functions

COLORDIALOG (return chosen color)

FILEDIALOG (return chosen file)

FONTDIALOG (return chosen font)

PRINTERDIALOG (return chosen printer)

Drag and Drop Processing

CLIPBOARD (return windows clipboard contents)

DRAGID (return matching drag-and-drop signature)

DROPID (return drag-and-drop string)

SETCLIPBOARD (set windows clipboard contents)

SETDROPID (set DROPID return string)

Maintaining INI Files

GETINI (return INI file entry)

PUTINI (set INI file entry)

Event Processing
Event-driven programming

ACCEPT (the event processor)

ALERT (set event generation key)

EVENT (return event number)

POST (post user-defined event)

YIELD (allow event processing)

Event-driven programming
Windows programs are generally event-driven. This means the user causes an event by clicking the
mouse on a screen control or pressing a key. Every user action in the program results in Windows
sending a message to the program which owns the window telling it what the user has done. Once
Windows has sent the message signaling an event to the program, the program has the opportunity to
handle the event in the appropriate manner. This basically means the Windows programming paradigm is
exactly opposite from the DOS programming paradigm--the operating system (Windows) tells the
program what to do, instead of the program telling the operating system what to do.

Writing a Windows program in a programming language other than Clarion becomes very complex,
because the program must be coded to explicitly handle every message from Windows. Common tasks,
such as re-drawing graphics that have been overwritten by a window that was open and is now closed,
must be explicitly coded in the program.

These common tasks could be handled automatically by writing generic procedures to accomplish the
task and call them every time the need arises. Of course, in other programming languages, you would
have to write these procedures yourself. In Clarion for Windows, they are already written and included as
part of our runtime library. The Clarion language, therefore, has persistent graphics commands that do not
require an explicit re-draw each time they are overwritten (unlike other languages).

In Clarion Windows programs, most of the messages from Windows are automatically handled internally
by the ACCEPT event processor. These are the common events handled by the runtime library (screen
re-draws, etc.). Only those events that actually may require program action are passed on by ACCEPT to
your Clarion code. The net effect of this is to make your programming job easier by removing the low-
level "drudgery" code from your program, allowing you to concentrate on the high-level aspects of
programming, instead.

There are two types of events passed on to the program by ACCEPT: Field-specific and Field-
independent events.

A Field-specific event occurs when the user presses a key that may require the program to perform a
specific action related to that control.

A Field-independent event does not relate to any one control but requires some program action (for
example, to close a window, quit the program, or change execution threads). Most of these events cause
the system to become modal, since they require a response before the program may continue.

ACCEPT (the event processor)
ACCEPT
 statements
END

ACCEPT The event handler.

statements Executable code statements.

The ACCEPT loop is the event handler that processes events generated by Windows for the
APPLICATION or WINDOW structures. An ACCEPT loop and a window are bound together, in that, when
the window is opened, the next ACCEPT loop encountered will process all events for that window.

ACCEPT operates in the same manner as a LOOP--the BREAK and CYCLE statements can be used
within it. The ACCEPT loop cycles for every event that requires program action. ACCEPT waits until the
Clarion runtime library sends it an event that the program should process, then cycles through to execute
its statements. During the time ACCEPT is waiting, the Clarion runtime library has control, automatically
handling common events from Windows that do not need specific program action (such as screen re-
draws).

The current contents of all STRING control USE variables (in the top window of each thread)
automatically display on screen each time the ACCEPT loop cycles to the top. This eliminates the need to
explicitly issue a DISPLAY statement to update the video display for display-only data. USE variable
contents for any other control automatically display on screen for any event generated for that control,
unless PROP:Auto is turned on to automatically display all USE variables each time through the ACCEPT
loop.

Within the ACCEPT loop, the program determines what happened by using the following functions:

EVENT() Returns a value indicating what happened. Symbolic constants for events are in the
EQUATES.CLW file.

FIELD() Returns the field number for the control to which the event refers, if the event is a field-
specific event.

ACCEPTED() Returns the field number for the control to which the event refers for the
EVENT:Accepted event.

SELECTED() Returns the field number for the control to which the event refers for the
EVENT:Selected event.

FOCUS() Returns the field number of the control that has input focus, no matter what event
occurred.

MOUSEX() Returns the x-coordinate of the mouse cursor.

MOUSEY() Returns the y-coordinate of the mouse cursor.
Two events cause an implicit BREAK from the ACCEPT loop. These are the events that signal the close
of a window (EVENT:CloseWindow) or close of a program (EVENT:CloseDown). The program´s code
need not check for these events as they are handled automatically. However, the code may check for
them and execute some specific action, such as displaying a "You sure?" window or handling some
housekeeping details. A CYCLE statement at that point returns to the top of the ACCEPT loop without
exiting the window or program.

Similarly, there are several other events whose action can also be terminated by a CYCLE statement:
EVENT:PreAlertKey, EVENT:Move, EVENT:Size, EVENT:Restore, EVENT:Maximize, and EVENT:Iconize.
A CYCLE statement in response to any of these events stops the normal action and prohibits generation

of the related EVENT:AlertKey, EVENT:Moved, EVENT:Sized, EVENT:Restored, EVENT:Maximized, or
EVENT:Iconized.

Example:
CODE
OPEN(Window)
ACCEPT !Event handler
CASE FIELD()
OF 0 !Handle Field-independent events
CASE EVENT()
OF EVENT:Move
 CYCLE !Do not allow user to move the window

OF EVENT:Suspend
CASE FOCUS()
OF ?Field1

!Save some stuff
 END
OF EVENT:Resume

!Restore the stuff
END

OF ?Field1 !Handle events for Field1
CASE EVENT()
OF EVENT:Selected

! pre-edit code for field1
OF EVENT:Accepted

! completion code for field1
END

OF ?Field2
CASE EVENT()
OF EVENT:Selected

! pre-edit code for field2
OF EVENT:Accepted

! completion code for field2
END

END

See Also:

EVENT

FIELD

FOCUS

ACCEPTED

SELECTED

CYCLE

ALERT (set event generation key)
ALERT([first-keycode] [,last-keycode])

ALERT Specifies keys that generate an event.

first-keycode A numeric keycode or keycode equate label. This may be the lower limit in a range of
keycodes.

last-keycode The upper limit keycode, or keycode equate label, in a range of keycodes.
ALERT specifies a key, or an inclusive range of keys, as event generation keys. Two field-independent
events, EVENT:PreAlertKey and EVENT:AlertKey, are generated when the user presses the ALERTed
key. If the code executes a CYCLE statement when processing EVENT:PreAlertKey, you "shortstop" the
EVENT:AlertKey, preventing the library´s default action on the alerted keypress for the window.

The ALERT statement with no parameters clears all ALERT keys. Any key with a keycode may be used
as the parameter of an ALERT statement. ALERT generates field-independent events, since it is not
associated with any particular control. When EVENT:AlertKey is generated by an ALERT key, the USE
variable of the control that currently has input focus is not automatically updated (use UPDATE if this is
required).

The ALERT statement alerts its keys separately from the ALRT attribute of a window or control. This
means that clearing all ALERT keys has no effect on any keys alerted by ALRT attributes.

Example:
Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted

LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON(´&Ok´),AT(111,108,,),USE(?Ok)
BUTTON(´&Cancel´),AT(111,130,,),USE(?Cancel)

END
CODE
ALERT !Turn off all alerted keys
ALERT(F1Key,F12Key) !Alert all function keys
ALERT(279) !Alert the Ctrl-Esc key
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF KEYCODE() = F4Key !Dis-Allow F4 key
CYCLE !Terminate alert processing

END
OF EVENT:AlertKey !Alert processing
CASE KEYCODE()
OF 279 !Check for Ctrl+Esc
BREAK

OF F9Key !Check for F9
F9HotKeyProc !Call hot key procedure

OF F10Key !Check for F10
F10HotKeyProc !Call hot key procedure

END
END

END

See Also:

UPDATE

EVENT (return event number)
EVENT()

The EVENT function returns a number indicating what caused ACCEPT to alert the program that
something has happened that it may need to handle. There are EQUATEs listed in EQUATES.CLW for all
the events the program may need to handle.

There are two types of events generated by ACCEPT: field-specific and field-independent events. Field-
specific events affect a single control, while field-independent events affect the window or program. The
type of event can be determined by the values returned by the ACCEPTED, SELECTED, and FIELD
functions. If you need to know which field has input focus on a field-independent event, use the FOCUS
function.

For field-specific events:
The FIELD function returns the field number of the control on which the event occurred.
The ACCEPTED function returns the field number if the event is EVENT:Accepted. The
SELECTED function returns the field number if the event is EVENT:Selected.

For field-independent events:
The FIELD, ACCEPTED, and SELECTED functions all return zero (0).

Return Data Type: SHORT

Example:
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Control1
!Pre-edit code here

OF ?Control2
!Pre-edit code here

END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?Control1
!Post-edit code here

OF ?Control2
!Post-edit code here

END
OF EVENT:Suspend

!Save some stuff
OF EVENT:Resume

!Restore the stuff
END

END

POST (post user-defined event)
POST(event [,control] [,thread])

POST Posts an event.

event An integer constant, variable, expression, or EQUATE containing an event number. A
value in the range 400h to 0FFFh is a User-defined event.

control An integer constant, EQUATE, variable, or expression containing the field number of the
control affected by the event. If omitted, the event is field-independent.

thread An integer constant, EQUATE, variable, or expression containing the execution thread
number whose ACCEPT loop is to process the event. If omitted, the event is posted to the
current thread.

POST posts an event to the currently active ACCEPT loop of the specified thread. This may be User-
defined events, or any other event. User-defined event numbers can be defined as any integer between
400h and 0FFFh. Any event posted with a control specified is a field-specific event, while those without
are field-independent events.

Example:
Win1 WINDOW(´Tools´),AT(156,46,32,28),TOOLBOX

 BUTTON(´Date´),AT(0,0,,),USE(?Button1)
 BUTTON(´Time´),AT(0,14,,),USE(?Button2)

 END
CODE
OPEN(Win1)
ACCEPT
IF EVENT() = EVENT:User THEN BREAK. !Detect user-defined event
CASE ACCEPTED()
OF ?Button1
POST(EVENT:User,,UseToolsThread)

!Post field-independent event to other thread
OF ?Button2
POST(EVENT:User) !Post field-independent event to this thread

END
END
CLOSE(Win1)

YIELD (allow event processing)
YIELD

YIELD temporarily gives control to Windows to allow other concurrently executing Windows applications
to process events they need to handle (except those events that would post messages back to the
program containing the YIELD statement ,or events that would change focus to the other application).

YIELD is used to ensure that long batch processing in a Clarion application does not completely "lock out"
other applications from completing their tasks. This is known as "cooperative multi-tasking" and ensures
that your Windows programs peacefully co-exist with any other Windows applications.

Within your Clarion application, YIELD only allows control to pass to EVENT:Timer events in other
execution threads. This allows you to code a "background" procedure in its own execution thread using
the TIMER attribute to perform some long batch processing without requiring the user to wait until the task
is complete before continuing with other work in the application. This is an industry-standard Windows
method of doing background processing within an application.

The example code below demonstrates both approaches to performing batch processing: making the
user wait for the process to complete, and processing in the background. Only the WaitForProcess
procedure requires the YIELD statement, because it takes full control of the program. Background
processing using EVENT:Timer does not need a YIELD statement, since the ACCEPT loop automatically
performs cooperative multi-tasking with other Windows applications.

Example:
StartProcess PROCEDURE
Win WINDOW(´Choose a Batch Process´),MDI

 BUTTON(´Full Control´),USE(?FullControl)
 BUTTON(´Background´),USE(?Background)
 BUTTON(´Close´),USE(?Close)

 END
CODE
OPEN(Win)
ACCEPT
CASE FIELD()
OF ?FullControl
DISABLE(FIRSTFIELD(),LASTFIELD()) !Disable all buttons
WaitForProcess ! and call the batch process procedure
ENABLE(FIRSTFIELD(),LASTFIELD()) !Enable buttons when batch is complete

OF ?Background
X# = START(BackgroundProcess) !Start new execution thread for the process

OF ?Close
BREAK

END
END

WaitForProcess PROCEDURE !Full control Batch process
CODE
SETCURSOR(CURSOR:Wait) !Alert user to batch in progress
SET(File) !Set up a batch process
LOOP
NEXT(File)
IF ERRORCODE() THEN BREAK.
!Perform some batch processing code
YIELD !Yield to other applications and EVENT:Timer

END

SETCURSOR !Restore mmouse cursor
BackgroundProcess PROCEDURE !Background processing batch process
Win WINDOW(´Batch Processing...´),TIMER(1),MDI

 BUTTON(´Cancel´),STD(STD:Close)
 END

CODE
OPEN(Win)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records whenever the timer allows it
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
!Perform some batch processing code

. . .

Multi-Threaded Applications
Multi-Threading and MDI

Multi-Threading vs. Multi-Tasking

START (return new execution thread)

THREAD (return current execution thread)

Multi-Threading and MDI
A multi-threaded application allows the user the ability to switch between multiple execution threads at
runtime, as they choose. This makes the Windows Multiple Document Interface (MDI) approach to
programming possible. A single Windows application may have a maximum of 64 execution threads
concurrently available.

The first execution thread in any program is the main program code. This opens an APPLICATION
structure as the MDI "parent" window, containing the main menu selections for the application.

The menu selections in the APPLICATION´s MENUBAR call the START function to begin each
subsequent execution thread. The procedures called by START usually open an MDI "child" WINDOW, as
a document window or dialog box. These windows allow the user to perform the tasks the application is
designed to perform.

The last MDI "child" WINDOW opened (and not closed) in any execution thread is the "top" window in the
thread and has input focus when that thread is executing. The user can switch between execution threads
by using the mouse to CLICK on the top window of another execution thread. Thread switching can also be
accomplished by selecting an open window from an MDI window list in the main menu, if the
APPLICATION´s menu contains this standard Windows menu item.

Multi-Threading vs. Multi-Tasking
Multi-threading, as the term is used here, should not be confused with the ability to have the computer
perform multiple tasks concurrently. Multiple execution threads do not necessarily imply multi-tasking,
because only one thread normally executes at a time.

Windows allows cooperative, non-preemptive, multi-tasking between separately executing applications in
any mode, and preemptive multi-tasking in 386 enhanced mode. Preemptive multi-tasking is based on
"time slicing" between the applications and the amount of time each simultaneously executing application
receives is governed by the end user´s Windows configuration. See your Windows documentation for an
explanation of Windows´ multi-tasking settings.

A form of cooperative, non-preemptive, multi-threading (similar to inter-application multi-tasking) can be
accomplished within a single Clarion application by using the TIMER attribute. This is not based on "time
slicing" between execution threads. Instead, each execution thread gains control and does not relinquish
it until it executes an ASK or ACCEPT statement.

When the top window of an execution thread has the TIMER attribute, a timer event (EVENT:Timer) is
periodically generated to cycle its ACCEPT loop to process the event. This occurs even if the thread does
not currently have input focus. Therefore, if you want to perform this type of multi-threading, you must
ensure that any lengthy execution code includes YIELD statements that occasionally execute to allow the
timer events in other threads to generate and execute.

START (return new execution thread)
START(procedure [,stack])

START Begins a new execution thread.

procedure The label of the first PROCEDURE to call on the new execution thread. The procedure
must have been prototyped not to receive any parameters.

stack An integer constant or variable containing the size of the stack to allocate to the new
execution thread. If omitted, the default stack is 10,000 bytes.

The START function begins a new execution thread, calling the procedure and returning the number
assigned to the new thread. The returned thread number number is used by procedures and functions
whose action may be performed on any execution thread, such as SETTARGET. The maximum number
of simultaneously available execution threads in a single application is 64.

The first execution thread in any program is the main program code, which is always numbered one (1).
Therefore, the lowest value START can return is two (2), when the first START function is executed in a
program. START may return zero (0), which indicates failure to open the thread. This can occur by
attempting to START a 65th thread, or by running out of memory, or by starting a thread when the system
is modal.

Return Data Type: LONG

Example:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(´&File´),USE(?FileMenu)
ITEM(´Selection &1...´),USE(?MenuSelection1)
ITEM(´Selection &2...´),USE(?MenuSelection2)

END
END

END
SaveThread1 LONG !Declare thread number save variable
SaveThread2 LONG !Declare thread number save variable
CODE
OPEN(MainWin) !Open the APPLICATION
ACCEPT !Handle Global events
CASE ACCEPTED()
OF ?MenuSelection1
SaveThread1 = START(NewProc1) !Start a new thread

OF ?MenuSelection2
SaveThread2 = START(NewProc2) !Start a new thread

OF ?Exit
RETURN

END

THREAD (return current execution thread)
THREAD()

The THREAD function returns the currently executing thread number. The returned thread number
number can be used by procedures and functions whose action may be performed on any execution
thread, such as SETTARGET.

The maximum number of simultaneously available execution threads in a single application is 64. The first
execution thread in any program is the main program code, which is always thread number one (1).
Therefore, THREAD always returns a value in the range of one (1) to sixty-four (64).

Return Data Type: LONG

Example:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(´&File´),USE(?FileMenu)
ITEM(´Selection &1...´),USE(?MenuSelection1)
ITEM(´Selection &2...´),USE(?MenuSelection2)

END
END

END
SaveThread LONG !Declare thread number save variable
SaveThread1 LONG !Declare thread number save variable
SaveThread2 LONG !Declare thread number save variable
CODE
SaveThread = THREAD() !Save thread number
OPEN(MainWin) !Open the APPLICATION
ACCEPT !Handle Global events
CASE ACCEPTED()
OF ?MenuSelection1
SaveThread1 = START(NewProc1) !Start a new thread

OF ?MenuSelection2
SaveThread2 = START(NewProc2) !Start a new thread

OF ?Exit
RETURN

END
END

Window Procedures
CHANGE (change control field value)

CLOSE (close window)

CREATE (create new control)

DISABLE (dim a control)

DISPLAY (write USE variables to screen)

ENABLE (re-activate dimmed control)

ERASE (clear screen control and USE variables)

GETFONT (get font information)

GETPOSITION (get control position)

HELP (help window access)

HIDE (blank a control)

OPEN (open window for processing)

SELECT (select next control to process)

SET3DLOOK (set 3D window look)

SETCURSOR (set temporary mouse cursor)

SETFONT (specify font)

SETPOSITION (specify new control position)

SETTARGET (set current window or report)

UNHIDE (show hidden control)

UPDATE (write from screen to USE variables)

CHANGE (change control field value)
CHANGE(control,value)

CHANGE Changes the value displayed in a control in an APPLICATION or WINDOW structure.

control Field number or field equate label of a window control field.

value A constant or variable containing the control´s new value.
The CHANGE statement changes the value displayed in a control in an APPLICATION or WINDOW
structure. CHANGE updates the control´s USE variable with the value, and then displays that new value
in the control field.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Ctl:Code
CHANGE(?Ctl:Code,4) !Change Ctl:Code to 4 and display it

OF ?Ctl:Name
CHANGE(?Ctl:Name,´ABC Company´)

!Change Ctl:Name to ABC Company and display
END

OF EVENT:Accepted
CASE ACCEPTED()
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(Ctl:Record)
BREAK

END
END

CLOSE (close window)

CLOSE(label)

CLOSE Closes the active APPLICATION or WINDOW structure.

label The label of an APPLICATION or WINDOW structure.
CLOSE terminates processing on the active APPLICATION or WINDOW structure. Memory used by the
active window is released when it is closed and the underlying screen is automatically re-drawn.

When a window is closed, if it is not the top-most window on its execution thread, all windows opened
subsequent to the window being closed are automatically closed first. This occurs in the reverse order
from which they were opened.

An APPLICATION or WINDOW that is declared local to (within) a PROCEDURE or FUNCTION is
automatically closed when the program RETURNs from the procedure.

Example:
CLOSE(MenuScr) !Close the menu screen
CLOSE(CustEntry) !Close customer data entry screen

CREATE (create new control)
CREATE(control ,type [,parent])

CREATE Creates a new control.

control A field number or field equate label for the control to create.

type An integer constant, expression, EQUATE, or variable that specifies the type of control to
create.

parent A field number or field equate label. This specifies an OPTION, GROUP, or MENU to
contain the new control.

CREATE dynamically creates a new control in the currently active APPLICATION or WINDOW. When first
created, the new control is initially hidden, so its properties can be set using the runtime property
assignment syntax, SETPOSITION, and SETFONT. It appears on screen only by issuing an UNHIDE
statement for the control. To place the new control on the toolbar, add CREATE:TOOLBAR to the equate
for the new control´s type.

EQUATE statements for the type parameter are contained in the EQUATES.CLW file. The following list is
a comprehensive sample of these (see EQUATES.CLW for the complete list):

 CREATE:sstring STRING(picture),USE(variable)
 CREATE:string STRING(constant)
 CREATE:image IMAGE()
 CREATE:region REGION()
 CREATE:line LINE()
 CREATE:box BOX()
 CREATE:ellipse ELLIPSE()
 CREATE:entry ENTRY()
 CREATE:button BUTTON()
 CREATE:prompt PROMPT()
 CREATE:option OPTION()
 CREATE:radio RADIO()
 CREATE:check CHECK()
 CREATE:group GROUP()
 CREATE:list LIST()
 CREATE:combo COMBO()
 CREATE:spin SPIN()
 CREATE:text TEXT()
 CREATE:custom CUSTOM()
 CREATE:droplist LIST(),DROP()
 CREATE:dropcombo COMBO(),DROP()
 CREATE:menu MENU()
 CREATE:item ITEM()

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
X SHORT
Y SHORT

Width SHORT
Height SHORT
Code4Entry STRING(10)
?Code4Entry EQUATE(100)
CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code = 4
CREATE(?Code4Entry,CREATE:entry) !Create the control
?Code4Entry{PROP:use} = ´Code4Entry´ !Set USE variable
?Code4Entry{PROP:text} = ´@s10´ !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height)
?Code4Entry{PROP:at,1} = X + Width + 40 !Set x position
?Code4Entry{PROP:at,2} = Y !Set y position
UNHIDE(?Code4Entry) !Display the new control

END
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(Ctl:Record)
BREAK

END
END
CLOSE(Screen)
RETURN

DESTROY (remove a control)
DESTROY(first control [,last control])

DESTROY Removes window controls.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The DESTROY statement removes a control, or range of controls, from an APPLICATION or WINDOW
structure. When removed, the controls resources are returned to the operating system.

DESTROYing a GROUP, OPTION, MENU, TAB, or SHEET control also destroys all controls contained
within it.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DESTROY(?Ctl:Code) !Remove a control
DESTROY(?Ctl:Code,?Ctl:Name) !Remove range of controls
DESTROY(2) !Remove the second control

See Also:

CREATE

DISABLE (dim a control)
DISABLE(first control [,last control])

DISABLE Dims controls on the window.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The DISABLE statement disables a control or a range of controls on an APPLICATION or WINDOW
structure. When disabled, the control appears dimmed on screen.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DISABLE(?Ctl:Code) !Disable a control
DISABLE(?Ctl:Code,?Ctl:Name) !Disable range of controls
DISABLE(2) !Disable the second control

See Also:

ENABLE

HIDE

UNHIDE

DISPLAY (write USE variables to screen)
DISPLAY([first control] [,last control])

DISPLAY Writes the contents of USE variables to their associated controls.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
DISPLAY writes the contents of the USE variables to their associated controls on the active window.
DISPLAY with no parameters writes the USE variables for all controls on the screen. Using first control
alone, as the parameter of DISPLAY, writes a specific USE variable to the screen. Both first control and
last control parameters are used to display the USE variables for an inclusive range of controls on the
screen.

The current contents of the USE variables of all controls are automatically displayed on screen each time
the ACCEPT loop cycles. This eliminates the need to explicitly issue a DISPLAY statement to update the
video display. Of course, if your application performs some operation that takes a long time and you want
to indicate to the user that something is happening without cycling back to the top of the ACCEPT loop,
you should DISPLAY some variable that you have updated.

Example:
DISPLAY !Display all controls on the screen
DISPLAY(2) !Display control number 2
DISPLAY(3,7) !Display controls 3 through 7
DISPLAY(?MenuControl) !Display the menu control
DISPLAY(?TextBlock,?Ok) !Display range of controls

See Also:

Field Equate Labels

UPDATE

ERASE

ENABLE (re-activate dimmed control)
ENABLE(first control [,last control])

ENABLE Reactivates disabled controls.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The ENABLE statement reactivates a control, or range of controls, that were dimmed by the DISABLE
statement, or were declared with the DISABLE attribute. Once reactivated, the control is again available
to the operator for selection.

Example:
CODE
OPEN(Screen)
DISABLE(?Control2) !Control2 is deactivated
IF Ctl:Password = ´Supervisor´
ENABLE(?Control2) !Re-activate Control2

END

See Also:

DISABLE

HIDE

UNHIDE

ERASE (clear screen control and USE variables)
ERASE([first control] [,last control])

ERASE Blanks controls and clears their USE variables.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The ERASE statement erases the data from controls in the window and clears their corresponding USE
variables. ERASE with no parameters erases all controls in the window. Using first control alone, as the
parameter of ERASE, clears a specific USE variable and its associated control. Both first control and last
control parameters are used to clear the USE variables and associated controls for an inclusive range of
controls in the window.

Example:
ERASE(?) !Erase the currently selected control
ERASE !Erase all controls on the screen
ERASE(3,7) !Erase controls 3 through 7
ERASE(?Name,?Zip) !Erase controls from name through zip
ERASE(?City,?City+2) !Erase City and 2 controls following City

See Also:

Field equate Labels

GETFONT (get font information)
GETFONT(control ,typeface , size ,color ,style)

GETFONT Gets display font information.

control A field number or field equate label for the control from which to get the information. If
control is zero (0), it specifies the WINDOW.

typeface A string variable to receive the name of the font.

size An integer variable to receive the size (in points) of the font.

color A LONG integer variable to receive the red, green, and blue values for the color of the
font in the low-order three bytes. If the value is negative, the color represents a system
color.

style An integer variable to receive the strike weight and style of the font.
GETFONT gets the display font information for the control. If the control parameter is zero (0), GETFONT
gets the default display font for the window.

Example:
TypeFace STRING(20)
Size BYTE
Color LONG
Style LONG
CODE
OPEN(Screen)
GETFONT(0,TypeFace,Size,Color,Style) !Get font info for the window

See Also:

SETFONT

GETPOSITION (get control position)
GETPOSITION(control ,x , y ,width ,height)

GETPOSITION Gets the position and size of an APPLICATION, WINDOW, or control.

control A field number or field equate label for the control from which to get the information. If
control is zero (0), it specifies the window.

x An integer variable to receive the horizontal position of the top left corner.

y An integer variable to receive the vertical position of the top left corner.

width An integer variable to receive the width.

height An integer variable to receive the height.
GETPOSITION gets the position and size of an APPLICATION, WINDOW, or control. The position and
size values are dependent upon the presence or absence of the SCROLL attribute on the control. If
SCROLL is present, the values are relative to the virtual window. If SCROLL is not present, the values are
relative to the top left corner of the currently visible portion of the window. This means the values returned
always match those specified in the AT attribute or most recent SETPOSITION.

The values in the x, y, width, and height parameters are measured in dialog units. Dialog units are defined
as one-quarter the average character width by one-eighth the average character height. The size of a
dialog unit is dependent upon the size of the default font for the window. This measurement is based on
the font specified in the FONT attribute of the window, or the system default font specified by Windows.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
X SHORT
Y SHORT
Width SHORT
Height SHORT
CODE
OPEN(Screen)
GETPOSITION(?Ctl:Code,X,Y,Width,Height)

See Also:

SETPOSITION

HELP (help window access)
HELP([helpfile] [,window-id])

HELP Opens a help file and activates a help window.

helpfile A string constant or the label of a STRING variable that has the DOS directory file
specification for the help file. If the file specification does not contain a complete path
and filename, the help file is assumed to be in the current directory. If the file extension is
omitted, ".HLP" is assumed. If the helpfile parameter is omitted, a comma is required to
hold its position.

window-id A string constant or the label of a STRING variable that contains the key used to access
the help system. This may be either a help keyword or a "context string."

The HELP statement opens a designated helpfile, and activates the window named by the window-id.
While an ASK or ACCEPT is controlling program execution, the active help window is displayed when the
operator presses F1 (the "Help" key).

If the window-id parameter is omitted, the helpfile is nominated but not opened. If the helpfile parameter is
omitted, the current help file is opened, and the window identified by window-id is activated. If both
parameters are omitted, the current helpfile is opened at the current topic.

The window-ID may contain a Help keyword. This is a keyword that is displayed in the Help Search
dialog. When the user presses F1, if only one topic in the help file specifies this keyword, the help file is
opened at that topic; if more than one topic specifies the keyword, the search dialog is opened for the
user.

A "context string" is identified by a leading tilde (~) in the window-ID, followed by a unique identifier
associated with exactly one help topic. If the tilde is missing, the window-ID is assumed to be a help
keyword. When the user presses F1, the help file is opened at the specific topic associated with that
"context string."

Help windows are also activated by the HLP attribute of an APPLICATION, WINDOW, or control.

Example:
HELP(´C:\HLPDIR\LEDGER.HLP´) !Open the gen ledger help file
HELP(,´~CustUpd´) !Activate customer update help window
HELP !Display the help window

See Also:

ASK

ACCEPT

HLP

HIDE (blank a control)
HIDE(first control [,last control])

HIDE Hides window controls.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The HIDE statement hides a control, or range of controls, on an APPLICATION or WINDOW structure.
When hidden, the control does not appear on screen.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
HIDE(?Ctl:Code) !Hide a control
HIDE(?Ctl:Code,?Ctl:Name) !Hide range of controls
HIDE(2) !Hide the second control

See Also:

UNHIDE

ENABLE

DISABLE

OPEN (open window for processing)
OPEN(label)

OPEN Opens a window.

label The label of an APPLICATION or WINDOW structure.
OPEN activates an APPLICATION or WINDOW for processing. However, nothing is displayed until a
DISPLAY statement or the ACCEPT loop is encountered. This allows an opportunity to execute pre-
display code to customize the display.

Example:
OPEN(MenuScr) !Open the menu screen
OPEN(CustEntry) !Open customer data entry screen

SELECT (select next control to process)
SELECT([control] [,position] [,endposition])

SELECT Sets the next control to receive input focus.

control A field number or field equate label of the next control to process. If omitted, the
SELECT statement initiates AcceptAll mode.

position Specifies a position within the control to place the cursor. For an ENTRY or TEXT,
SPIN, or COMBO control this is a character position, or a beginning character position
for a marked block. For an OPTION structure, this is the selection number within the
OPTION. For a LIST control, this is the QUEUE entry number.

endposition Specifies an ending character position within an ENTRY, TEXT, SPIN, or COMBO
control. The character position specified by position and endposition are marked as a
block, available for cut and paste operations.

SELECT overrides the normal TAB key sequence control selection order of an APPLICATION or
WINDOW. Its action affects the next ACCEPT statement that executes. The control parameter determines
which control the ACCEPT loop will process next. If control specifies a control which cannot rceive focus
because a DISABLE or HIDE statment has been issued, focus goes to the next control following it in the
window´s source code that can receive focus.

SELECT with position and endposition parameters specifies a marked block in the control which is
available for cut and paste operations.

SELECT with no parameters initiates AcceptAll mode. This is a field edit mode in which each control in
the window is processed in TAB key sequence by generating EVENT:Accepted for each. This allows data
entry validation code to execute for all controls, including those that the user has not touched. AcceptAll
mode terminates when any of the following conditions is met:

A SELECT(?) statement selects the same control for the user to edit. This code usually indicates
the value it contains is invalid and the user must re-enter data.

The Window{PROP:AcceptAll} property is set to zero (0). This property contains one (1) when
AcceptAll mode is active. Assigning values to this property can also be used to initiate and
terminate AcceptAll mode.

A control with the REQ attribute is blank or zero. AcceptAll mode terminates with the control
highlighted for user entry, without processing any more fields in the TAB key sequence.

When all controls have been processed, EVENT:Completed is posted to the window.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(´OK´),USE(?OkButton),KEY(EnterKey)
BUTTON(´Cancel´),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
SELECT(?Ctl:Code) !Start with Ctl:Code
ACCEPT
CASE ACCEPTED()

OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP ! alert the user and
SELECT(?) ! make them re-enter the data

END
OF ?Ctl:Name
SELECT(?Ctl:Name,1,5) !Mark first five characters as a block

OF ?OkButton
SELECT !Initiate AcceptAll mode

END
IF EVENT() = EVENT:Completed THEN BREAK.

 !AcceptAll mode terminated
END

See Also:

ACCEPT

SET3DLOOK (set 3D window look)
SET3DLOOK([switch])

SET3DLOOK Toggles three-dimensional look and feel.

switch An integer constant switching the 3D look off (0) and on (1). If omitted, the default is one
(1).

The SET3DLOOK procedure sets up the program to display a three-dimensional look and feel. The
default program setting is 3D enabled. On a WINDOW, the GRAY attribute causes the controls to display
with a three-dimensional appearance. Controls in the TOOLBAR are always displayed with the three-
dimensional look, unless disabled by SET3DLOOK. When three-dimensional look is disabled by
SET3DLOOK, the GRAY attribute has no effect.

SET3DLOOK(0) turns off the three-dimensional look and feel. SET3DLOOK(1) turns on the three-
dimensional look and feel. Values other than zero or one are reserved for future use.

Example:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(´&File´),USE(?FileMenu)
ITEM(´&Open...´),USE(?OpenFile)
ITEM(´&Close´),USE(?CloseFile),DISABLE
ITEM(´Turn off 3D Look´),USE(?Toggle3D),CHECK
ITEM(´E&xit´),USE(?MainExit)

END
END

END
CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Toggle3D
IF MainWin$?Toggle3D{PROP:text} = ´Turn off 3D Look´ !If on
SET3DLOOK(0) !Turn off
MainWin$?Toggle3D{PROP:text} = ´Turn on 3D Look´ ! and

change text
ELSE !Else
SET3DLOOK(1) !Turn on
MainWin$?Toggle3D{PROP:text} = ´Turn off 3D Look´ ! and

change text
END

OF ?OpenFile
START(OpenFileProc)

OF ?MainExit
BREAK

END
END
CLOSE(MainWin)

SETCURSOR (set temporary mouse cursor)
SETCURSOR([cursor])

SETCURSOR Specifies a temporary mouse cursor to display.

cursor An EQUATE naming a Windows-standard mouse cursor. If omitted, turns off the
temporary cursor.

The SETCURSOR statement specifies a temporary mouse cursor to display until a SETCURSOR
statement without a cursor parameter turns it off. This cursor overrides all CURSOR attributes. When
SETCURSOR without a cursor parameter is encountered, all CURSOR attributes once again take effect.
SETCURSOR is generally used to display the hourglass while your program is doing some "behind the
scenes" work that the user should not break into.

EQUATE statements for the Windows-standard mouse cursors are contained in the EQUATES.CLW file.
The following list is a representative sample of these (see EQUATES.CLW for the complete list):

CURSOR:None No mouse cursor
CURSOR:Arrow Normal windows arrow cursor
CURSOR:IBeam Capital "I" like a steel I-beam
CURSOR:Wait Hourglass
CURSOR:Cross Large plus sign
CURSOR:UpArrow Vertical arrow
CURSOR:Size Four-headed arrow
CURSOR:Icon Box within a box
CURSOR:SizeNWSE Double-headed arrow slanting left
CURSOR:SizeNESW Double-headed arrow slanting right
CURSOR:SizeWE Double-headed horizontal arrow
CURSOR:SizeNS Double-headed vertical arrow

Example:
MainWin APPLICATION(´My Application´),SYSTEM,MAX,ICON(´MyIcon.ICO´),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(´Batch Update´),USE(?Batch)

END
END

CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Batch
SETCURSOR(CURSOR:Wait) !Turn on hourglass mouse cursor
BatchUpdate ! and call the batch update procedure

END
END

SETFONT (specify font)
SETFONT(control ,typeface , size ,color ,style)

SETFONT Dynamically sets the display font for a control.

control A field number or field equate label for the control to affect. If control is zero (0), it
specifies the WINDOW.

typeface A string constant or variable containing the name of the font. If omitted, the system font
is used.

size An integer constant or variable containing the size (in points) of the font. If omitted, the
system default font size is used.

color A LONG integer constant or variable containing the red, green, and blue values for the
color of the font in the low-order three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant, constant expression, EQUATE, or variable specifying the strike
weight and style of the font. If omitted, the weight is normal.

SETFONT dynamically specifies the display font for the control, overriding any FONT attribute previously
specified. If the control parameter is zero (0), SETFONT specifies the default display font for the window.

SETFONT allows you to specify all parameters of a font change at once, instead of one at a time as
runtime property assignment allows. This has the advantage of implementing all changes at once,
whereas runtime property assignment would change each individually, displaying each separate change
as it occurs.

The typeface may name any font registered in the Windows system. The EQUATES.CLW file contains
EQUATE values for standard style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may also add values that indicate italic, underline, or strikeout text. The
following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

Example:
SETFONT(0,´Arial´,14,,FONT:thin+FONT:Italic) !14 pt. Arial black thin italic

See Also:

GETFONT

SETPOSITION (specify new control position)
SETPOSITION(control ,x , y ,width ,height)

SETPOSITION Dynamically specifies the position and size of an APPLICATION, WINDOW, or
control.

control A field number or field equate label for the control to affect. If control is zero (0), it
specifies the window.

x An integer constant, expression, or variable that specifies the horizontal position of the
top left corner. If omitted, the x position is not changed.

y An integer constant, expression, or variable that specifies the vertical position of the top
left corner. If omitted, the y position is not changed.

width An integer constant, expression, or variable that specifies the width. If omitted, the width
is not changed.

height An integer constant, expression, or variable that specifies the height. If omitted, the
height is not changed.

SETPOSITION dynamically specifies the position and size of an APPLICATION, WINDOW, or control. If
any parameter is omitted, the value is not changed.

The values contained in the x, y, width, and height parameters are measured in dialog units. Dialog units
are defined as one-quarter the average character width by one-eighth the average character height. The
size of a dialog unit is dependent upon the size of the default font for the window. This measurement is
based on the font specified in the FONT attribute of the window, or the system default font specified by
Windows.

Using SETPOSITION produces a "smoother" control appearance change than using property expressions
to change the AT attribute´s parameter values. This is because SETPOSITION changes all four
parameters at once. Property expressions must change one parameter at a time. Since each individual
parameter change would be immediately visible on screen, this would cause the control to appear to
"jump."

Example:
CREATE(?Code4Entry,CREATE:entry,?Ctl:Code) !Create a control
?Code4Entry{PROP:use} = ´Code4Entry´ !Set USE variable
?Code4Entry{PROP:text} = ´@s10´ !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height) !Get Ctl:Code position
SETPOSITION(?Code4Entry,X+Width+40,Y) !Set x 40 past Ctl:Code
UNHIDE(?Code4Entry) !Display the new control

See Also:

GETPOSITION

SETTARGET (set current window or report)
SETTARGET([target] [,thread])

SETTARGET Sets the current window (or report) for drawing graphics and other window-interaction
statements.

target The label of an APPLICATION, WINDOW or REPORT structure. If omitted, the last
window opened and not yet closed in the specified thread is used.

thread The number of the execution thread in which the target structure is contained in the
topmost procedure or function. If omitted, the current execution thread is used.

The SETTARGET procedure makes the target the structure which is current for drawing with the graphics
primitives functions. SETTARGET also sets the target for runtime property assignment, and the CREATE,
SETPOSITION, GETPOSITION, SETFONT, GETFONT, DISABLE, HIDE, CONTENTS, DISPLAY,
ERASE, and UPDATE statements. Using these statements with SETTARGET allows you to manipulate
the window display in the topmost window of any execution thread.

This target will receive any graphics drawn with the graphics procedures and functions described in the
Graphics Commands section. This allows you to draw graphics to the topmost window, or report, in any
execution thread.

SETTARGET sets the "built-in" variable, TARGET (also set when a window is opened), which may be
used in any statement which requires the label of the current window or report. A REPORT data structure
is never the default target. Therefore, SETTARGET must be used before using the graphics primitives
functions to draw graphics on a REPORT.

SETTARGET does not change procedures, and it does not change which ACCEPT loop receives the
events generated by Windows. SETTARGET without any parameters resets to the procedure and
execution thread with the currently active ACCEPT loop.

Example:
Report REPORT

 !Report structure controls
 END

CODE
OPEN(Report)
SETTARGET(Report) !Make the report the current target
TARGET{PROP:Landscape} = 1 ! and turn on landscape mode

UNHIDE (show hidden control)
UNHIDE(first control [,last control])

UNHIDE Displays previously hidden controls.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
The UNHIDE statement reactivates a control or range of controls, that were hidden by the HIDE
statement. Once un-hidden, the control is again visible on screen.

Example:
CODE
OPEN(Screen)
HIDE(?Control2) !Control2 is hidden
IF Ctl:Password = ´Supervisor´
UNHIDE(?Control2) !Unhide Control2

END

See Also:

HIDE

ENABLE

DISABLE

UPDATE (write from screen to USE variables)
UPDATE([first control] [,last control])

UPDATE Writes the contents of a control to its USE variable.

first control Field number or field equate label of a control, or the first control in a range of controls.

last control Field number or field equate label of the last control in a range of controls.
UPDATE writes the contents of a screen control to its USE variable. This takes the value displayed on
screen and places it in the variable specified by the control´s USE attribute.

USE variables are updated automatically by ACCEPT as each control is accepted. However, certain
events (such as an ALERTed key press) do not automatically update USE variables. This is the purpose
of the UPDATE statement.

UPDATE Updates all controls on the screen.

UPDATE(first control) Updates a specific USE variable from its associated screen
control.

UPDATE(first control,last control) Updates the USE variables of an inclusive range of screen
controls.

Example:
UPDATE(?) !Update the currently selected control
UPDATE !Update all controls on the screen
UPDATE(?Address) !Update the address control
UPDATE(3,7) !Update controls 3 through 7
UPDATE(?Name,?Zip) !Update controls from name through zip
UPDATE(?City,?City+2) !Update city and 2 controls following

See Also:

Field equate Labels

Window Functions
ACCEPTED (return control just completed)

CHOICE (return relative item position)

CONTENTS (return contents of USE variable)

FIELD (return control with focus)

FIRSTFIELD (return first window control)

FOCUS (return control with focus)

INCOMPLETE (return empty REQ control)

LASTFIELD (return last window control)

MESSAGE (return message box response)

MOUSEX (return mouse horizontal position)

MOUSEY (return mouse vertical position)

SELECTED (return control that has received focus)

ACCEPTED (return control just completed)
ACCEPTED()

The ACCEPTED function returns the field number of the control on which an EVENT:Accepted event
occurred. ACCEPTED returns zero (0) for all other events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all APPLICATION
controls. In executable code statements, field numbers are usually represented by field equate labels--the
label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: SHORT

Example:
CASE ACCEPTED() !Process post-edit code
OF ?Cus:Company
!Edit field value

OF ?Cus:CustType
!Edit field value

END

See Also:

ACCEPT

EVENT

CHOICE (return relative item position)
CHOICE([control])

CHOICE Retuns a user selection number.

control A field equate label of a LIST, COMBO, or OPTION control.
The CHOICE function returns the sequence number of a selected item in an OPTION structure, LIST box,
or COMBO control. With no parameter, CHOICE returns the sequence number of the selected item in the
last control (LIST, OPTION, or COMBO) that generated a Field-specific event to cycle the ACCEPT loop.
CHOICE(control) returns the current selection number of any LIST, OPTION, or COMBO in the currently
active window.

CHOICE returns the sequence number of the selected RADIO control within an OPTION structure. The
sequence number is determined by relative position within the OPTION. The first control listed in the
OPTION structure´s code is relative position 1, the second is 2, etc.

CHOICE returns the memory QUEUE entry number of the selected item when a LIST or COMBO box is
completed.

Return Data Type: LONG

Example:
CODE
ACCEPT
EXECUTE CHOICE() !Perform menu option
AddRec ! procedure to add record
PutRec ! procedure to change record
DelRec ! procedure to delete record
RETURN ! return to caller

END
END

CONTENTS (return contents of USE variable)
CONTENTS(control)

CONTENTS Returns the value in the USE variable of a control.

control A field number or field equate label.
The CONTENTS function returns a string containing the value in the USE variable of an ENTRY, OPTION
RADIO, or TEXT control.

A USE variable may be longer than its associated control field display picture OR may contain fewer
characters than its total capacity. The CONTENTS function always returns the full length of the USE
variable.

Return Data Type: STRING

Example:
IF CONTENTS(?LastName) = ´´ AND CONTENTS(?FirstName) = ´´

!If first and last name are blank
MessageField = ´Must Enter a First or Last Name´

! display error message
END

FIELD (return control with focus)
FIELD()

The FIELD function returns the field number of the control which has focus at the time of any field-specific
event. This includes both the EVENT:Selected and EVENT:Accepted events. FIELD returns zero (0) for
field-independent events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all APPLICATION
controls. In executable code statements, field numbers are usually represented by field equate labels--the
label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: LONG

Example:
Screen WINDOW

ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)
ENTRY(@N4),USE(Control4)

END
CODE
ACCEPT
IF NOT ACCEPTED() THEN CYCLE.
CASE FIELD() !Control edit control
OF ?Control1 ! Field number 1
IF Control1 = 0 ! if no entry
BEEP ! sound alarm
SELECT(?) ! stay on control

END
OF ?Control2 ! Field number 2
IF Control2 > 4 ! if status is more than 4
Scr:Message = ´Control must be less than 4´
ERASE(?) ! clear control
SELECT(?) ! edit the control again

ELSE ! value is valid
CLEAR(Scr:Message) ! clear message

END
OF ?Control4 ! Field number 4
BREAK ! exit processing loop

. . ! end case, end loop

FIRSTFIELD (return first window control)
FIRSTFIELD()

The FIRSTFIELD function returns the lowest field number in the currently active window.

Return Data Type: LONG

Example:
DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields

FOCUS (return control with focus)
FOCUS()

The FOCUS function returns the field number of the control which has input focus at any time any event
occurs.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all APPLICATION
controls. In executable code statements, field numbers are usually represented by field equate labels--the
label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: LONG

Example:
Screen WINDOW

ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)
ENTRY(@N4),USE(Control4)

END
CODE
ACCEPT
CASE EVENT()
OF EVENT:LoseFocus
OROF EVENT:CloseWindow
CASE FOCUS() !Control edit control
OF ?Control1 ! Field number 1
UPDATE(?Control1)

OF ?Control2 ! Field number 2
UPDATE(?Control2)

OF ?Control4 ! Field number 4
UPDATE(?Control4)

END
END

END

See Also:

ACCEPTED

SELECTED

FIELD

EVENT

INCOMPLETE (return empty REQ control)
INCOMPLETE()

The INCOMPLETE function returns the field number of the first control with the REQ attribute in the
currently active window that has been left zero or blank, and gives input focus to that control. If all REQ
controls in the window contain data, INCOMPLETE returns zero (0) and leaves input focus on the control
that already had it.

The INCOMPLETE function duplicates the action performed by the REQ attribute on a BUTTON control.

Return Data Type: LONG

Example:
CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?OkBUtton
IF INCOMPLETE() !Any REQ fields empty?
SELECT(INCOMPLETE()) ! if so, go to it
CYCLE

ELSE
BREAK !If not, go on

END
END

END

LASTFIELD (return last window control)
LASTFIELD()

The LASTFIELD function returns the highest field number in the currently active window.

Return Data Type: LONG

Example:
DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields

MESSAGE (return message box response)
MESSAGE(text [,caption] [,icon] [,buttons] [,default] [,style])

MESSAGE Displays a message dialog box and returns the button the user pressed.

text A string constant or variable containing the text to display in the message box.

caption The dialog box title. If omitted, the dialog has no title.

icon A string constant, variable, or EQUATE for a Windows standard icon. If omitted, no icon
is displayed on the dialog box.

buttons An integer constant, variable, EQUATE, or expression which indicates which Windows
standard buttons to place on the dialog box. This may indicate multiple buttons. If
omitted, the dialog displays an Ok button.

default An integer constant, variable, EQUATE, or expression which indicates the default button
on the dialog box. If omitted, the first button is the default.

style An integer constant or variable which specifies the window is Application Modal (0) or
System Modal (1). If omitted, the window is Application Modal.

The MESSAGE function displays a Windows-standard message box, typically requiring only a Yes or No
response, or no specific response at all. The function returns the number of the button the user presses to
exit the dialog box.

The EQUATES.CLW file contains symbolic constants for the icon, buttons, and default parameters. The
style parameter determines whether the message window is Application Modal or System Modal. An
Application Modal window must be closed before the user is allowed to do anything else in the
application, but does not prevent the user from switching to another Windows application. A System
Modal window must be closed before the user is allowed to do anything else in Windows.

Return Data Type: USHORT

Example:
CASE MESSAGE(´Quit?´,´Editor´,ICON:Question,BUTTON:Yes+BUTTON:No,BUTTON:No,1)

!A ? icon with Yes and No buttons, the default button is No
! the window is System Modal

OF BUTTON:No
OF BUTTON:Yes
MESSAGE('Goodbye') !A message with only an Ok button.
RETURN

END

MOUSEX (return mouse horizontal position)
MOUSEX()

The MOUSEX function returns a numeric value corresponding to the current horizontal position of the
mouse cursor at the time of the event. The position is relative to the origin of that window.

The return value is in dialog units.

Return Data Type: SHORT

Example:
SaveMouseX = MOUSEX() !Save mouse position

MOUSEY (return mouse vertical position)
MOUSEY()

The MOUSEY function returns a numeric value corresponding to the current vertical position of the
mouse cursor at the time of the event. The position is relative to the origin of that window.

The return value is in dialog units.

Return Data Type: SHORT

Example:
SaveMouseY = MOUSEY() !Save mouse position

POPUP (return popup menu selection)
POPUP(selections [, x] [, y])

POPUP Returns an integer indicating the user's choice from the menu.

selections A string constant, variable, or expression containing the text for the menu choices.

x An integer constant, variable, or expression that specifies the horizontal position of the
top left corner. If omitted, the menu appear at the current cursor position.

y An integer constant, variable, or expression that specifies the vertical position of the top
left corner. If omitted, the menu appear at the current cursor position.

The POPUP function returns an integer indicating the user's choice from the popup menu that appears
when the function is invoked. If the user CLICKS outside the menu or presses ESC (indicating no choice),
POPUP returns zero.

Within the selections string, each choice in the popup menu must be delimited by a vertical bar (|)
character. A set of vertical bars containing only a hyphen (|-|) defines a separator between groups of
menu choices. A menu choice immediately preceded by a tilde (~) is disabled (it appears dimmed out in
the popup menu). A menu choice immediately preceded by a plus sign (+) appears with a check mark to
its left in the popup menu. A menu choice immediately followed by a set of choices contained within curly
braces (|SubMenu{{SubChoice 1|SubChoice 2}|) defines a sub-menu within the popup menu (the two
beginning curly braces are required by the compiler to differentiate your sub-menu from a string repeat
count).

Each menu selection is numbered in ascending sequence according to its position within the selections
string, beginning with one (1). Separators and selections that call a sub-menu are not included in the
numbering sequence (which makes an EXECUTE structure the most efficient code structure to use with
this function). When the user CLICKS or presses ENTER on a choice, the function terminates, returning the
position number of the selected menu item.

Return Data Type: SHORT

Example:
PopupString = 'First|+Second|Sub menu{{One|Two}|-|Third|~Disabled'
ToggleChecked = 1
ACCEPT
CASE EVENT()
OF EVENT:AlertKey
IF KEYCODE() = MouseRight
EXECUTE POPUP(PopupString)
FirstProc !Call proc for selection 1
BEGIN !Code to execute for toggle selection 2
IF ToggleChecked = 1 !Check toggle state
SecondProc(Off) !Call proc to turn off something
PopupString = 'First|Second|Sub menu{{One|Two}|-|Third|~Disabled'

!Reset string so the check mark does not appear
ToggleChecked = 0 !Set toggle flag

ELSE
SecondProc(On) !Call proc to turn off something
PopupString = 'First|+Second|Sub menu{{One|Two}|-|Third|~Disabled'

!Reset string so the check mark does appear
ToggleChecked = 1 !Set toggle flag

END
END !End Code to execute for toggle selection 2
OneProc !Call proc for selection 3

TwoProc !Call proc for selection 4
ThirdProc !Call proc for selection 5
DisabledProc !Selection 6 is dimmed so it cannot execute this procedure

END
END

END
END

SELECTED (return control that has received focus)
SELECTED()

The SELECTED function returns the field number of the control receiving input focus when an
EVENT:Selected event occurs. SELECTED returns zero (0) for all other events.

Positive field numbers are assigned by the compiler to all WINDOW controls, in the order their
declarations occur in the WINDOW structure. Negative field numbers are assigned to all APPLICATION
controls. In executable code statements, field numbers are usually represented by field equate labels--the
label of the USE variable preceded by a question mark (?FieldName).

Return Data Type: SHORT

Example:
CASE SELECTED() !Process pre-edit code
OF ?Cus:Company
!Pre-load field value

OF ?Cus:CustType
!Pre-load field value

END

See Also:

ACCEPT

SELECT

Keyboard Procedures
ALIAS (set alternate keycode)

ASK (get one keystroke)

PRESS (put characters in the buffer)

PRESSKEY (put a keystroke in the buffer)

SETKEYCODE (specify keycode)

ALIAS (set alternate keycode)
ALIAS([keycode,[new keycode]])

ALIAS Changes the keycode generated when the original key is pressed.

keycode A numeric keycode or keycode EQUATE. If both parameters are omitted, all ALIASed
keys are reset to their original values.

new keycode A numeric keycode or keycode EQUATE. If omitted, the keycode is reset to its original
value.

ALIAS changes the keycode to generate the new keycode when the user presses the original key. ALIAS
does not affect keypresses generated by PRESSKEY. The effect of ALIAS is global, throughout all
execution threads, no matter where the ALIAS statement executes. Therefore, to only change the
keycode locally, you must reset ALIASed keys when the window loses focus.

Keycode values 0800h through 0FFFFh are unassigned and may be used as a new keycode. The
practical effect of this is to disable the original key if your program does not test for the new keycode.

Example:
ALIAS(EnterKey,TabKey) !Allow user to press enter instead of tab
ALIAS(F3Key,F1Key) !Move help to F3
ALIAS ! Clear all aliased keys

ASK (get one keystroke)
ASK

ASK reads a single keystroke from the keyboard buffer. Program execution stops to wait for a keystroke.
If there is already a keystroke in the keyboard buffer, ASK gets one keystroke without waiting.

The ASK statement also allows any TIMER attribute events to generate and cycle their own ACCEPT
loop. This means any batch processing code can allow other threads to execute their TIMER attribute
tasks during the batch process.

Example:
ASK !Wait for a keystroke
LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK ! without processing keystrokes

END

PRESS (put characters in the buffer)
PRESS(string)

PRESS Places characters in the keyboard input buffer.

string A string constant, variable, or expression.
PRESS places characters in the Windows keyboard input buffer. The entire string is placed in the buffer.
Once placed in the keyboard buffer, the string is processed just as if the user had typed in the data.

Example:
IF Action = ´AddRecord´ !On the way into a memo on adding a record
TempString = FORMAT(TODAY(),@D1) & ´ ´ & FORMAT(CLOCK(),@T4)
PRESS(TempString) !Pre-load first line of memo with date and time

END

PRESSKEY (put a keystroke in the buffer)
PRESSKEY(keycode)

PRESSKEY Places one keystroke in the keyboard input buffer.

keycode An integer constant or keycode EQUATE label.
PRESSKEY places one keystroke in the Windows keyboard input buffer. Once placed in the keyboard
buffer, the keycode is processed just as if the user had pressed the key. ALIAS does not transform a
PRESSKEY keycode.

Example:
IF Action = ´Add´ !On the way into a memo control on an add record
Cus:MemoControl = FORMAT(TODAY(),@D1) & ´ ´ & FORMAT(CLOCK(),@T4)

!Pre-load first line of memo with date and time
PRESSKEY(EnterKey) ! and position user on second line

END

SETKEYCODE (specify keycode)
SETKEYCODE(keycode)

SETKEYCODE Sets the keycode returned by the KEYCODE function.

keycode An integer constant or keycode EQUATE label.
SETKEYCODE sets the internal keycode returned by the KEYCODE function. The keycode is not put into
the keyboard buffer.

Example:
SETKEYCODE(0800h) !Set up the keycode function to return 0800h

See Also:

KEYCODE

Keycode Equate Labels

Keyboard Functions
KEYBOARD (return keystroke waiting)

KEYCHAR (return ASCII code)

KEYCODE (return last keycode)

KEYSTATE (return keyboard status)

KEYBOARD (return keystroke waiting)
KEYBOARD()

The KEYBOARD function returns the keycode of the first keystroke in the keyboard buffer. It is used to
determine if there are keystrokes waiting to be processed by an ASK or ACCEPT statement.

Return Data Type: LONG

Example:
LOOP UNTIL KEYBOARD() !Wait for any key
ASK
IF KEYCODE() = EscKey THEN BREAK. !On esc key, break the loop

END

See Also:

ASK

ACCEPT

Keycode Equate Labels

KEYCHAR (return ASCII code)
KEYCHAR()

The KEYCHAR function returns the ASCII value of the last key pressed at the time the event occurred.

Return Data Type: LONG

Example:
ACCEPT !Wait for an event
CASE KEYCHAR() !Process the last keystroke
OF ´A´ TO ´Z´ ! upper case?
DO ProcessUpper

OF ´a´ TO ´z´ ! lower case?
DO ProcesLower

END
END

See Also:

ASK

ACCEPT

SELECT

Keycode Equate labels

KEYCODE (return last keycode)
KEYCODE()

The KEYCODE function returns the keycode of the last key pressed at the time the event occurred, or the
last keycode value set by the SETKEYCODE procedure.

Return Data Type: LONG

Example:
ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF UpKey ! up arrow
DO GetRecordUp ! get a record

OF DownKey ! down arrow
DO GetRecordDn ! get a record

END
END

See Also:

ASK

ACCEPT

SELECT

Keycode Equate labels

KEYSTATE (return keyboard status)
KEYSTATE()

The KEYSTATE function returns a bitmap containing the status of the SHIFT, CTRL, ALT, any extended key,
CAPS LOCK, NUM LOCK, SCROLL LOCK, and INSERT keys for the last KEYCODE function return value. The
bitmap is contained in the high-order byte of the returned SHORT.

x insert key (8000h)
. x scroll lock (4000h)
. . x num lock (2000h)
. . . x caps lock (1000h)
. . . . x . . . extended (0800h)
. x . . alt (0400h)
. x . ctrl (0200h)
. x shift (0100h)

Return Data Type: SHORT

Example:
ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF EnterKey ! up arrow
IF BAND(KEYSTATE(),0800h) !Detect enter on numeric keypad
PRESSKEY(TabKey) ! press tab for the user

END
END

END

See Also:

KEYCODE

BAND

Windows Standard Dialog Functions
COLORDIALOG (return chosen color)

FILEDIALOG (return chosen file)

FONTDIALOG (return chosen font)

PRINTERDIALOG (return chosen printer)

COLORDIALOG (return chosen color)
COLORDIALOG([title] [,rgb])

COLORDIALOG
Displays the Windows standard color choice dialog box to allow the user to choose a
color.

title A string constant or variable containing the title to place on the color choice dialog. If
omitted, a default title is supplied by Windows.

rgb A LONG integer variable to receive the selected color.
The COLORDIALOG function displays the Windows standard color choice dialog box and returns the
color chosen by the user in the rgb parameter. Any existing value in the rgb parameter sets the default
color choice presented to the user in the color choice dialog.

COLORDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user pressed the
Ok button on the color choice dialog.

Return Data Type: SHORT

Example:
MDIChild1 WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNowLONG
CODE
IF NOT COLORDIALOG(´Choose Box Color´,ColorNow)
ColorNow = 000000FFh !Default to Blue if user pressed Cancel

END
OPEN(MDIChild1)
BOX(100,50,100,50,ColorNow) !User-defined color for box

FILEDIALOG (return chosen file)
FILEDIALOG([title] [,file] [,extensions] [,flag])

FILEDIALOG
Displays the Windows standard file choice dialog box to allow the user to choose a file.

title A string constant or variable containing the title to place on the file choice dialog. If
omitted, a default title is supplied by Windows.

file A string variable to receive the selected filename.

extensions A string constant or variable containing the available file extension selections for the List
Files of Type drop list. If omitted, the default is all files (*.*).

flag An integer constant or variable to indicate type of file action to perform. If omitted, or
zero (0), the Open... dialog is displayed and the user is warned if the file they choose does
not exist (the file is not automatically opened). If one (1), the Save... dialog is displayed
and the user is warned if the file does exist (the file is not automatically saved).

The FILEDIALOG function displays the Windows standard file choice dialog box and returns the file
chosen by the user in the file parameter. Any existing value in the file parameter sets the default file
choice presented to the user in the file choice dialog.

The extensions parameter string must contain a description followed by the file mask. All elements in the
string must be delimited by the vertical bar (|) character. For example, the extensions string ´All Files | *.* |
Clarion Source | *.CLW´ defines two selections for the List Files of Type drop list. The first extension listed
in the extensions string is the default.

FILEDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user pressed the Ok
button on the file choice dialog.

Return Data Type: SHORT

Example:
ViewTextFile PROCEDURE
ViewQue QUEUE !LIST control display queue

STRING(255)
END

FileName STRING(64),STATIC !Filename variable
ViewFile FILE,DRIVER(´ASCII´),NAME(FileName),PRE(Vew)
Record RECORD

STRING(255)
END

END
MDIChild1 WINDOW(´View Text File´),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL

 LIST,AT(0,0,320,200),USE(?L1),FROM(ViewQue),HVSCROLL
 END

CODE
IF NOT FILEDIALOG(´Choose File to View´,FileName,´Text|*.TXT|Source|*.CLW´,0)
RETURN !Return if no file chosen

END
OPEN(ViewFile) !Open the file

IF ERRORCODE() THEN RETURN. ! aborting on any error
SET(ViewFile) !Start at top of file
LOOP
NEXT(ViewFile) !Reading each line of text
IF ERRORCODE() THEN BREAK. !Break loop at end of file

ViewQue = Vew:Record !Assign text to queue
ADD(ViewQue) ! and add a queue entry

END
CLOSE(ViewFile) !Close the file
OPEN(MDIChild1) ! and open the window
ACCEPT !Allow the user to read the text and
END ! break out of ACCEPT loop only from
 ! system menu close option

FREE(ViewQue) !Free the queue memory
RETURN ! and return to caller

FONTDIALOG (return chosen font)
FONTDIALOG([title] [,typeface] [,size] [,color] [,style])

FONTDIALOG
Displays the standard Windows font choice dialog box to allow the user to choose a font.

title A string constant or variable containing the title to place on the font choice dialog. If
omitted, a default title is supplied by Windows.

typeface A string variable to receive the name of the chosen font.

size An integer variable to receive the size (in points) of the chosen font.

color A LONG integer variable to receive the red, green, and blue values for the color of the
chosen font in the low-order three bytes.

style An integer variable to receive the strike weight and style of the chosen font.
The FONTDIALOG function displays the Windows standard font choice dialog box to allow the user to
choose a font. When called, any values in the parameters set the default font values presented to the
user in the font choice dialog. They also receive the user´s choice when the user presses the Ok button
on the dialog.

FONTDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user pressed the
Ok button.

Return Data Type: SHORT

Example:
MDIChild1 WINDOW(´View Text File´),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL

!window controls
 END

Typeface STRING(20)
FontSize LONG
FontColor LONG
FontStyle LONG
CODE
OPEN(MDIChild1) !open the window
IF FONTDIALOG(´Choose Display Font´,Typeface,FontSize,FontColor,FontStyle)
SETFONT(0,Typeface,FontSize,FontColor,FontStyle) !Set window font

ELSE
SETFONT(0,´Arial´,12) !Set default font

END
ACCEPT
!Window handling code

END

PRINTERDIALOG (return chosen printer)
PRINTERDIALOG([title])

PRINTERDIALOG
Displays the Windows standard printer choice dialog box to allow the user to choose a
file.

title A string constant or variable containing the title to place on the file choice dialog. If
omitted, a default title is supplied by Windows.

The PRINTERDIALOG function displays the Windows standard printer choice dialog box and returns the
printer chosen by the user in the PRINTER "built-in" variable in the internal library. This sets the default
printer used for the next REPORT opened. Properties of the chosen printer may be set and queried using
the runtime property assignment syntax, specifying PRINTER as the target.

PRINTERDIALOG returns zero (0) if the user pressed the Cancel button, or one (1) if the user pressed
the Ok button on the printer choice dialog.

Return Data Type: SHORT

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT(´Arial´,12),PRE(Rpt)

!Report structures and controls
END

CODE
IF NOT PRINTERDIALOG(´Choose Printer´)
RETURN !Abort if user pressed Cancel

END
OPEN(CustRpt)

Drag and Drop Processing
Drag-and-drop is a very powerful Windows tool that allows a user to copy or move data from one control
to another (or even within the same control). These controls may be in the same window, separate
windows in the same application, or even separately executing Clarion applications.

Implementing drag-and-drop in a Clarion application involves two processes:

 Specifying drag host and drop target controls.

 Performing the data exchange when the user initiates drag-and-drop by handling the drag-
and-drop events.

To specify a drag host, you place the DRAGID attribute on a LIST or REGION control with a set of
"signatures" that verify valid drop targets for the data. To specify a drop target, you place the DROPID
attribute on a control to list the set of valid drag "signatures" from which the control will accept data. Drag-
and-drop operations only occur between controls with matching "signatures" in their respective DRAGID
and DROPID attributes.

A successful drag-and-drop operation occurs when the user drags information from a control with the
DRAGID attribute to a control with the DROPID attribute and both controls have at least one identical
signature string in their respective DRAGID and DROPID attributes. When the user initiates drag-and-
drop, EVENT:Dragging is posted to the host control whenever the mouse is over a potential target control
(valid or not). EVENT:Drag is posted to the host control when the user releases the mouse button over a
potential target control (valid or not). EVENT:Drop is posted to the target control only if it is a valid match.

The DRAGID() function detects the successful drop. The DROPID() function can also detect a successful
drop, or can pass the exchanged data as a string, if its value is set by the SETDROPID procedure. The
actual data exchange between the controls can be accomplished several ways:

 If the two controls are in the same window, you can exchange data using local or global
variables, the DROPID function can exchange the data, or you can use the Windows
clipboard.

 If the two controls are in the same application, you can exchange data using global
variables, the DROPID function can exchange the data, or you can use the Windows
clipboard.

 If the controls are in separate Clarion applications, you must use SETDROPID to have
the DROPID function exchange the data, or use the Windows clipboard.

You can copy or move the data to the target control, depending upon how you write the data exchange
code. Also, you should write the data exchange code for the most difficult coding circumstance.
Therefore, if the drag host might be an external program´s control, you could pass the data through the
DROPID() function (using SETDROPID), or through the Windows clipboard. If the drag host could be a
control in any window within the program, you should either pass the data through the DROPID() function,
or use global variables. Only for those instances where the drag host and drop target are always going to
be in the same procedure should you use local variables.

See also:

CLIPBOARD (return windows clipboard contents)

DRAGID (return matching drag-and-drop signature)

DROPID (return drag-and-drop string)

SETCLIPBOARD (set windows clipboard contents)

SETDROPID (set DROPID return string)

CLIPBOARD (return windows clipboard contents)
CLIPBOARD()

The CLIPBOARD function returns the current contents of the Windows clipboard.

Return Data Type: STRING

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´List1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´List1´,´~FILE´)
!Allows drops from List1, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETCLIPBOARD(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also:

SETCLIPBOARD

DRAGID (return matching drag-and-drop signature)
DRAGID([thread] [, control])

DRAGID Returns matching host and target signatures on a successful drag-and-drop operation.

thread The label of a numeric variable to receive the thread number of the host control. If the
host control is in an external program, thread receives zero (0).

control The label of a numeric variable to receive the field equate label of the host control.
The DRAGID function returns the matching host and target control signatures on a successful drag-and-
drop operation. If the user aborted the operation, DRAGID returns an empty string (´´), otherwise it returns
the first signature that matched between the two controls.

Return Data Type: STRING

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´List1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´List1´)
!Allows drops from List1, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also:

DROPID

SETDROPID

DROPID (return drag-and-drop string)
DROPID([thread] [, control])

DROPID Returns matching host and target signatures on a successful drag-and-drop operation.

thread The label of a numeric variable to receive the thread number of the target control. If the
target control is in an external program, thread receives zero (0).

control The label of a numeric variable to receive the field equate label of the target control.
The DROPID function returns the matching host and target control signatures on a successful drag-and-
drop operation (just as DRAGID does), or the specific string set by the SETDROPID procedure. The
DROPID function returns a comma-delimited list of filenames dragged from the Windows File Manager
when ´~FILE´ is the DROPID attribute.

Return Data Type: STRING

Example:
DragDrop PROCEDURE
Que1 QUEUE

STRING(90)
END

Que2 QUEUE
STRING(90)

END
WinOne WINDOW(´Test Drag Drop´),AT(10,10,240,320),SYSTEM,MDI

LIST,AT(12,0,200,80),USE(?List1),FROM(Que1),DRAGID(´List1´)
!Allows drags, but not drops

LIST,AT(12,120,200,80),USE(?List2),FROM(Que2),DROPID(´List1´,´~FILE´)
 !Allows drops from List1 or the Windows File Manager,

END ! but no drags
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
GET(Que1,CHOICE())
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful

 IF INSTRING(´,´,DROPID(),1,1) !Check for multiple files from File
Manager

Que2 = SUB(DROPID(),1,INSTRING(´,´,DROPID(),1,1)-1) ! and only get first
ADD(Que2) ! and add it to the queue

 ELSE
 Que2 = DROPID() ! get dropped info, from List1 or File Manager
 ADD(Que2) ! and add it to the queue

 END
END

END
See Also:

DRAGID

SETDROPID

SETCLIPBOARD (set windows clipboard contents)
SETCLIPBOARD(string)

SETCLIPBOARD
Puts information in the Windows clipboard.

string A string constant or variable containing the information to place in the Windows
clipboard.

The SETCLIPBOARD procedure places the contents of the string into the Windows clipboard, overwriting
any previous contents.

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´List1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´List1´)
!Allows drops from List1, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETCLIPBOARD(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also:

CLIPBOARD

SETDROPID (set DROPID return string)
SETDROPID(string)

SETDROPID Sets the DROPID function´s return value.

string A string constant or variable containing the value the DROPID function will return.
The SETDROPID procedure sets the DROPID function´s return value. This allows the DROPID function
to pass the data in a drag-and-drop operation. When drag-and-drop operations are performed between
separate Clarion applications, this is the mechanism to use to pass the data.

Example:
Que1 QUEUE

STRING(30)
END

Que2 QUEUE
STRING(30)

END
WinOne WINDOW,AT(0,0,160,400)

LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(´List1´)
!Allows drags, but not drops

LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(´List1´)
!Allows drops from List1 or the Windows File Manager,
! but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info, from List1 or File Manager
ADD(Que2) ! and add it to the queue

END
END

See Also:

DRAGID

DROPID

Maintaining INI Files
GETINI (return INI file entry)

PUTINI (set INI file entry)

GETINI (return INI file entry)
GETINI(section ,entry [,default] [,file])

GETINI Returns the value for an INI file entry.

section A string constant or variable containing the name of the portion of the INI file which
contains the entry.

entry A string constant or variable containing the name of the specific setting for which to
return the value.

default A string constant or variable containing the default value to return if the entry does not
exist. If omitted, GETINI returns an empty string.

file A string constant or variable containing the name of the INI file to search. If omitted,
GETINI searches the WIN.INI file.

The GETINI function returns the value of an entry in a Windows-standard INI file. A Windows-standard INI
file is an ASCII text file with the following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:
[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The GETINI function searches the specified file for the entry within the section you specify. It returns
everything on the entry´s line of text that appears to the right of the equal sign (=).

Return Data Type: STRING

Example:
Value STRING(30)
CODE
Value = GETINI(´intl´,´sLanguage´) !Get the language entry

See Also:

PUTINI

PUTINI (set INI file entry)
PUTINI(section ,entry [,value] [,file])

PUTINI Sets the value for an INI file entry.

section A string constant or variable containing the name of the portion of the INI file which
contains the entry.

entry A string constant or variable containing the name of the specific entry to set.

value A string constant or variable containing the setting to place in the entry. An empty string
(´´) leaves the entry empty. If omitted, the entry is deleted.

file A string constant or variable containing the name of the INI file to search. If omitted,
PUTINI places the entry in the WIN.INI file.

The PUTINI procedure places the value into an entry in a Windows-standard .INI file. A Windows-
standard .INI file is an ASCII text file with the following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:
[windows]
spooler=yes
load=nwpopup.exe
[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The PUTINI function searches the specified file for the entry within the section you specify. It replaces the
current entry value with the value you specify. If necessary, the section and entry are created.

Example:
CODE
PUTINI(´MyApp´,´SomeSetting´,´Initialized´) !Place setting in WIN.INI
PUTINI(´MyApp´,´ASetting´,´2´,´MYAPP.INI´) !Place setting in MYAPP.INI

See Also:

GETINI

Reports
Reports in Windows

Page Overflow

Report Structure

REPORT (declare a report structure)

AT (set detail print area)

FONT (set report default font)

PRE (set report label prefix)

PREVIEW (set report output to metafiles)

LANDSCAPE (set page orientation)

THOUS, MM, POINTS (set report coordinate measure)

Print Structures

BREAK (declare group break structure)

DETAIL (report detail line structure)

FOOTER (page or group footer structure)

FORM (page layout structure)

HEADER (page or group header structure)

Print Structure Attributes

ABSOLUTE (set fixed-position printing)

ALONE (set to print without page header, footer, or form)

AT (set print structure position and size)

FONT (set print structure default font)

PAGEAFTER (set page break after)

PAGEBEFORE (set page break first)

USE (set structure equate label)

WITHNEXT (set widow elimination)

WITHPRIOR (set orphan elimination)

Report Controls

BOX (declare a report box control)

CHECK (declare a report checkbox control)

CUSTOM (declare a report .VBX custom control)

ELLIPSE (declare a report ellipse control)

GROUP (declare a group of report controls)

IMAGE (declare a report graphic image control)

LINE (declare a report line control)

LIST (declare a report list control)

OPTION (declare a group of report RADIO controls)

RADIO (declare a report radio button control)

STRING (declare a report string control)

TEXT (declare a multi-line text control)

Control Attributes

AT (set control position and size in report)

AVE (set total average)

BOXED (set report controls group border)

CAP, UPR (set print case)

CNT (set total count)

COLOR (set color)

FILL (set print fill color)

FONT (set default font)

FORMAT (set LIST print format)

FROM (set report listbox data source)

HIDE (set control non-print)

LEFT, RIGHT, CENTER, DECIMAL (set print justification)

MAX (set total maximum)

META (set .VBX to print as .WMF)

MIN (set total minimum)

PAGE (set page total reset)

PAGENO (set page number print)

RESET (set total reset)

ROUND (set round-cornered report BOX)

SUM (set total)

TRN (set transparent report string)

USE (set code reference name)

Report Procedures

CLOSE (close an active report structure)

ENDPAGE (force page overflow)

OPEN (open a report structure for processing)

PRINT (print a report structure)

Reports in Windows
Clarion Database Developer for Windows reports use a page-based printing paradigm instead of a line-
based paradigm. Instead of printing each line as it´s values are generated, nothing is sent to the printer
until an entire page is ready to print. This means that the "print engine" in the Clarion runtime library can
do a lot of work for you, based on the attributes you specify in the REPORT structure.

Some of the things that the "print engine" in the Clarion runtime library does for you are:

 Prints "pre-printed" forms on each page, that are then filled in by the data

 Calculates totals (count, sum, average, minimum, maximum)

 Provides automatic page break handling, including page headers and footers

 Provides automatic group break handling, including group headers and footers

 Provides complete widow/orphan control.
This automatic functionality makes the executable code required to print a complex report very small,
making your programming job easier.

Since the "print engine" is page-based, the concepts of headers and footers lose their context indicating
both page positioning and print sequence, and only retain their meaning of print sequence. Headers are
printed at the beginning of a print sequence, and footers are printed at the end--their actual positioning on
the page is irrelevant. For example, you could position the page footer, containing page totals, to print at
the top of the page.

See also:

Page Overflow

Report Structure

Page Overflow
Page Overflow occurs when the PRINT statement cannot fit a DETAIL structure on a page. This may be
due to a lack of space, or the presence of the PAGEBEFORE or PAGEAFTER attribute on a DETAIL
structure.

The following steps occur during page overflow, in this sequence:

 1 If the REPORT has a page FOOTER, it is printed at the position specified by its AT
attribute.

 2 The page counter is incremented.

 3 If the REPORT has a FORM structure, it is printed at the position specified by its AT
attribute.

 4 If the REPORT has a page HEADER, it is printed at the position specified by its AT
attribute.

Report Structure
REPORT (declare a report structure)

AT (set detail print area)

FONT (set report default font)

PRE (set report label prefix)

PREVIEW (set report output to metafiles)

LANDSCAPE (set page orientation)

THOUS, MM, POINTS (set report coordinate measure)

REPORT (declare a report structure)
label REPORT([jobname])AT()[FONT()][PRE()][LANDSCAPE][PREVIEW][,PAPER][| THOUS |]

| MM |
| POINTS |

[FORM
 controls
 END]
[HEADER
 controls
 END]

label DETAIL
 controls
 END

label [BREAK()
 group break structures
 END]
[FOOTER
 controls
 END]

END

REPORT Declares the beginning of a report data structure.

label The name by which the structure is addressed in executable code.

jobname Names the print job for the Windows Print Manager. If omitted, the REPORTs label is
used.

AT Specifies the size and location, relative to the top left corner of the page, of the area
devoted to printing report detail.

FONT Specifies the default font for all controls in this report. If omitted, the printers default font
is used.

PRE Specifies the label prefix for the report or structure.

LANDSCAPE Specifies printing in landscape mode. If omitted, printing defaults to portrait mode.

PREVIEW Specifies report output to Windows metafiles (.WMF); one file per report page.

PAPER Specifies the paper size for the report output. If omitted, the default printers paper size is
used.

THOUS Specifies thousandths of an inch as the measurement unit used for all attributes which use
coordinates.

MM Specifies millimeters as the measurement unit used for all attributes which use
coordinates.

POINTS Specifies points as the measurement unit used for all attributes which use coordinates.
There are 72 points per inch, vertically and horizontally.

FORM Page layout structure defining pre-printed items on every page.

controls Report output controls.

HEADER Page header structure, printed at the beginning of each page.

DETAIL Report detail structure.

BREAK A group break structure, defining the variable which causes a group break to occur when

its value changes.

group break structures
Group break HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures.

FOOTER Page footer structure, printed at the end of each page.
The REPORT statement declares the beginning of a report data structure. A REPORT structure must be
terminated with a period or END statement. Within the REPORT, the FORM, HEADER, DETAIL,
FOOTER, and BREAK structures are the components that format the output of the report. A REPORT
must be explicitly opened with the OPEN statement.

A REPORT with the PREVIEW attribute sends the report output to Windows metafiles (.WMF) containing
one report page per file. The PREVIEW attribute names a QUEUE to receive the names of the metafiles.
You can then create a window to display the report in an IMAGE control, using the QUEUE field contents
(the file names) to set the IMAGE controls {PROP:text} property. This allows the end user to view the
report before printing.

Only DETAIL structures can (and must) be printed with the PRINT statement. All other report structures
(HEADER, FOOTER, and FORM) are automatically printed for you at the appropriate place in the report.

The REPORTs AT attribute defines the area of each page devoted to printing DETAIL structures. This
includes any HEADERs and FOOTERs that are contained within a BREAK structure (group headers and
footers).

The FORM structure is printed on every page except pages containing DETAIL structures with the ALONE
attribute. Its format is determined once at the beginning of the report. This makes it the logical place to
design a pre-printed form template, which is filled in by the subsequent HEADER, DETAIL, and FOOTER
structures.

The page HEADER and FOOTER structures are not within a BREAK structure. They are automatically
printed whenever a page break occurs.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and DETAIL
structures, and/or other nested BREAK structures. It may also contain multiple DETAIL structures. The
HEADER and FOOTER structures that are within a BREAK structure are the group header and footer.
They are automatically printed when the value in a specified group break variable changes.

A REPORT data structure never defaults as the current target for runtime property assignment the way
the most recently opened WINDOW or APPLICATION structure does. Therefore, the REPORT label must
be explicitly named as the target, or the SETTARGET statement must be used to make the REPORT the
current target, before using runtime property assignment to a REPORT control. Since the graphics
commands draw graphics only to the current target, the SETTARGET statement must be used to make
the REPORT the current target before using the graphics functions on a REPORT.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT(Arial,12),PRE(Rpt)

FORM,AT(1000,1000,6500,9000)
IMAGE(LOGO.BMP),AT(0,0,1200,1200),USE(?I1)
STRING(@n3),AT(6000,500,500,500),PAGENO

END
HEADER,AT(1000,1000,6500,1000)
STRING(ABC Company),AT(3000,500,1500,500),FONT(Arial,18)

END
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)

STRING(Group Head),AT(3000,500,1500,500),FONT(Arial,18)
END

Detail DETAIL,AT(0,0,6500,1000)
STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1)

END
FOOTER,AT(0,0,6500,1000)
STRING(Group Total:),AT(5500,500,1500,500)
STRING(@N$11.2'),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)

END
END
FOOTER,AT(1000,1000,6500,1000)
STRING(Page Total:),AT(5500,1500,1500,500)
STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1),SUM,PAGE

END
END !End report declaration

CODE
OPEN(CustReport)
SET(DataFile)
LOOP
NEXT(DataFile)
IF ERRORCODE() THEN BREAK.

PRINT(Rpt:Detail)
END
CLOSE(CustReport)

AT (set detail print area)
AT([x] [,y] [,width] [,height])

AT Defines the position and size of the area of the page devoted to printing report detail.

x An integer constant or constant expression that specifies the horizontal position of the top
left corner of the detail area.

y An integer constant or constant expression that specifies the vertical position of the top
left corner of the detail area.

width An integer constant or constant expression that specifies the width of the detail area.

height An integer constant or constant expression that specifies the height of the detail area.
The AT attribute on a REPORT structure defines the position and size of the area of the page devoted to
printing report detail. This includes the area to print all DETAIL structures and any group HEADER and
FOOTER structures contained within BREAK structures.

The values contained in the x, y, width, and height parameters default to dialog units unless the THOUS,
MM, or POINTS attribute is also present. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is dependent upon the size of
the default font for the report. This measurement is based on the font specified in the FONT attribute of
the report, or the printer´s system default font.

Example:
CustRpt1REPORT,AT(1000,1000,6500,9000),THOUS !1" margins all around for detail

! area on 8.5" x 11" paper
!report declarations

END
CustRpt2REPORT,AT(72,72,468,648),POINTS !1" margins all around for detail

! area on 8.5" x 11" paper
!report declarations

END

FONT (set report default font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the REPORT structure's default print font.

typeface A string constant containing the name of the font. If omitted, the printer´s default font is
used.

size An integer constant containing the size (in points) of the font. If omitted, the printer´s
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, black is used.

style An integer constant or constant expression or EQUATE specifying the strike weight and
style of the font. If omitted, the weight is normal.

The FONT attribute on a REPORT structure specifies the default print font for all controls in the REPORT.
This font is used when the control does not have a FONT attribute or its own, and the print structure it is
in also has no FONT attribute.

The typeface may name any font registered in the Windows system which the printer driver supports. This
includes the TrueType fonts for most printers. The EQUATES.CLW file contains EQUATE values for
standard style values. A style on the range zero (0) to one thousand (1000) specifies the strike weight of
the font. You may add to that values that indicate italic, underline, or strikeout text. The following
EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS, |

FONT(´Arial´,12,,FONT:Bold+FONT:Italic)
!report declarations
END

PRE (set report label prefix)
PRE(prefix)

PRE Provides a label prefix for structures in the report.

prefix A string constant containing the prefix for labels within the REPORT. Acceptable
characters are alphabet letters, numerals 0 through 9, and the underscore character. A
prefix must start with an alphabet character and must not be a reserved word. By
convention, a prefix is 1-3 characters, although it can be longer.

The PRE attribute on a REPORT provides a label prefix for DETAIL and BREAK structures. It is used to
distinguish between identical variable names that occur in different structures. When referenced in
executable statements, the prefix is attached to a label by a colon (Pre:Label).

Example:
Report REPORT,PRE(´Rpt´)
DetailOne DETAIL !Always referenced as Rpt:DetailOne

!Report controls
END ! in executable code

END

See Also:

Reserved Words

PREVIEW (set report output to metafiles)
PREVIEW(queue)

PREVIEW Specifies report output goes to Windows metafiles (.WMF) containing one report page
per file.

queue The label of a QUEUE or a field in a QUEUE to receive the names of the metafiles.
The PREVIEW attribute on a REPORT sends the report output to Windows metafiles (.WMF) containing
one report page per file. The PREVIEW attribute names a queue to receive the names of the metafiles.
The filenames are temporary filenames internally created by the Clarion library and are complete file
specifications (up to 64 characters, including drive and path). These temporary files are deleted from disk
when you CLOSE the REPORT.

You can create a window to display the report in an IMAGE control, using the queue containing the file
names to set the IMAGE control´s {PROP:text} property. This allows the end user to view the report
before printing. A runtime-only property, {PROP:flushpreview}, when set to ON, flushes the metafiles to
the printer.

Example:
SomeReport PROCEDURE
WMFQue QUEUE !Queue to contain .WMF filenames

STRING(64)
END

NextEntry BYTE(1) !Queue entry counter variable
Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

 END
ViewReport WINDOW(´View Report´),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(´´),AT(0,0,320,180),USE(?ImageField)
BUTTON(´View Next Page´),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(´Print Report´),AT(80,180,60,20),USE(?PrintReport)
BUTTON(´Exit Without Printing´),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report

GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:flushpreview} = ON !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

END
END
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deleting all .WMF files)
RETURN ! and return to caller

LANDSCAPE (set page orientation)
LANDSCAPE

The LANDSCAPE attribute on a REPORT indicates the report is to print in landscape mode by default. If
the LANDSCAPE attribute is omitted, printing defaults to portrait mode.

Example:
Report REPORT,PRE(´Rpt´),LANDSCAPE !Defaults to landscape mode

!Report structure declarations
 END

THOUS, MM, POINTS (set report coordinate measure)
THOUS
MM
POINTS

The THOUS, MM, and POINTS attributes specify the coordinate measures used to position controls on
the REPORT.

THOUS specifies thousandths of an inch, MM specifies millimeters, and POINTS specifies points (there
are seventy-two points per inch, both vertically and horizontally).

If all these attributes are omitted, the measurements default to dialog units. Dialog units are defined as
one-quarter the average character width by one-eighth the average character height. The size of a dialog
unit is dependent upon the size of the default font for the report. This measurement is based on the font
specified in the FONT attribute of the REPORT, or the system default font specified by Windows.

Print Structures
BREAK (declare group break structure)

DETAIL (report detail line structure)

FOOTER (page or group footer structure)

FORM (page layout structure)

HEADER (page or group header structure)

BREAK (declare group break structure)
label BREAK(variable)

group break structures
END

BREAK Declares a group break structure.

label The name by which the structure is addressed in executable code.

variable The variable whose change in value signals the group break.

group break structures
Group break HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures.

The BREAK structure declares the variable which signals a group break when the value in the variable
changes. A BREAK structure must be terminated with a period or END statement. It may contain its own
HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK structures. Only one HEADER
and FOOTER are allowed in a BREAK structure; it may contain multiple DETAIL and/or BREAK
structures.

The HEADER and FOOTER structures that are within a BREAK structure are the group header and
footer. They are automatically printed when the value in the group break variable changes.

Example:
CustRpt REPORT !Declare customer report
Break1 BREAK(SomeVariable)

HEADER ! begin group header declaration
 !report controls

 END ! end header declaration
GroupDet DETAIL

 !report controls
 END ! end detail declaration
 FOOTER ! begin group footer declaration
 !report controls

 END ! end footer declaration
 END ! end group break declaration

 END !End report declaration

DETAIL (report detail line structure)
label DETAIL ,AT() [,FONT()] [,ALONE] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

[,WITHPRIOR()] [,WITHNEXT()] [,USE()]
 controls
END

DETAIL Declares items to be printed as the body of the report.

label The name by which the structure is addressed in executable code.

AT Specifies the offset and minimum width and height of the DETAIL, relative to the size of
the area specified by the REPORT´s AT attribute.

FONT Specifies the default font for all controls in this structure. If omitted, the REPORT´s
FONT attribute (if present) is used, or else the printer´s default font is used.

ALONE Declares the DETAIL structure must be printed on a page without FORM, (page)
HEADER, or (page) FOOTER structures.

ABSOLUTE Declares the DETAIL prints at a fixed position relative to the page.

PAGEBEFORE
Declares the DETAIL prints at the start of a new page, after normal page overflow
actions.

PAGEAFTER
Declares the DETAIL prints, and then starts a new page by activating normal page
overflow actions.

WITHPRIOR
Declares the DETAIL prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately precedes it.

WITHNEXT Declares the DETAIL prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately follows it.

USE A field equate label to reference the DETAIL structure in executable code.

controls Report output control fields.
The DETAIL structure declares items to be printed as the body of the report. A DETAIL structure must be
terminated with a period or END statement. A REPORT may have multiple DETAIL structures.

A DETAIL structure is never automatically printed, therefore DETAIL structures are always explicitly
printed by the PRINT statement. This means that a label is required for each DETAIL you wish to PRINT.

The DETAIL structure may be printed whenever necessary. Since you may have multiple DETAIL
structures, they provide the ability to optionally print alternate print formats. This is determined by the logic
in the executable code which prints the report.

Example:
CustRpt REPORT !Declare customer report

HEADER ! begin page header declaration
!structure elements

 END ! end header declaration
CustDetail1 DETAIL ! begin detail declaration

 !structure elements
END ! end detail declaration

CustDetail2 DETAIL ! begin detail declaration
 !structure elements
END ! end detail declaration

 END !End report declaration
CODE
OPEN(CustRpt)
SET(SomeFile)
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

IF SomeCondition
PRINT(CustDetail1)

ELSE
PRINT(CustDetail2)

END
END
CLOSE(CustRpt)

See Also:

PRINT

FOOTER (page or group footer structure)
FOOTER ,AT() [,FONT()] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

[,WITHPRIOR()] [,WITHNEXT()] [,ALONE] [,USE()]
 controls
END

FOOTER Declares a page or group footer structure.

AT Specifies the size and location of the FOOTER.

FONT Specifies the default font for all controls in this structure. If omitted, the REPORT´s
FONT attribute (if present) is used, or else the printer´s default font is used.

ABSOLUTE Declares the FOOTER prints at a fixed position relative to the page. Valid only on a
FOOTER within a BREAK structure (page FOOTER position is always fixed).

PAGEBEFORE
Declares the FOOTER prints at the start of a new page, after normal page overflow
actions. Valid only on a FOOTER within a BREAK structure.

PAGEAFTER
Declares the FOOTER prints, and then starts a new page by activating normal page
overflow actions. Valid only on a FOOTER within a BREAK structure.

WITHPRIOR
Declares the FOOTER prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately precedes it. Valid only on a FOOTER within a BREAK
structure.

WITHNEXT Declares the FOOTER prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately follows it. Valid only on a FOOTER within a BREAK
structure.

ALONE Declares the (group) FOOTER structure must be printed on a page without FORM,
(page) HEADER, or (page) FOOTER structures.

USE A field equate label to reference the FOOTER structure in executable code.

controls Report output control fields.
The FOOTER structure declares the output which prints at the end of each page or group. A FOOTER
structure must be terminated with a period or END statement.

A FOOTER structure that is not within a BREAK structure is a page footer. Only one page FOOTER is
allowed in a REPORT. The page FOOTER is automatically printed whenever a page break occurs, at the
page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and DETAIL
structures, and/or other nested BREAK structures. It may also contain multiple DETAIL structures. The
HEADER and FOOTER structures that are within a BREAK structure are the group header and footer.
They are automatically printed when the value in a specified group break variable changes, at the next
position available in the detail print area (specified by the REPORT´s AT attribute). Only one FOOTER is
allowed in a BREAK structure.

Example:
CustRpt REPORT !Declare customer report

 FOOTER ! begin page FOOTER declaration

 !report controls
 END ! end FOOTER declaration

Break1 BREAK(SomeVariable)
GroupDet DETAIL

 !report controls
 END ! end detail declaration
 FOOTER ! begin group footer declaration
 !report controls

 END ! end footer declaration
 END ! end group break declaration

 END !End report declaration

FORM (page layout structure)
FORM ,AT() [,FONT()] [,USE()]
 controls
END

FORM Declares a report structure which prints on each page.

AT Specifies the size and location, relative to the top left corner of the page, of the FORM.

FONT Specifies the default font for all controls in this report structure. If omitted, the REPORT
´s FONT attribute (if present) is used, or else the printer´s default font is used.

USE A field equate label to reference the FORM structure in executable code.

controls Report output control fields.
FORM declares a report structure which prints on every page of the report (except pages containing
DETAIL structures with the ALONE attribute). A FORM structure must be terminated with a period or END
statement. Only one FORM is allowed in a REPORT structure. The FORM structure automatically prints
during page overflow.

The printed output of the FORM is determined only once at the beginning of the report. The page
positioning of the FORM does not affect the page positioning of any other report structure. Once printed,
all other structures may "overwrite" the FORM. Therefore, FORM is most aften used to design pre-printed
forms which are filled in by the subsequent HEADER, DETAIL, and FOOTER structures. It may also be
used to generate "watermarks" or page border graphics.

Example:
CustRpt REPORT !Declare customer report

FORM
 IMAGE(´LOGO.BMP´),AT(0,0,1200,1200),USE(?I1)
 STRING(@N3),AT(6000,500,500,500),PAGENO

END
GroupDetDETAIL

 !report controls
END

END !End report declaration

HEADER (page or group header structure)
HEADER ,AT() [,FONT()] [,ABSOLUTE] [,PAGEBEFORE()] [,PAGEAFTER()]

[,WITHPRIOR()] [,WITHNEXT()] [,ALONE] [,USE()]
 controls
END

HEADER Declares a page or group header structure.

AT Specifies the size and location of the HEADER.

FONT Specifies the default font for all controls in this structure. If omitted, the REPORT´s
FONT attribute (if present) is used, or else the printer´s default font is used.

ABSOLUTE Declares the HEADER prints at a fixed position relative to the page. Valid only on a
HEADER within a BREAK structure (page HEADER position is always fixed).

PAGEBEFORE Declares the HEADER prints at the start of a new page after normal page
overflow actions. Valid only on a HEADER within a BREAK structure.

PAGEAFTER
Declares the HEADER prints, and then starts a new page by activating normal page
overflow actions. Valid only on a HEADER within a BREAK structure.

WITHPRIOR
Declares the HEADER prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately precedes it. Valid only on a HEADER within a BREAK
structure.

WITHNEXT Declares the HEADER prints on the same page as the DETAIL, group HEADER, or
FOOTER that immediately follows it. Valid only on a HEADER within a BREAK
structure.

ALONE Declares the (group) HEADER structure must be printed on a page without FORM,
(page) HEADER, or (page) FOOTER structures.

USE A field equate label to reference the HEADER structure in executable code.

controls Report output control fields.
The HEADER structure declares the output which prints at the beginning of each page or group. A
HEADER structure must be terminated with a period or END statement.

A HEADER structure that is not within a BREAK structure is a page header. Only one page HEADER is
allowed in a REPORT. The page HEADER is automatically printed whenever a page break occurs, at the
page-relative position specified by its AT attribute.

The BREAK structure defines a group break. It may contain its own HEADER, FOOTER, and DETAIL
structures, and/or other nested BREAK structures. It may also contain multiple DETAIL structures. The
HEADER and FOOTER structures that are within a BREAK structure are the group header and footer.
They are automatically printed when the value in a specified group break variable changes, at the next
position available in the detail print area (specified by the REPORT´s AT attribute). Only one HEADER is
allowed in a BREAK structure.

Example:
CustRpt REPORT !Declare customer report

HEADER ! begin page header declaration
 !report controls

END ! end header declaration

Break1 BREAK(SomeVariable)
HEADER ! begin group header declaration
 !report controls

END ! end header declaration
GroupDet DETAIL

 !report controls
END ! end detail declaration

END ! end group break declaration
END !End report declaration

Print Structure Attributes
ABSOLUTE (set fixed-position printing)

ALONE (set to print without page header, footer, or form)

AT (set print structure position and size)

FONT (set print structure default font)

PAGEAFTER (set page break after)

PAGEBEFORE (set page break first)

USE (set structure equate label)

WITHNEXT (set widow elimination)

WITHPRIOR (set orphan elimination)

ABSOLUTE (set fixed-position printing)
ABSOLUTE

The ABSOLUTE attribute ensures that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), always prints at a fixed position on the page. When ABSOLUTE is present, the
position specified by the x and y parameters of the structure´s AT attribute is relative to the top left
corner of the page.

Example:
CustRpt REPORT

HEADER
!structure elements

END
CustDetail1 DETAIL

!structure elements
END

CustDetail2 DETAIL,ABSOLUTE ! fixed position detail
!structure elements

END
FOOTER
!structure elements

END
END

ALONE (set to print without page header, footer, or form)
ALONE

The ALONE attribute specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is to be printed on the page without any FORM, page HEADER or FOOTER
(not within a BREAK structure). The normal use is for report title and grand total pages.

Example:
CustRpt REPORT
TitlePage DETAIL,ALONE !Title page detail structure

!structure elements
END

CustDetail DETAIL
!structure elements

END
FOOTER
!structure elements

END
END

AT (set print structure position and size)
AT([x] [,y] [,width] [,height])

AT Defines the position and size at which the structure prints.

x An integer constant or constant expression that specifies the horizontal position of the top
left corner of the print structure.

y An integer constant or constant expression that specifies the vertical position of the top
left corner of the print structure.

width An integer constant or constant expression that specifies the minumum width of the print
structure.

height An integer constant or constant expression that specifies the minimum height of the print
structure.

The AT attribute on print structures performs two different functions, depending upon the structure on
which it is placed.

When placed on a FORM, or page HEADER or FOOTER (not within a BREAK structure), the AT attribute
defines the position and size on the page at which the structure is printed. The position specified by the x
and y parameters is relative to the top left corner of the page.

When placed on a DETAIL, or group HEADER or FOOTER (contained within a BREAK structure) the print
structure is printed according to the following rules (unless the ABSOLUTE attribute is also present):

 The width and height parameters of the AT attribute specify the minimum print size of the
structure.

 The structure is actually printed at the next available position within the detail print area
(specified by the REPORT´s AT attribute).

 The position specified by the x and y parameters of the structure´s AT attribute is an offset
from the next available print position within the detail print area.

 The first print structure on the page is printed at the top left corner of the detail print area
(at the offset specified by its AT attribute).

 Next and subsequent print structures are printed relative to the ending position of the
previous print structure:

 If there is room to print the next structure beside the previous structure, it is printed there.

 If not, it is printed below the previous.
The values contained in the x, y, width, and height parameters default to dialog units unless the THOUS,
MM, or POINTS attribute is also present. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is dependent upon the size of
the default font for the report. This measurement is based on the font specified in the FONT attribute of
the report, or the printer´s default font.

Example:
CustRpt REPORT,AT(1000,2000,6500,7000),THOUS !1" margins all around

 HEADER,AT(1000,1000,6500,1000) !Page relative position
 !structure elements !1" band across top of page

 END
CustDetail1 DETAIL,AT(0,0,6500,1000) !Detail relative position

 !structure elements !1" band across page
 END

CustDetail2 DETAIL,ABSOLUTE,AT(1000,8000,6500,1000) !Page relative position
 !structure elements !1" band near page bottom

 END
 FOOTER,AT(1000,9000,6500,1000) !Page relative position
 !structure elements !1" band across page bottom

 END
 END

FONT (set print structure default font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default print font.

typeface A string constant containing the name of the font. If omitted, the printer´s default font is
used.

size An integer constant containing the size (in points) of the font. If omitted, the printer´s
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, black is used.

style An integer constant or constant expression or EQUATE specifying the strike weight and
style of the font. If omitted, the weight is normal.

The FONT attribute on FORM, DETAIL, HEADER, and FOOTER structures specifies the default print font
for all controls in the structures that do not have a FONT attribute.

The typeface may name any font registered in the Windows system which the printer driver supports. This
includes the TrueType fonts for most printers. The EQUATES.CLW file contains EQUATE values for
standard style values. A style on the range zero (0) to one thousand (1000) specifies the strike weight of
the font. You may add to that values that indicate italic, underline, or strikeout text. The following
EQUATES are in EQUATES.CLW:

 FONT:thin EQUATE (100)
 FONT:regular EQUATE (400)
 FONT:bold EQUATE (700)
 FONT:italic EQUATE (01000H)
 FONT:underline EQUATE (02000H)
 FONT:strikeout EQUATE (04000H)

Example:
CustRpt REPORT,FONT(´Arial´,12) !Default font: 12 point Arial

HEADER,FONT(´Arial´,18,,FONT:bold) !18 point bold Arial for the header
 !structure elements

END
CustDetail1 DETAIL !Detail uses the default font

 !structure elements
END
FOOTER,FONT(´Arial´,12,00FF0000h) !12 point Red Arial for the footer

!structure elements
END

END

PAGEAFTER (set page break after)
PAGEAFTER([newpage])

PAGEAFTER Specifies the structure is printed, then initiates page overflow.

newpage An integer constant or constant expression that specifies the page number to print on the
next page. If omitted, the current page number is incremented during page overflow.

The PAGEAFTER attribute specifies that the DETAIL, or group HEADER or FOOTER structure
(contained within a BREAK structure), initiates page overflow after it is printed. This means that the print
structure on which the PAGEAFTER attribute is present is printed, followed by the page FOOTER, and
then the FORM and page HEADER.

The newpage parameter, if present, resets automatic page numbering at the number specified.

Example:
CustRpt REPORT

HEADER
!structure elements

 END
Break1 BREAK(SomeVariable)

 HEADER
 !structure elements

 END
CustDetail DETAIL

 !structure elements
 END
 FOOTER,PAGEAFTER !Group Footer, initiates page overflow

!structure elements
 END

 END
 FOOTER
 !structure elements

 END
 END

PAGEBEFORE (set page break first)
PAGEBEFORE([newpage])

PAGEBEFORE Specifies the structure is printed on a new page, after page overflow.

newpage An integer constant or constant expression that specifies the page number to print on the
new page. If omitted, the current page number is incremented during page overflow.

The PAGEBEFORE attribute specifies that the DETAIL, or group HEADER or FOOTER structure
(contained within a BREAK structure), is printed on a new page, after page overflow. This means that
first, the page FOOTER is printed, then the FORM and page HEADER. The print structure on which the
PAGEBEFORE attribute is present is printed only after these page overflow actions are complete.

The newpage parameter, if present, resets automatic page numbering at the number specified.

Example:
CustRpt REPORT

HEADER
!structure elements

 END
Break1 BREAK(SomeVariable)

 HEADER,PAGERBEFORE !Group Header, initiates page overflow
!structure elements

 END
CustDetail DETAIL

!structure elements
 END
 FOOTER

!structure elements
 END

 END
 FOOTER
 !structure elements

 END
 END

USE (set structure equate label)
USE(label [,number])

USE Specifies a field equate label for the structure.

label A field equate label to reference the structure in executable code.

number An integer constant that specifies the number the compiler equates to the field equate
label for the structure.

The USE attribute on a FORM, DETAIL, HEADER, or FOOTER structure specifies a field equate label for
the structure. This provides a mechanism for executable source code statements to reference the
structure.

The print structures in a REPORT are treated just as controls in a WINDOW; they are automatically
assigned positive numbers by the compiler.

The USE attribute´s number parameter allows you to specify the actual field number the compiler assigns
to the structure. This number also is used as the new starting point for subsequent field equate numbering
for all structures and controls without a number parameter in their USE attribute. Subsequent structures
or controls without a number parameter in their USE attribute are incremented (or decremented) relative
to the last number assigned.

Example:
BuildRptPROCEDURE
CustRpt REPORT

HEADER,USE(?PageHeader) !Page header
!structure elements

END
CustDetail DETAIL,USE(?Detail) !Line item detail

!structure elements
END !
FOOTER,USE(?PageFooter) !Page footer
!structure elements

END
END

CODE
PrintRpt(CustRpt,?Detail) !Pass report and detail equate to print proc

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
OPEN(RptToPrint) !Open passed report
PRINT(RptToPrint,DetailNumber) !Print its detail
CLOSE(RptToPrint) !Close passed report

WITHNEXT (set widow elimination)
WITHNEXT([siblings])

WITHNEXT Specifies the structure is always printed on the same page as print structures PRINTed
immediately following it.

siblings An integer constant or constant expression that specifies the number of following print
structures to print on the same page. If omitted, the default value is one.

The WITHNEXT attribute specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is always printed on the same page as the specified number of print structures
PRINTed immediately following it. This ensures that the structure is never printed on a page by itself,
eliminating "widow" print structures. A "widow" print structure is defined as a group header, or first detail
item in a related group of items, printed on the preceding page, separated from the rest of its related
items.

The siblings parameter, if present, sets the number of following print structures that must be printed on
the same page with the structure. To be counted, the following print structures must come from the same,
or nested, BREAK structures. They must be related items. Any print structures not within the same, or
nested, BREAK structures are printed but not counted as part of the required number of siblings.

Example:
CustRpt REPORT
Break1 BREAK(SomeVariable)

 HEADER,WITHNEXT(2) !Always print with 2 siblings
 !structure elements

 END
CustDetail DETAIL,WITHNEXT() !Always print with 1 sibling

 !structure elements
 END
 FOOTER
 !structure elements

 END
 END

 END

WITHPRIOR (set orphan elimination)
WITHPRIOR([siblings])

WITHPRIOR Specifies the structure is always printed on the same page as print structures PRINTed
immediately preceding it.

siblings An integer constant or constant expression that specifies the number of preceding print
structures to print on the same page. If omitted, the default value is one.

The WITHPRIOR attribute specifies that the DETAIL, or group HEADER or FOOTER structure (contained
within a BREAK structure), is always printed on the same page as the specified number of print structures
PRINTed immediately preceding it. This ensures that the structure is never printed on a page by itself,
eliminating "orphan" print structures. An "orphan" print structure is defined as a group footer, or last detail
item in a related group of items, that is printed on the following page separated from the rest of its related
items.

The siblings parameter, if present, sets the number of preceding print structures that must be printed on
the same page with the structure. To be counted, the preceding print structures must come from the
same, or nested, BREAK structures. They must be related items. Any print structures not within the same,
or nested, BREAK structures are printed, but not counted as part of the required number of siblings.

Example:
CustRpt REPORT
Break1 BREAK(SomeVariable)

 HEADER
 !structure elements

 END
CustDetail DETAIL,WITHPRIOR() !Always print with 1 sibling

 !structure elements
 END
FOOTER,WITHPRIOR(2) !Always print with 2 siblings
 !structure elements

 END
 END

 END

Report Controls
BOX (declare a report box control)

CHECK (declare a report checkbox control)

CUSTOM (declare a report .VBX custom control)

ELLIPSE (declare a report ellipse control)

GROUP (declare a group of report controls)

IMAGE (declare a report graphic image control)

LINE (declare a report line control)

LIST (declare a report list control)

OPTION (declare a group of report RADIO controls)

RADIO (declare a report radio button control)

STRING (declare a report string control)

TEXT (declare a multi-line text control)

BOX (declare a report box control)
BOX ,AT() [,USE()] [,COLOR()] [,FILL()] [,ROUND] [,HIDE]

BOX Places a rectangular box in the REPORT.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the border of the control. If omitted, the border is black.

FILL Specifies the fill color for the control. If omitted, the box is not filled with color.

ROUND Specifies the box corners are rounded. If omitted, the corners are square.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The BOX control places a rectangular box in the REPORT at the position and size specified by its AT
attribute, relative to the top left corner of the print structure containing the BOX.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

BOX,AT(0,0,20,20),USE(?B1) !Unfilled, black border
BOX,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

 !Unfilled, active border color border
END

END

CHECK (declare a report checkbox control)
CHECK(text) ,AT() [,USE()] [,FONT()] [,HIDE] [,DISABLE] [, | LEFT |]

| RIGHT |

CHECK Places a check box in the REPORT.

text A string constant containing the text to display for the check box.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE The label of a numeric variable containing the value of the check box, zero (0 = OFF) or
one (1 = ON).

FONT Specifies the display font for the control.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

DISABLE Specifies the control appears dimmed in the REPORT.

LEFT Specifies that the text appears to the left of the check box.

RIGHT Specifies that the text appears to the right of the check box (the default position).
The CHECK control places a check box in the REPORT at the position and size specified by its AT
attribute, relative to the top left corner of the print structure containing the CHECK.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

CHECK(´1´),AT(0,0,20,20),USE(C1)
CHECK(´2´),AT(20,80,20,20),USE(C2),LEFT
CHECK(´3´),AT(0,100,20,20),USE(C3),FONT(´Arial´,12)

END
END

CUSTOM (declare a report .VBX custom control)
CUSTOM(text) ,AT() [,CLASS()] [,USE()] [,DISABLE] [,FONT()] [,META]

[,property(value)]

CUSTOM Places a Visual Basic .VBX control on the REPORT.

text A string constant containing the title for the control.

AT Specifies the size and location of the control. If omitted, default values are selected by the
library.

CLASS Specifies the .VBX filename and type of control.

USE The label of a variable to supply the value of the control.

DISABLE Specifies the control appears dimmed in the REPORT.

FONT Specifies the display font for the control.

META Specifies printing as a Windows metafile (.WMF).

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

property A string constant containing the name of a custom property setting for the control.

value A string constant containing the property value number or EQUATE for the property.
The CUSTOM control places a Visual Basic .VBX control in the report at the position and size specified
by its AT attribute.

The property attribute allows you to specify any additional property settings the .VBX control may require.
These are properties that need to be set for the .VBX control to properly function, and are not standard
Clarion properties (such as AT or USE). The custom control should only receive values for these
properties that are defined for that control. Valid properties and values for those properties would be
defined in the custom control´s documentation. You may have multiple property attributes on a single
CUSTOM control.

Example:
Report REPORT
DetailOne DETAIL

CUSTOM,AT(0,0,120,320),CLASS(´graph.vbx´,´graph´),´graphstyle´(´2´)
END

END

ELLIPSE (declare a report ellipse control)
ELLIPSE ,AT() [,USE()] [,COLOR()] [,FILL()] [,HIDE]

ELLIPSE Places a "circular" figure in the REPORT.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the border of the ellipse. If omitted, the ellipse has a black border.

FILL Specifies the fill color for the control. If omitted, the ellipse is not filled with color.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The ELLIPSE control places a "circular" figure in the REPORT at the position and size specified by its AT
attribute. The ellipse is drawn inside a "bounding box" defined by the x, y, width, and height parameters of
its AT attribute. The x and y parameters specify the starting point, relative to the top left corner of the print
structure containing it, and the width and height parameters specify the horizontal and vertical size of the
"bounding box."

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(0,0,20,20) !Unfilled, black border
ELLIPSE,AT(0,20,20,20),USE(?Ellipse1),DISABLE

!Unfilled, black border, dimmed
ELLIPSE,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

 !Unfilled, active border color border
 END

 END

GROUP (declare a group of report controls)
GROUP(text) ,AT() [,USE()] [,FONT()] [,BOXED] [,HIDE]

 controls
END

GROUP Declares a group of controls that may be referenced as one entity.

text A string constant containing the prompt for the group of controls. The text is printed only
if the BOXED attribute is also present.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE Specifies a field equate label for the control.

FONT Specifies the display font for the control and the default for all the controls in the
GROUP.

BOXED Specifies a single-track border around the group of controls with the text at the top of the
border.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

controls Control declarations that may be referenced as the GROUP.
The GROUP control declares a group of controls that may be referenced as one entity. This control allows
you to design reports that look the same on paper as on the screen.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

GROUP(´Group 1´),USE(!G1),AT(80,0,20,20),BOXED
STRING(@S8),AT(80,0,20,20),USE(E5)
STRING(@S8),AT(100,0,20,20),USE(E6)

END
GROUP(´Group 2´),USE(?G2),FONT(´Arial´,12)
STRING(@S8),AT(120,0,20,20),USE(E7)
STRING(@S8),AT(140,0,20,20),USE(E8)

END
END

END

IMAGE (declare a report graphic image control)
IMAGE(file) ,AT() [,USE()] [,HIDE]

IMAGE Places a graphic image on the REPORT.

file A string constant containing the name of the file to print. The file is linked into the .EXE
as a resource.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The IMAGE control places a graphic image on the REPORT at the position and size specified by its AT
attribute. This may be a bitmap (.BMP), icon (.ICO), PaintBrush (.PCX), Graphic Interchange Format
(.GIF), JPEG (.JPG), or windows metafile (.WMF).

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

IMAGE(´PIC.BMP´),AT(0,0,20,20),USE(?I1)
IMAGE(´PIC.WMF´),AT(40,0,20,20),USE(?I2)
IMAGE(´PIC.ICO´),AT(60,0,20,20),USE(?I3)

END
END

LINE (declare a report line control)
LINE ,AT() [,USE()] [,COLOR()] [,HIDE]

LINE Places a straight line in the REPORT.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the line. If omitted, the color is black.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The LINE control places a straight line in the REPORT at the position and size specified by its AT
attribute.

The x and y parameters of the AT attribute specify the starting point of the line. The width and height
parameters of the AT attribute specify the horizontal and vertical distance to the end point of the line. If
these are both positive numbers, the line slopes to the right and down from its starting point. If the width
parameter is negative, the line slopes left; if the height parameter is negative, the line slopes left. If either
the width or height parameter is zero, the line is horizontal or vertical.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
LINE,AT(480,180,20,20),USE(?L2)

END
END

LIST (declare a report list control)
LIST ,FROM() ,AT() [,FONT()] [,USE()] [,HIDE] [, | FORMAT() |]

| LEFT |
| RIGHT |
| CENTER |
| DECIMAL |

LIST Places the current item of a list of data items in the REPORT.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the size and location of the control. If omitted, the runtime library chooses a
value.

FONT Specifies the display font for the control.

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

FORMAT Specifies the print format of the data.

LEFT Specifies that the data is left justified within the LIST.

RIGHT Specifies that the data is right justified within the LIST.

CENTER Specifies that the data is centered within the LIST.

DECIMAL Specifies that the data is aligned on the decimal point within the LIST.
The LIST control places the current item of a list of data items in the REPORT at the position and size
specified by its AT attribute. LIST is valid only in a DETAIL structure. Its purpose is to allow the report
format to duplicate the screen appearance of the LIST´s FORMAT setting. When the first instance of the
DETAIL structure containing the LIST is printed, any headers in the FORMAT attribute are printed along
with the current FROM attribute entry. When the last DETAIL structure containing the LIST is printed, the
LIST footers are printed along with the current FROM attribute entry.

Example:
Q QUEUE
F1 STRING(1)
F2 STRING(4)

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(80,0,20,20),USE(?L1),FROM(Q),FORMAT(´5C~List~15L~Box~´)
END

END

OPTION (declare a group of report RADIO controls)
OPTION(text) ,AT() [,USE()] [,BOXED] [,HIDE]
 radios
END

OPTION Prints a group of RADIO controls.

text A string constant containing the prompt for the group of controls. The text is printed only
if the BOXED attribute is also present.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE The label of a string variable containing the value of the RADIO selected by the user.

BOXED Specifies a single-track border around the RADIO controls with the text at the top of the
border.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

radios Multiple RADIO control declarations.
The OPTION control prints a group of RADIO controls that display a list of choices. The multiple RADIO
controls in the OPTION structure define the choices. The selected choice is identified by a filled RADIO
button.

No RADIO button selected is a valid option. This occurs only when the OPTION structure´s USE variable
does not contain a value duplicated in a RADIO text parameter.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION(´Option´),USE(OptVar),AT(80,0,20,20),BOXED
RADIO(´Radio 1´),AT(80,0,20,20),USE(?R1)
RADIO(´Radio 2´),AT(100,0,20,20),USE(?R2)

 END
 END

 END

RADIO (declare a report radio button control)
RADIO(text) ,AT() [,FONT()] [, | LEFT |] [,USE()] [,HIDE]

| RIGHT |

RADIO Places a radio button in the REPORT.

text A string constant containing the text to display for the radio button.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

FONT Specifies the display font for the control.

LEFT Specifies that the text appears to the left of the radio button.

RIGHT Specifies that the text appears to the right of the radio button (the default position).

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The RADIO control places a radio button in the REPORT at the position and size specified by its AT
attribute. A RADIO control may only be placed within an OPTION control. The RADIO selected by the
user (the value in the OPTION´s USE variable) is displayed as a filled RADIO button.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION(´Option´),USE(OptVar),AT(80,0,20,20),BOXED
RADIO(´Radio 1´),AT(80,0,20,20),USE(?R1)
RADIO(´Radio 2´),AT(100,0,20,20),USE(?R2)
RADIO(´Radio 3´),AT(100,0,20,20),USE(?R2),LEFT

END
END

END

STRING (declare a report string control)
STRING(text),AT() [,FONT()] [,HIDE] [,TRN] [,USE()]

[, | LEFT |] [, | PAGENO |]
RIGHT		CNT [, RESET() / PAGE]
CENTER		SUM [, RESET() / PAGE]
DECIMAL		AVE [, RESET() / PAGE]

| MIN [, RESET() / PAGE] |
| MAX [, RESET() / PAGE] |

STRING Places the text in the REPORT.

text A string constant containing the text to display, or a display picture token to format the
variable specified in the USE attribute.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

FONT Specifies the font used to display the text.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.

TRN Specifies the text or USE variable characters transparently print over the background.

USE Specifies a variable whose contents are printed in the format of the picture token declared
instead of string text.

LEFT Specifies that the text is left justified within the area specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area specified by the AT attribute.

CENTER Specifies that the text is centered within the area specified by the AT attribute.

DECIMAL Specifies that the text is aligned on the decimal point within the area specified by the AT
attribute.

PAGENO Specifies the current page number is printed in the format of the picture token declared
instead of string text.

CNT Specifies the number of details printed is printed in the format of the picture token
declared instead of string text.

SUM Specifies the sum of the USE variable is printed in the format of the picture token
declared instead of string text.

AVE Specifies the average value of the USE variable is printed in the format of the picture
token declared instead of string text.

MIN Specifies the mimimum value of the USE variable is printed in the format of the picture
token declared instead of string text.

MAX Specifies the maximum value of the USE variable is printed in the format of the picture
token declared instead of string text.

RESET Specifies the CNT, SUM, AVE, MIN, or MAX is reset when the specified group break
occurs.

PAGE Specifies the CNT, SUM, AVE, MIN, or MAX is reset to zero when the page break
occurs.

The STRING control places the text in the REPORT at the position and size specified by its AT attribute. If
the text parameter is a picture token instead of a string constant or variable, the contents of the variable

named in the USE attribute are formatted to that display picture, at the position and size specified by the
AT attribute.

A STRING with the TRN attribute prints characters transparently, without obliterating the background. This
means only the dots required to create each character are printed. This allows the STRING to be placed
directly on top of an IMAGE without destroying the background picture.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

 HEADER,AT(0,0,6500,1000)
STRING(´Group Head´),AT(3000,500,1500,500),FONT(´Arial´,18)

 END
Detail DETAIL,AT(0,0,6500,1000)

STRING(@N$11.2´),AT(6000,1500,500,500),USE(Pre:F1)
 END
 FOOTER,AT(0,0,6500,1000)

STRING(´Group Total:´),AT(5500,500,1500,500)
STRING(@N$11.2´),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Pre:Key1)

END
END

END

TEXT (declare a multi-line text control)
TEXT ,AT() [,USE()] ,FONT()] [, | CAP |] [, | LEFT |] [,HIDE]

| UPR | | RIGHT |
| CENTER |

TEXT Places a multi-line print field in the REPORT.

AT Specifies the size and location of the control. If omitted, default values are selected by the
runtime library.

USE The label of the variable that contains the value to print.

FONT Specifies the display font for the control.

UPR / CAP Specifies all upper case or proper name capitalization (First Letter Of Each Word
Capitalized).

LEFT Specifies that the text is left justified within the area specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area specified by the AT attribute.

CENTER Specifies that the text is centered within the area specified by the AT attribute.

HIDE Specifies the control is not printed unless UNHIDE is used to allow it to print.
The TEXT control places a multi-line print field in the REPORT at the position and size specified by its AT
attribute. The variable specified in the USE attribute contains the data to print.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

 TEXT,AT(0,0,40,40),USE(E1)
 TEXT,AT(100,0,40,40),USE(E6),FONT(´Arial´,12)
 TEXT,AT(120,0,40,40),USE(E7),CAP
 TEXT,AT(140,0,40,40),USE(E8),UPR
 TEXT,AT(160,0,40,40),USE(E9),LEFT
 TEXT,AT(180,0,40,40),USE(E10),RIGHT
 TEXT,AT(200,0,40,40),USE(E11),CENTER

 END
 END

Control Attributes
AT (set control position and size in report)

AVE (set total average)

BOXED (set report controls group border)

CAP, UPR (set print case)

CNT (set total count)

COLOR (set color)

FILL (set print fill color)

FONT (set default font)

FORMAT (set LIST print format)

FROM (set report listbox data source)

HIDE (set control non-print)

LEFT, RIGHT, CENTER, DECIMAL (set print justification)

MAX (set total maximum)

META (set .VBX to print as .WMF)

MIN (set total minimum)

PAGE (set page total reset)

PAGENO (set page number print)

RESET (set total reset)

ROUND (set round-cornered report BOX)

SUM (set total)

TRN (set transparent report string)

USE (set code reference name)

AT (set control position and size in report)
AT([x] [,y] [,width] [,height])

AT Defines the position and size of a control.

x An integer constant or constant expression that specifies the initial horizontal position of
the top left corner of the control, relative to the top left corner of the print structure
containing it. If omitted, the runtime library provides a default value.

y An integer constant or constant expression that specifies the initial vertical position of the
top left corner of the control, relative to the top left corner of the print structure
containing it. If omitted, the runtime library provides a default value.

width An integer constant or constant expression that specifies the width of the control. If
omitted, the runtime library provides a default value.

height An integer constant or constant expression that specifies the height of the control. If
omitted, the runtime library provides a default value.

The AT attribute defines the position and size of a control, relative to the top left corner of the print
structure containing it. If any parameter is omitted, the runtime library provides a default value.

The values contained in the x, y, width, and height parameters default to dialog units unless the THOUS,
MM, or POINTS attribute is also present. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is dependent upon the size of
the default font for the report. This measurement is based on the font specified in the FONT attribute of
the REPORT, or the printer´s default font.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS !AT specifies detail print area
Detail DETAIL,AT(0,0,6500,1000) !AT specifies band size and

! relative position offset from
! last printed detail

STRING(´String Constant´),AT(500,500,1500,500)
!AT specifies control size and
! offset within the detail band

 END
 END

AVE (set total average)
AVE

The AVE attribute specifies the average (arithmetic mean) of the STRING controls´ USE variable is
printed.

 An AVE field in a DETAIL structure is calculated each time the DETAIL structure
containing the control is PRINTed.

 An AVE field in a group FOOTER structure is calculated each time any DETAIL
structure in the BREAK structure containing the control is PRINTed.

 An AVE field in a page FOOTER structure is calculated each time any DETAIL structure
in any BREAK structure is PRINTed.

 An AVE field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The average is reset only if the RESET or PAGE attribute is also specified. The STRING control using this
attribute would usually be placed in a group or page FOOTER.

BOXED (set report controls group border)
BOXED

The BOXED attribute specifies a single-track border around a GROUP or OPTION structure. The text
parameter of the GROUP or OPTION control appears in a gap at the top of the border box. If BOXED is
omitted, the text parameter of the GROUP or OPTION control is not printed.

CAP, UPR (set print case)
CAP
UPR

The CAP and UPR attributes specify the automatic case of text printed in a TEXT control. UPR specifies
all upper case; CAP specifies "Proper Name Capitalization," where the first letter of each word is
capitalized and all other letters are lower case.

CNT (set total count)
CNT

The CNT attribute specifies an automatic count of the number of times DETAIL structures have been
printed.

 A CNT field in a DETAIL structure is incremented each time the DETAIL structure
containing the control is PRINTed. This provides a "running" count.

 A CNT field in a group FOOTER structure is incremented each time any DETAIL
structure in the BREAK structure containing the control is PRINTed. This provides a total
of the number of DETAIL structures printed in the group.

 A CNT field in a page FOOTER structure is incremented each time any DETAIL
structure in any BREAK structure is PRINTed. This provides a total of the number of
DETAIL structures printed on the page (or report).

 A CNT field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The CNT is reset only if the RESET or PAGE attribute is also specified.

COLOR (set color)
COLOR(rgb)

COLOR Specifies the print color of a BOX, LINE, or ELLIPSE control.

rgb A LONG or ULONG integer constant containing the red, green, and blue components
that create the color in the three low-order bytes (bytes 0, 1, and 2), or an EQUATE for a
standard Windows color value.

The COLOR attribute specifies the print color of a BOX, LINE, or ELLIPSE control. On a BOX or
ELLIPSE, the color specified is the color used for the border. EQUATEs for Windows´ standard colors are
contained in the EQUATES.CLW file.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),COLOR(COLOR:ACTIVEBORDER) !Color EQUATE
BOX,AT(360,60,200,200),COLOR(00FF0000h) !Pure Red

END
END

FILL (set print fill color)
FILL(rgb)

FILL Specifies the print fill color of a BOX or ELLIPSE control.

rgb A LONG or ULONG integer constant containing the red, green, and blue components
that create the color in the three low-order bytes (bytes 0, 1, and 2) or an EQUATE for a
standard Windows color value.

The FILL attribute specifies the print fill color of a BOX or ELLIPSE control. If omitted, the control is not
filled with color.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),FILL(COLOR:ACTIVEBORDER)
!Color EQUATE

BOX,AT(360,60,200,200),FILL(00FF0000h) !Pure Red
END

END

FONT (set default font)
FONT([typeface] [,size] [,color] [,style])

FONT Specifies the print font for the control.

typeface A string constant containing the name of the font. If omitted, the print structure´s FONT
attribute is used (if present), or the REPORT structure´s FONT attribute is used (if
present), or else the printer´s default font is used.

size An integer constant containing the size (in points) of the font. If omitted, the printer´s
default font size is used.

color A LONG integer constant containing the red, green, and blue values for the color of the
font in the low-order three bytes, or an EQUATE for a standard Windows color value. If
omitted, black is used.

style An integer constant, constant expression, or EQUATE specifying the strike weight and
style of the font. If omitted, the weight is normal.

The FONT attribute specifies the print font for the control, overriding any FONT specified on the REPORT
or print structure.

The typeface may name any font registered in the Windows system which the printer driver supports. This
includes the TrueType fonts for most printers. The EQUATES.CLW file contains EQUATE values for
standard style values. A style on the range zero (0) to one thousand (1000) specifies the strike weight of
the font. You may add to that values that indicate italic, underline, or strikeout text. The following
EQUATES are in EQUATES.CLW:

 FONT:thin EQUATE (100)
 FONT:regular EQUATE (400)
 FONT:bold EQUATE (700)
 FONT:italic EQUATE (01000H)
 FONT:underline EQUATE (02000H)
 FONT:strikeout EQUATE (04000H)

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

STRING(´Text´),AT(0,0),FONT(´Arial´,14,00FF0000h)
STRING(´Text´),AT(160,160),FONT(´Arial´,12,,FONT:italic)

END
END

FORMAT (set LIST print format)
FORMAT(format string)

FORMAT Specifies the print format for the data.

format string A string constant specifying the column or multi-column print format.
The FORMAT attribute specifies the print format for the data in the LIST control. The format string
contains the information for single or multi-column formatting of the data.

The format string contains "field-specifiers" which map to the fields of the QUEUE. Multiple "field-
specifiers" may be grouped together as a "field-group" in square brackets ([]) to display as a single unit.

Only the fields in the QUEUE for which there are "field-specifiers" are printed. This means that, if there
are two fields specified in the format string and three fields in the QUEUE, only the two specified in the
format string are printed in the LIST control.

Field-specifier" format: width justification [(indent)] [modifiers]

width A required integer defining the width of the field. Specified in dialog units unless
overridden by the THOUS, MM, or POINTS attribute.

justification A single capital letter (L , R , C , or D) that specifies Left, Right, Center, or Decimal
justification. One is required.

indent An optional integer, enclosed in parentheses, that specifies the indent from the
justification. This may be negative. With left (L) justification, indent defines a left
margin; with right (R) or decimal (D), it defines a right margin; and with center (C), it
defines an indent from the center of the field.

modifiers: Optional special characters (listed below) to modify the print format of the field or group.
Multiple modifiers may be used on one field or group.

~header~ [justification [(indent)]]
A header string enclosed in tildes, followed by optional justification and/or indent, prints
the header at the top of the list. The header uses the same justification and indent as the
field, if not specifically overidden.

@picture@ The picture formats the field for printing. The trailing @ is required to define the end of
the picture, so that display pictures like @N12~Kr~ can be used in the format string
without creating ambiguity.

#number# The number enclosed in pound signs (#) indicates the QUEUE field to print. Following
fields in the format string without an explicit #number# are taken in order from the fields
following the #number# field. For example, #2# on the first field in the format string
indicates starting with the second field in the QUEUE, skipping the first. If the number of
fields specified in the format string are >= the number of fields in the QUEUE, the format
"wraps around" to the start of the QUEUE.

_ An underscore underlines the field.

/ A slash causes the next field to appear on a new line (only used on a field within a group).

| A vertical bar places a vertical line to the right of the field.

"Field-group" format: [multiple field-specifiers] [(size)] [modifiers]

multiple field-specifiers
A list of field-specifiers contained in square brackets ([]) that cause them to be treated
as a single display unit.

size An optional integer, enclosed in parentheses, that specifies the default width of the group.
If omitted, the size is calculated from the enclosed fields.

modifiers The "field-group" modifiers act on the entire group of fields. These are the same
modifiers listed above.

Example:
TD QUEUE,AUTO
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,34,366,146),FORMAT(´´),FROM(TD),USE(?Show)
END

END
CODE
OPEN(CustRpt)
SETTARGET(CustRpt)
IF SomeCondition
?Show{PROP:format} = ´80C~First Name~80C~Last Name~16L~Intls~60R~Wage~|´

ELSE
?Show{PROP:format} = ´80C~First Name~80C~Last Name~16L~Intls~60D(10)~Wage~|´

END

FROM (set report listbox data source)
FROM(source)

FROM Specifies the source of the data printed in a LIST control.

source The label of a QUEUE, or any variable (normally a GROUP) containing the data items to
print in the LIST.

The FROM attribute specifies the source of the data elements printed in a LIST control. The data
elements are formatted for display according to the information in the FORMAT attribute.

If the label of a QUEUE is specified as the source, all fields in the QUEUE are printed. If the label of one
field in a QUEUE is specified as the source, only that field is printed. Only the current QUEUE entry in the
queue´s data buffer is printed in the LIST.

If a string constant or variable is specified as the source, the entire string is printed in the LIST.

Example:
TD QUEUE,AUTO
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,34,366,146),FORMAT(´80L80L16L60L´),FROM(TD),USE(?Show1)
LIST,AT(0,200,100,146),FORMAT(´80L´),FROM(Fname),USE(?Show2)

END
END

HIDE (set control non-print)
HIDE

The HIDE attribute specifies the control does not print unless the UNHIDE statement is used to allow it to
print.

LEFT, RIGHT, CENTER, DECIMAL (set print justification)
LEFT([indent])
RIGHT([indent])
CENTER([indent])
DECIMAL([indent])

indent An integer constant specifying the amount of margin left after justification. This is in
dialog units unless overridden by the THOUS, MM, or POINTS attribute.

The LEFT, RIGHT, CENTER, and DECIMAL attributes specify the justification of data printed. LEFT
specifies left justification, RIGHT specifies right justification, CENTER specifies centered text, and
DECIMAL specifies numeric data aligned on the decimal point.

The indent parameter on the CENTER attribute specifies an offset from the center. On the DECIMAL
attribute, indent specifies the position of the decimal point.

The following controls allow LEFT or RIGHT only (without an indent parameter):

CHECK
 GROUP
 OPTION

RADIO

The following controls allow LEFT(indent), RIGHT(indent), CENTER(indent), or DECIMAL(indent):

LIST
STRING

The TEXT control allows LEFT, RIGHT, and CENTER (without an indent parameter).

Example:
Rpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,20,100,146),FORMAT(´800L´),FROM(Fname),USE(?Show2),LEFT(100)
END

END

MAX (set total maximum)
MAX

The MAX attribute specifies printing the maximum value the STRING control´s USE variable has
contained so far.

 A MAX field in a DETAIL structure is evaluated each time the DETAIL structure
containing the control is PRINTed. This provides a "running" maximum value.

 A MAX field in a group FOOTER structure is evaluated each time any DETAIL structure
in the BREAK structure containing the control is PRINTed. This provides the maximum
value of the variable in the group.

 A MAX field in a page FOOTER structure is evaluated each time any DETAIL structure
in any BREAK structure is PRINTed. This is the maximum value of the variable in the
page (or report to date).

 A MAX field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The MAX value is reset only if the RESET or PAGE attribute is also specified.

META (set .VBX to print as .WMF)
META

The META attribute specifies printing a .VBX custom control as a .WMF windows metafile. This will print
the control as a graphic image on the report.

MIN (set total minimum)
MIN

The MIN attribute specifies printing the minimum value the STRING control´s USE variable has contained
so far.

 A MIN field in a DETAIL structure is evaluated each time the DETAIL structure
containing the control is PRINTed. This provides a "running" minimum value.

 A MIN field in a group FOOTER structure is evaluated each time any DETAIL structure
in the BREAK structure containing the control is PRINTed. This provides the minimum
value of the variable in the group.

 A MIN field in a page FOOTER structure is evaluated each time any DETAIL structure in
any BREAK structure is PRINTed. This is the minimum value of the variable in the page
(or report to date).

 A MIN field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The MIN value is reset only if the RESET or PAGE attribute is also specified.

PAGE (set page total reset)
PAGE

The PAGE attribute specifies the CNT, SUM, AVE, MIN, or MAX is reset to zero (0) when page break
occurs.

PAGENO (set page number print)
PAGENO

The PAGENO attribute specifies the STRING control prints the current page number.

RESET (set total reset)
RESET(breaklevel)

RESET Resets the CNT, SUM, AVE, MIN, or MAX to zero (0).

breaklevel The label of a BREAK structure.
The RESET attribute specifies the group break at which the CNT, SUM, AVE, MIN, or MAX is reset to
zero (0).

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

 HEADER,AT(0,0,6500,1000)
STRING(´Group Head´),AT(3000,500,1500,500),FONT(´Arial´,18)

 END
Detail DETAIL,AT(0,0,6500,1000)

 STRING(@N$11.2´),AT(6000,1500,500,500),USE(Pre:F1)
 END
 FOOTER,AT(0,0,6500,1000)

STRING(´Group Total:´),AT(5500,500,1500,500)
STRING(@N$11.2´),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)

END
END

END

ROUND (set round-cornered report BOX)
ROUND

The ROUND attribute specifies a BOX control with rounded corners.

SUM (set total)
SUM

The SUM attribute specifies printing the sum of the values contained in the STRING control´s USE
variable.

 A SUM field in a DETAIL structure is incremented each time the DETAIL structure
containing the control is PRINTed. This provides a "running" total.

 A SUM field in a group FOOTER structure is incremented each time any DETAIL
structure in the BREAK structure containing the control is PRINTed. This provides the
sum of the value contained in the variable in the group.

 A SUM field in a page FOOTER structure is incremented each time any DETAIL
structure in any BREAK structure is PRINTed. This is the sum of the values contained in
the variable in the page.

 A SUM field in a HEADER is meaningless, since no DETAIL structures will have been
printed at the time the HEADER is printed.

The SUM value is reset only if the RESET or PAGE attribute is also specified.

TRN (set transparent report string)
TRN

The TRN attribute on a STRING control specifies the characters print transparently, without obliterating
the background over which the STRING is placed. Only the dots required to create each character are
printed. This allows the STRING to be placed directly on top of an IMAGE without destroying the
background picture.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS

FORM,AT(0,0,6500,9000)
IMAGE(´PIC.BMP´),USE(?I1)AT(0,0,6500,9000) !Full page

image
STRING(´String Constant´),AT(10,0,20,20),USE(?S1),TRN

!Transparent string on the image
END

END

USE (set code reference name)
USE(variable [,number])

USE Specifies the data to print in the control or a field equate label with which to reference the
control.

variable The label of a variable or a field equate label.

number An integer constant that specifies the number the compiler equates to the field equate
label for the control.

The USE attribute specifies the variable containing the data to print in the control or a field equate label
with which to reference the control.

All controls in a REPORT are automatically assigned numbers by the compiler. Print structures receive a
number if assigned a USE variable. These numbers start at one (1) and increment by one (1) for each
control in the REPORT.

The USE attribute´s number parameter allows you to specify the actual field number the compiler assigns
to the control. This number also is used as the new starting point for subsequent field numbering for fields
without a number parameter in their USE attribute. Subsequent controls without a number parameter in
their USE attribute are incremented relative to the last number assigned.

Two or more controls with exactly the same USE variable in a REPORT structure would create the same
Field Equate Label for all, therefore, when the compiler encounters this condition, all Field Equate Labels
for that USE variable are discarded. This makes it impossible to reference any of these controls in
executable code, preventing confusion about which control you really want to reference. It also allows you
to deliberately create this condition to print the contents of the variable in multiple controls.

Example:
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

STRING(´Group Total:´).AT(5500,500,1500,500),USE(?Constant)
!Field equate label

 STRING(@N$11.2´),AT(6000,1500,500,500),USE(Pre:F1)
!USE variable

END
END

Report Procedures
CLOSE (close an active report structure)

ENDPAGE (force page overflow)

OPEN (open a report structure for processing)

PRINT (print a report structure)

CLOSE (close an active report structure)
CLOSE(report)

CLOSE Deactivates a REPORT structure.

report The label of a REPORT structure.
CLOSE prints the last page FOOTER, (unless the last structure printed has the ALONE attribute), and
closes the REPORT. If the REPORT has the PREVIEW attribute, all the temporary metafiles are deleted.

RETURN from a procedure in which a REPORT is opened automatically closes the REPORT.

Example:
CLOSE(CustRpt) !Close the report

ENDPAGE (force page overflow)
ENDPAGE(report)

ENDPAGE Forces page overflow.

report The label of a REPORT structure.
The ENDPAGE statement initiates page overflow and flushes the print engine´s print structure buffer. If
the REPORT has the PREVIEW attribute, this has the effect of ensuring that the entire report is available
to view.

Example:
SomeReport PROCEDURE
WMFQue QUEUE !Queue to contain .WMF filenames

STRING(64)
END

NextEntry BYTE(1) !Queue entry counter variable
Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

 !Report controls
. .

ViewReport WINDOW(´View Report´),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(´´),AT(0,0,320,180),USE(?ImageField)
BUTTON(´View Next Page´),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(´Print Report´),AT(80,180,60,20),USE(?PrintReport)
BUTTON(´Exit Without Printing´),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
PRINT(DetailOne)

END
ENDPAGE(Report) !Flush the buffer
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:flushpreview} = ON !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

. .
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deleting all .WMF files)
RETURN ! and return to caller

See Also:

Page Overflow

PREVIEW

OPEN (open a report structure for processing)
OPEN(report)

OPEN Activates a REPORT structure.

report The label of a REPORT structure.
OPEN activates a REPORT structure. You must OPEN a REPORT before any of the structures may be
printed.

Example:
OPEN(CustRpt) !Open the report

PRINT (print a report structure)
PRINT(| structure |)

| report ,number |

PRINT Prints a report DETAIL, HEADER, or FOOTER structure.

structure The label of a DETAIL structure.

report The label of a REPORT structure.

number The number or EQUATE label of a report structure to print (only valid with a report
parameter).

The PRINT statement prints a report structure to the destination specified by the user in the Windows
Print... dialog. PRINT automatically activates group breaks and page overflow as needed.

Example:
BuildRptPROCEDURE
CustRpt REPORT

HEADER,USE(?PageHeader) !Page header
!structure elements

END
CustDetail DETAIL,USE(?Detail) !Line item detail

!structure elements
END !

END
CODE
PRINT(CustDetail) !Print order detail line
PrintRpt(CustRpt,?PageHeader) !Pass report and equate to print proc

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
PRINT(RptToPrint,DetailNumber) !Print its structure

See Also:

Page Overflow

BREAK

Graphics Commands
Graphics Overview

The Current Target

Graphics Coordinates

Graphics Procedures

ARC (draw an arc of an ellipse)

BLANK (erase graphics)

BOX (draw a rectangle)

CHORD (draw a section of an ellipse)

ELLIPSE (draw an ellipse)

IMAGE (draw a graphic image)

LINE (draw a straight line)

PIE (draw a pie chart)

POLYGON (draw a multi-sided figure)

ROUNDBOX (draw a box with round corners)

SETPENCOLOR (set line draw color)

SETPENSTYLE (set line draw style)

SETPENWIDTH (set line draw thickness)

SHOW (write to screen)

TYPE (write string to screen)

Graphics Functions

PENCOLOR (return line draw color)

PENSTYLE (return line draw style)

PENWIDTH (return line draw thickness)

Graphics Overview
Clarion supplies the set of "graphics primitives" defined in this chapter to allow drawing in windows and
reports.

Controls always appear on top of any graphics drawn to the window. This means the graphics appear to
underly any controls in the window, so they don´t get in the way of the controls the user needs to access.

The Current Target
Graphics are always drawn to the "current target." Unless overridden with SETTARGET, the "current
target" is the last window opened (and not yet closed) on the current execution thread and is the window
with input focus. Drawings in a window are persistent--redraws are handled automatically by the runtime
library.

Graphics can also be drawn to a report. To do this, SETTARGET must be used to nominate the REPORT
as the "current target."

Every window or report has its own current pen width, color, and style. Therefore, to consistently use the
same pen (which does not use the default settings) across multiple windows, the SETPENWIDTH,
SETPENCOLOR, and SETPENSTYLE statements should be issued for each window.

Graphics Coordinates
The graphics coordinate system starts with the x,y coordinates (0,0) at the top left corner of the window.
The coordinates are specified in dialog units (unless overridden by the THOUS, MM, or POINTS
attributes when used on graphics placed in a REPORT). A dialog unit is defined as one-quarter the
average character width and one-eighth the average character height of the font specified in the window´s
FONT attribute (or the system font, if no FONT attribute is specified on the window).

Graphics drawn outside the currently visible portion of the window will appear if the window is scrolled.
The size of the virtual screen over which the window may scroll automatically expands to include all
graphics drawn to the window. Drawing graphics outside the visible portion of the window automatically
causes the scroll bars to appear (if the window has the HSCROLL, VSCROLL, or HVSCROLL attribute).

Graphics Procedures
 ARC (draw an arc of an ellipse)

 BLANK (erase graphics)

 BOX (draw a rectangle)

 CHORD (draw a section of an ellipse)

 ELLIPSE (draw an ellipse)

 IMAGE (draw a graphic image)

 LINE (draw a straight line)

 PIE (draw a pie chart)

 POLYGON (draw a multi-sided figure)

 ROUNDBOX (draw a box with round corners)

 SETPENCOLOR (set line draw color)

 SETPENSTYLE (set line draw style)

 SETPENWIDTH (set line draw thickness)

 SHOW (write to screen)

 TYPE (write string to screen)

ARC (draw an arc of an ellipse)
ARC(x ,y ,width ,height ,startangle ,endangle)

ARC Draws an arc of an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of the arc, in tenths of degrees (10
= 1 degree) measured counter-clockwise from three o´clock.

endangle An integer expression that specifies the ending point of the arc, in tenths of degrees (10 =
1 degree) measured counter-clockwise from three o´clock.

The ARC procedure places an arc of an ellipse on the current window or report.

The ellipse is drawn inside a "bounding box" defined by the x, y, width, and height parameters. The x and
y parameters specify the starting point, and the width and height parameters specify the horizontal and
vertical size of the "bounding box."

The startangle and endangle parameters specify what sector of the ellipse will be drawn, as an arc.

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The border style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw 90 degree arc from 3 to 12 o´clock, as
 ! the top-right quadrant of ellipse

BLANK (erase graphics)
BLANK([x] [,y] [,width] [,height])

BLANK Erases all graphics written to the specified area of the current window or report.

x An integer expression that specifies the horizontal position of the starting point. If
omitted, the default is zero.

y An integer expression that specifies the vertical position of the starting point. If omitted,
the default is zero.

width An integer expression that specifies the width. If omitted, the default is the width of the
window.

height An integer expression that specifies the height. If omitted, the default is the height of the
window.

The BLANK procedure erases all graphics written to the specified area of the current window or report.
Controls are not erased. BLANK with no parameters erases the entire window or report.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw arc
BLANK !Then erase it

BOX (draw a rectangle)
BOX(x ,y ,width ,height [,fill])

BOX Draws a rectangular box on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value.

The BOX procedure places a rectangular box on the current window or report. The position and size of
the box are specified by x, y, width, and height parameters.

The x and y parameters specify the starting point, and the width and height parameters specify the
horizontal and vertical size of the box. The box extends to the right and down from its starting point.

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The border style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
BOX(100,50,100,50,00FF0000h) !Red box

CHORD (draw a section of an ellipse)
CHORD(x ,y ,width ,height ,startangle ,endangle [,fill])

CHORD Draws a closed sector of an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of the chord, in tenths of degrees
(10 = 1 degree) measured counter-clockwise from three o´clock.

endangle An integer expression that specifies the ending point of the chord, in tenths of degrees (10
= 1 degree) measured counter-clockwise from three o´clock.

fill A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value.

The CHORD procedure places a closed sector of an ellipse on the current window or report. The ellipse is
drawn inside a "bounding box" defined by the x, y, width, and height parameters. The x and y parameters
specify the starting point, and the width and height parameters specify the horizontal and vertical size of
the "bounding box." The startangle and endangle parameters specify what sector of the ellipse will be
drawn, as an arc. The two end points of the arc are also connected with a straight line.

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The border style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
CHORD(100,50,100,50,0,900,00FF0000h) !Red 90 degree crescent

ELLIPSE (draw an ellipse)
ELLIPSE(x ,y ,width ,height [,fill])

ELLIPSE Draws an ellipse on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value.

The ELLIPSE procedure places an ellipse on the current window or report. The ellipse is drawn inside a
"bounding box" defined by the x, y, width, and height parameters. The x and y parameters specify the
starting point, and the width and height parameters specify the horizontal and vertical size of the
"bounding box."

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The border style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ELLIPSE(100,50,100,50,00FF0000h) !Red ellipse

IMAGE (draw a graphic image)
IMAGE(x ,y ,width ,height ,filename)

IMAGE Places a graphic image on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width. This may be a negative number.

height An integer expression that specifies the height. This may be a negative number.

filename A string constant or variable containing the name of the file to display.
The IMAGE procedure places a graphic image on the current window or report at the position and size
specified by its x, y, width, and height parameters. This may be a bitmap (.BMP), icon (.ICO), PaintBrush
(.PCX), Graphic Interchange Format (.GIF), JPEG (.JPG), or Windows metafile (.WMF).

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
IMAGE(100,50,100,50,´LOGO.BMP´) !Draw graphic image

LINE (draw a straight line)
LINE(x ,y ,width ,height)

LINE Draws a straight line on the current window or report.

x An integer expression specifying the horizontal position of the starting point.

y An integer expression specifying the vertical position of the starting point.

width An integer expression specifying the width. This may be a negative number.

height An integer expression specifying the height. This may be a negative number.
The LINE procedure places a straight line on the current window or report. The starting position, slope,
and length of the line are specified by x, y, width, and height parameters. The x and y parameters specify
the starting point of the line. The width and height parameters specify the horizontal and vertical distance
to the end point of the line. If these are both positive numbers, the line slopes to the right and down from
its starting point. If the width parameter is negative, the line slopes left; if the height parameter is negative,
the line slopes left. If either the width or height parameter is zero, the line is horizontal or vertical.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

The line color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The width is the current width set by SETPENWIDTH; the default width is one pixel.
The line´s style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
LINE(100,50,100,50) !Draw line

PIE (draw a pie chart)
PIE(x ,y ,width ,height ,slices ,colors [,depth] [,wholevalue] [,startangle])

PIE Draws a pie chart on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

slices A SHORT array of values that specify the relative size of each slice of the pie.

colors A LONG array that specifies the fill color for each slice.

depth An integer expression that specifies the depth of the three-dimensional pie chart. If
omitted, the chart is two-dimensional.

wholevalue A numeric constant or variable that specifies the total value required to create a complete
pie chart. If omitted, the sum of the slices array is used.

startangle A numeric constant or variable that specifies the starting point of the first slice of the pie,
measured as a fraction of the wholevalue. If omitted (or zero), the first slice starts at the
twelve o´clock position.

The PIE procedure creates a pie chart on the current window or report. The pie (an ellipse) is drawn
inside a "bounding box" defined by the x, y, width, and height parameters. The x and y parameters specify
the starting point, and the width and height parameters specify the horizontal and vertical size of the
"bounding box."

The slices of the pie are created clockwise from the startangle parameter as a fraction of the wholevalue.
Supplying a wholevalue parameter that is greater than the sum of all the slices array elements creates a
pie chart with a piece missing.

The color of the lines is the current pen color set by SETPENCOLOR; the default color is the Windows
system color for window text. The width of the lines is the current width set by SETPENWIDTH; the
default width is one pixel. The line style is the current pen style set by SETPENSTYLE; the default style is
a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

SliceSize SHORT,DIM(4)
SliceColor LONG,DIM(4)
CODE
SliceSize[1] = 90
SliceColor[1] = 0 !Black
SliceSize[2] = 90
SliceColor[2] = 00FF0000h !Red
SliceSize[3] = 90
SliceColor[3] = 0000FF00h !Green
SliceSize[4] = 90
SliceColor[4] = 000000FFh !Blue
OPEN(MDIChild)

PIE(100,50,100,50,SliceSize,SliceColor)
!Draw pie chart containing
! four equal slices, starting at 12 o´clock
! drawn counter-clockwise
!- Black, Red, Green, and Blue

POLYGON (draw a multi-sided figure)
POLYGON(array [,fill])

POLYGON Draws a multi-sided figure on the current window or report.

array An array of SHORT integers that specify the x and y coordinates of each "corner point"
of the polygon.

fill A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value.

The POLYGON procedure places a multi-sided figure on the current window or report. The polygon is
always closed.

The array parameter contains the x and y coordinates of each "corner point" of the polygon. The polygon
will have as many corner points as the total number of array elements divided by two. For each corner
point in turn, its x coordinate is taken from the odd-numbered array element and the y coordinate from the
immediately following even-numbered element.

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The line´s style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

Corners SHORT,DIM(8)
CODE
Corners[1] = 0 !1st x position
Corners[2] = 90 !1st y position
Corners[3] = 90 !2nd x position
Corners[4] = 190 !2nd y position
Corners[5] = 100 !3rd x position
Corners[6] = 200 !3rd y position
Corners[7] = 50 !4th x position
Corners[8] = 60 !4th y position
OPEN(MDIChild)
POLYGON(Corners,000000FFh) !Blue filled four-sided polygon

ROUNDBOX (draw a box with round corners)
ROUNDBOX(x ,y ,width ,height [,fill])

ROUNDBOX Draws a rectangular box with rounded corners on the current window or report.

x An integer expression that specifies the horizontal position of the starting point.

y An integer expression that specifies the vertical position of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value.

The ROUNDBOX procedure places a rectangular box with rounded corners on the current window or
report. The position and size of the box are specified by x, y, width, and height parameters.

The x and y parameters specify the starting point, and the width and height parameters specify the
horizontal and vertical size of the box. The box extends to the right and down from its starting point.

The border color is the current pen color set by SETPENCOLOR; the default color is the Windows system
color for window text. The border width is the current width set by SETPENWIDTH; the default width is
one pixel. The border style is the current pen style set by SETPENSTYLE; the default style is a solid line.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box

SETPENCOLOR (set line draw color)
SETPENCOLOR([color])

SETPENCOLOR Sets the current pen color.

color A LONG or ULONG integer constant, constant EQUATE, or variable containing the red,
green, and blue components that create the color in the three low-order bytes (bytes 0, 1,
and 2) or an EQUATE for a standard Windows color value. If omitted, the Windows
system color for window text is set.

The SETPENCOLOR procedure sets the current pen color for use by all graphics procedures. The default
color is the Windows system color for window text.

Every window has its own current pen color. Therefore, to consistently use the same pen (which does not
use the default color setting) across multiple windows, the SETPENCOLOR statement should be issued
for each window.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box with blue border

SETPENSTYLE (set line draw style)
SETPENSTYLE([style])

SETPENSTYLE Sets the current pen style.

style An integer constant, constant EQUATE, or variable that specifies the pen´s style. If
omitted, a solid line is set.

The SETPENSTYLE procedure sets the current line draw style for use by all graphics procedures. The
default is a solid line.

Every window has its own current pen style. Therefore, to consistently use the same pen (which does not
use the default style setting) across multiple windows, the SETPENSTYLE statement should be issued for
each window.

EQUATE statements for the pen styles are contained in the EQUATES.CLW file. The following list is a
representative sample of these (see EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
ROUNDBOX(100,50,100,50,00FF0000h)

!Red round-cornered box with blue dashed border

SETPENWIDTH (set line draw thickness)
SETPENWIDTH([width])

SETPENWIDTH Sets the current pen width.

width An integer expression that specifies the pen´s thickness, measured in dialog units unless
overridden by the THOUS, MM, or POINTS attributes. If omitted, the default (one pixel)
is set.

The SETPENWIDTH procedure sets the current line draw thickness for use by all graphics procedures.
The default is one pixel, which may be set with a width of zero (0).

Every window has its own current pen width. Therefore, to consistently use the same pen (which does not
use the default width setting) across multiple windows, the SETPENWIDTH statement should be issued
for each window.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

SHOW (write to screen)
SHOW(x ,y ,string)

SHOW Writes a string to the current window or report.

x An integer expression that specifies the horizontal position of the starting point, in dialog
units.

y An integer expression that specifies the vertical position of the starting point, in dialog
units.

string A string constant, variable, or expression containing the formatted text to place on the
current window or report.

SHOW writes the string text to the current window or report. The font used is the current font for the
window or report.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
SHOW(100,100,FORMAT(TODAY(),@D3)) !Display the date
SHOW(20,20,´Press Any Key to Continue´) !Display a message

TYPE (write string to screen)
TYPE(string)

TYPE Writes a string to the current window or report.

string A string constant, variable, or expression.
TYPE writes a string to the current window or report. The string appears on the window or report at the
current cursor position, and "wraps around" if the string length extends beyond the right edge. The font
used is the current font for the window or report. The SHOW statement may be used to position the
cursor before output from TYPE.

Example:
MDIChildWINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild)
TYPE(Cus:Notes) !Type the notes field

Graphics Functions
PENCOLOR (return line draw color)

PENSTYLE (return line draw style)

PENWIDTH (return line draw thickness)

PENCOLOR (return line draw color)
PENCOLOR()

The PENCOLOR function returns the current pen color set by SETPENCOLOR.

Return Data Type: LONG

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(´Child Two´),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
 END

ColorNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

PENSTYLE (return line draw style)
PENSTYLE()

The PENSTYLE function returns the current line draw style set by SETPENSTYLE.

EQUATE statements for the pen styles are contained in the EQUATES.CLW file. The following list is a
representative sample of these (see EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Return Data Type: LONG

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(´Child Two´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

ColorNowLONG
StyleNowLONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

PENWIDTH (return line draw thickness)
PENWIDTH()

The PENWIDTH function returns the current line draw thickness set by SETPENWIDTH. The return value
is in dialog units (unless overridden by the THOUS, MM, or POINTS attributes on a REPORT).

Return Data Type: LONG

Example:
Proc1 PROCEDURE
MDIChild1 WINDOW(´Child One´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(´Child Two´),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

ColorNowLONG
StyleNowLONG
WidthNowLONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
WidthNow = PENWIDTH() !Get current pen width
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(WidthNow) !Set same pen width
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border

Data Files
Data File Structures

FILE (declare a data file structure)

CREATE (allow data file creation)

DRIVER (specify data file type)

NAME (set filename)

ENCRYPT (encrypt data file)

OWNER (declare password for data encryption)

RECLAIM (reuse deleted record space)

PRE (set file label)

BINDABLE (set runtime expression string RECORD variables)

THREAD (set thread-specific record buffer)

EXTERNAL (set file defined externally)

DLL (set file defined externally in .DLL)

OEM (set international string support)

File Structure Statements

INDEX (declare static file access index)

KEY (declare dynamic file access index)

MEMO (declare a text field)

RECORD (declare record structure)

INDEX, KEY and MEMO Attributes

BINARY (MEMO contains binary data)

DUP (allow duplicate KEY entries)

NOCASE (case insensitive KEY or INDEX)

PRIMARY (set relational primary key)

OPT (exclude null KEY or INDEX entries)

NAME (set external name)

File Commands

BUILD (build keys and indexes)

CLOSE (close a data file)

COPY (copy a data file)

CREATE (create an empty data file)

EMPTY (empty a data file)

FLUSH (flush DOS buffers)

LOCK (exclusive file access)

OPEN (open a data file)

PACK (remove deleted records)

REMOVE (erase the data file)

RENAME (change data file directory name)

SHARE (open a data file)

STREAM (enable DOS buffering)

UNLOCK (unlock a locked data file)

Record Access Commands

ADD (add a new file record)

APPEND (add a new file record)

DELETE (delete a file record)

GET (read a file record by direct access)

HOLD (exclusive file record access)

NEXT (read next file record in sequence)

NOMEMO (read file record without reading memo)

PREVIOUS (read previous file record in sequence)

PUT (write record back to file)

RELEASE (release a held file record)

REGET (reget file record)

RESET (reset file record sequence position)

SET (initiate sequential file processing)

SKIP (bypass file records in sequence)

WATCH (automatic file concurrency check)

File Functions

BOF (beginning of file function)

BYTES (return size in bytes)

DUPLICATE (check for duplicate key entries)

EOF (end of file function)

POINTER (return relative record position)

POSITION (return file record sequence position)

RECORDS (return number of file or key records)

SEND (send message to file driver)

Transaction Processing

COMMIT (terminate successful transaction)

LOGOUT (begin transaction)

ROLLBACK (terminate unsuccessful transaction)

Null Data Processing

NULL (return null file field)

SETNULL (set file field null)

SETNONNULL (set file field non-null)

Internationalization

Environment Files

CONVERTANSITOOEM (convert ANSI strings to ASCII)

CONVERTOEMTOANSI (convert ASCII strings to ANSI)

ISALPHA (return alphabetic string)

ISLOWER (return lower case alphabetic string)

ISUPPER (return upper case alphabetic string)

LOCALE (load environment file)

Data File Structures
FILE (declare a data file structure)

CREATE (allow data file creation)

DRIVER (specify data file type)

NAME (set filename)

ENCRYPT (encrypt data file)

OWNER (declare password for data encryption)

RECLAIM (reuse deleted record space)

PRE (set file label)

BINDABLE (set runtime expression string RECORD variables)

THREAD (set thread-specific record buffer)

FILE (declare a data file structure)
label FILE,DRIVER() [,CREATE] [,RECLAIM] [,OWNER()] [,ENCRYPT] [,NAME()] [,PRE()]

[,BINDABLE] [,THREAD] [,EXTERNAL] [,DLL][,OEM]
label [INDEX()]
label [KEY()]
label [MEMO()]
[label] RECORD

 fields
 END
END

FILE Declares a data file.

DRIVER Specifies the data file type. The DRIVER attribute is required on all FILE structure
declarations.

CREATE Allows the file to be created with the CREATE statement during program execution.

RECLAIM Specifies reuse of deleted record space.

OWNER Specifies the password for data encryption.

ENCRYPT Encrypt the data file.

NAME Set DOS filename specification.

PRE Declare a label prefix for the structure.

BINDABLE Specify all variables in the RECORD structure may be used in dynamic expressions.

THREAD Specify memory for the record buffer is separately allocated for each execution thread,
when the file is opened on the thread.

External Specify the file is defined, and the memory for its record buffer is allocated, in an
external library.

DLL Specify the file is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

OEM Specify string data is converted from OEM ASCII to ANSI when read from disk and
ANSI to OEM ASCII before writing to disk.

INDEX Declare a static file access index which must be built at run time.

KEY Declare a dynamically updated file access index.

MEMO Declare a variable length text field up to 64K in length.

RECORD Declare a record structure for the fields. A RECORD structure is required in all FILE
structure declarations.

fields Data elements in the RECORD structure.
FILE declares a data file structure which is an exact description of a data file residing on disk. The label of
the FILE structure is used in file processing statements and functions to effect operations on the disk file.
The FILE structure must be terminated by a period or the END statement.

All attributes of the FILE, KEY, INDEX, MEMO, data declaration statements, and the data types which a
FILE may contain, are dependent upon the support of the file driver. Anything in the FILE declaration
which is not supported by the file system specified in the DRIVER attribute will cause a file driver error
message when the FILE is opened. Attribute and/or data type exclusions for a specific file system are
listed in the file driver´s documentation.

At run-time, the RECORD structure is assigned memory for a data buffer where records from the disk file
may be processed by executable statements. A RECORD structure is required in a FILE structure.
Memory for a data buffer for any MEMO fields is allocated only when the FILE is opened, and de-
allocated when the FILE is closed.

A FILE with the BINDABLE attribute declares all the variables within the RECORD structure as available
for use in a dynamic expression, without requiring a separate BIND statement for each (allowing
BIND(file) to enable all the fields in the file). The contents of each variable´s NAME attribute is the logical
name used in the dynamic expression. If no NAME attribute is present, the label of the variable (including
prefix) is used. Space is allocated in the .EXE for the names of all of the variables in the structure. This
creates a larger program that uses more memory than it normally would. Therefore, the BINDABLE
attribute should only be used when a large proportion of the constituent fields are going to be used.

A FILE with the THREAD attribute declares a separate record buffer (and file control block) for each
execution thread that OPENs the FILE. If the thread does not OPEN the file, no record buffer is allocated
for the file on that thread.

Example:
Names FILE,DRIVER(´Clarion´) !Declare a file structure
Rec RECORD !Required record structure
Name STRING(20) ! containing one or more data elements

. . !End file and record declaration

CREATE (allow data file creation)
CREATE

The CREATE attribute of a FILE declaration allows a disk file to be created by the CREATE statement
from within the PROGRAM where the FILE is declared. This adds some overhead, as all the file
information must be contained in the excutable program.

Example:
Names FILE,DRIVER(´Clarion´),CREATE !Declare a file, allow create
Rec RECORD
Name STRING(20)

. .

DRIVER (specify data file type)
DRIVER(filetype [,driver string])

DRIVER Specifies the file system the file uses.

filetype A string constant containing the name of the file manager (Btrieve, Clarion, etc.).

driver string A string constant or variable containing any additional instructions to the file driver.
The DRIVER attribute specifies which file driver is used to access the data file. DRIVER is a required
attribute of all FILE declarations.

Clarion programs use file drivers for physical file access. A file driver acts as a translator between a
Clarion program and the file system, eliminating different access commands for each file system. File
drivers allow access to files from different file systems without changes in the Clarion syntax.

The specific implementation method of each Clarion file access command is dependent on the file driver.
Some commands may not be available in a file driver due to limitations in the file system. Each file driver
is documented separately. Any unsupported file access commands, FILE declaration attributes, data
types, and/or file system idiosyncracies are listed there. See Also: Supported File Systems.

Example:
Names FILE,DRIVER(´Clarion´) !Begin file declaration
Record RECORD
Name STRING(20)

 . .

NAME (set filename)
NAME([| constant |])

| variable |

NAME Specifies the DOS filename of the file.

constant A string constant.

variable The label of a static string variable. This may be declared as Global data, Module data, or
Local data with the STATIC attribute.

The NAME attribute on a FILE statement specifies the DOS filename for the file driver. If the constant or
variable does not contain a drive and path, the current drive and directory are assumed. If the extension is
omitted, the directory entry assumes the file driver´s default value.

Some file drivers require that KEYs, INDEXes, or MEMOs be in separate files. Therefore, a NAME may
also be placed on a KEY, INDEX, or MEMO. A NAME attribute without a constant or variable defaults to
the label of the declaration statement on which it is placed (including any specified prefix).

NAME(constant) may be used on any field declared within the RECORD structure. This provides the file
driver with the name of a field as it may be used in that driver´s file system.

Example:
Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(´Name´),NAME(´c:\data\cust.idx´) !Declare key, cust.idx
Record RECORD
Name STRING(20) !Default NAME to ´Cus:Name´

 . .

See Also:

FILE

KEY

INDEX

ENCRYPT (encrypt data file)
ENCRYPT

The ENCRYPT attribute is used in conjunction with the OWNER attribute to disguise the information in a
data file. ENCRYPT is only valid with an OWNER attribute. Even with a "hex-dump" utility, the data in an
encrypted file is extremely difficult to decipher.

Example:
Names FILE,DRIVER(´Clarion´),OWNER(´Clarion´),ENCRYPT
Record RECORD
Name STRING(20)

 . .

See Also:

OWNER

OWNER (declare password for data encryption)
OWNER(password)

OWNER Specifies a file encryption password.

password A string constant or variable.
The OWNER attribute specifies the password which is used by the ENCRYPT attribute to encrypt the
data.

An OWNER attribute without an accompanying ENCRYPT attribute is allowed by some file systems.
Exact implementation of what is encrypted is file driver dependent. See Also: Supported File Systems.

Example:
CustomerFILE,DRIVER(´Clarion´),OWNER(´abCdeF´),ENCRYPT

!Encrypt data password "abCdeF"
Record RECORD
Name STRING(20)

. .

See Also:

ENCRYPT

RECLAIM (reuse deleted record space)
RECLAIM

The RECLAIM attribute specifies that the file driver adds new records to the file in the space previously
used by a record that has been deleted, if available. Otherwise, the record is added at the end of the file.
Implementation of RECLAIM is file driver specific and may not be supported in all file systems. See Also:
Supported File Systems.

Example:
Names FILE,DRIVER(´Clarion´),RECLAIM !Reuse deleted record space
Record RECORD
Name STRING(20)

 . .

PRE (set file label)
PRE(prefix)

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0 through 9, and the underscore
character. A prefix must start with an alpha character (or underscore) and must not be a
reserved word. By convention, a prefix is 1-3 characters, although it can be longer.

The PRE attribute provides a label prefix for the file. It is used to distinguish between identical variable
names that occur in different structures. When a data element from the file is referenced in executable
statements, assignments, and parameter lists, the prefix is attached to its label by a colon (Pre:Label).

Example:
MasterFile FILE,DRIVER(´Clarion´),PRE(Mst) !Declare master file layout
Record RECORD
AcctNumber LONG

 . .
Detail FILE,DRIVER(´Clarion´),PRE(Dtl) !Declare detail file layout
Record RECORD
AcctNumber LONG

 . .
 GROUP,PRE(Mem) !Declare memory variables

Message STRING(30)
 END

CODE
IF Dtl:AcctNumber <> Mst:AcctNumber !Is it a new account
Mem:Message = ´New Account´ ! display message
DO MatchMaster ! get new record

END

See Also:

Reserved Words

BINDABLE (set runtime expression string RECORD variables)
BINDABLE

The BINDABLE attribute on a FILE statement declares a RECORD structure whose constituent variables
are all available for use in a dynamic expression. The contents of each variable´s NAME attribute is the
logical name used in the dynamic expression. If no NAME attribute is present, the label of the variable
(including prefix) is used. Space is allocated in the .EXE for the names of all of the variables in the
structure. This creates a larger program that uses more memory than it normally would. Therefore, the
BINDABLE attribute should only be used when a large proportion of the constituent fields are going to be
used.

The BIND(group) form of the BIND statement must still be used in the executable code before the
individual fields in the RECORD structure may be used.

Example:
Names FILE,DRIVER(´Clarion´),BINDABLE !Bindable Record structure
Record RECORD
Name STRING(20)
FileName STRING(8),NAME(´FILE´) !Dynamic name: FILE
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME(´EXT´) !Dynamic name: EXT

 . .
CODE
OPEN(Names)
BIND(Names)

See Also:

BIND

UNBIND

EVALUATE

THREAD (set thread-specific record buffer)
THREAD

The THREAD attribute declares a FILE which is allocated memory for its record buffer (and file control
block) separately for each execution thread in the program. This makes the values contained in the record
buffer dependent upon which thread is executing.

Whenever a new execution thread is started, the FILE must be OPENed again to receive a new instance
of the record buffer.

Example:
PROGRAM
MAP
Thread1
Thread2

END
Names FILE,DRIVER(´Clarion´),PRE(Nam),THREAD !Threaded file
NbrNdx INDEX(Nam:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
 CODE
 START(Thread1)
START(Thread2)

Thread1 PROCEDURE
 CODE
 OPEN(Names) !OPEN creates new record buffer instance
GET(Names,1) ! containing the 1st record in the file

Thread2 PROCEDURE
 CODE
 OPEN(Names) !OPEN creates another new record buffer instance
GET(Names,5) ! containing the 5th record in the file

See Also:

START

Data Declarations and Memory Allocation

EXTERNAL (set file defined externally)
EXTERNAL(member)

EXTERNAL Specifies the FILE is defined in an external library.

member A string constant. Valid only on a FILE declaration. It contains the filename (without
extension) of the MEMBER module containing the FILE definition without the
EXTERNAL attribute. If the FILE is defined in a PROGRAM module, an empty member
string () is required.

The EXTERNAL attribute specifies that the FILE on which it is placed is defined in an external library.
Therefore, a FILE with the EXTERNAL attribute is declared and may be referenced in the Clarion code,
but is not allocated memory for a record buffer. The memory for the FILEs record buffer is allocated by the
external library. This allows the Clarion program access to FILEs declared as public in external libraries.

When using EXTERNAL(member) to declare a FILE shared by multiple libraries (.LIBs, or .DLLs
and .EXE), only one library should define the FILE without the EXTERNAL attribute. All the other libraries
(and the .EXE) should declare the FILE with the EXTERNAL attribute. This ensures that there is only one
record buffer allocated for the FILE and all the libraries and the .EXE will reference the same memory
when referring to data elements from that FILE.

The FILE declarations in all libraries (or .EXEs) that reference common files must be EXACTLY the same
(with the appropriate addition of the EXTERNAL attribute). If they are not exactly the same, data
corruption could occur. The actual consequence of incompatible FILE declarations is dependent upon the
file driver for that file system. Any incompatibilities between libraries cannot be detected by the compiler
or linker, therefore it is the programmers responsibility to ensure that consistency is maintained.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same files
would have one .DLL containing the actual FILE definition that only contains FILE and global variable
definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one central library in
which the actual file definitions are maintained. This one central .DLL is linked into all .EXEs that use
those common files. All other .DLLs and/or .EXEs in the system would declare the common FILEs with
the EXTERNAL attribute.
Example:
PROGRAM
MAP
 MODULE(LIB.LIB)
 AddCount !External library procedure

. .
TotalCount LONG,EXTERNAL !A variable declared in an external library
Cust FILE,PRE(Cus),EXTERNAL() !A File defined in a PROGRAM module
CustKey KEY(Name) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

. .
Contact FILE,PRE(Con),EXTERNAL(LIB01) !A File defined in a MEMBER module
ContactKey KEY(Name) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

. .
! The LIB.CLW file contains:

PROGRAM
MAP
 MODULE(LIB01)
 AddCount !

. .
TotalCount LONG !The TotalCount variable definition
Cust FILE,PRE(Cus) !The Cust File definition where the
CustKey KEY(Cus:Name) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .
CODE
!Executable code ...

! The LIB01.CLW file contains:
 MEMBER(LIB)
Contact FILE,PRE(Con) !The Contact File definition where the
ContactKey KEY(Con:Name) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .
AddCount PROCEDURE
CODE
TotalCount += 1

DLL (set file defined externally in .DLL)
DLL([flag])

DLL Declares a FILE defined externally in a .DLL.

flag A numeric constant, equate, or Project system define which specifies the attribute as
active or not. If the flag is zero, the attribute is not active, just as if it were not present. If
the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the FILE on which it is placed is defined in a .DLL. A FILE with DLL
attribute must also have the EXTERNAL attribute. The DLL attribute is required for 32-bit applications
because .DLLs are relocatable in a 32-bit flat address space, which requires one extra dereference by the
compiler to address the FILE.

The FILE declarations in all libraries (or .EXEs) that reference common FILEs must be EXACTLY the
same (with the appropriate addition of the EXTERNAL and DLL attributes). If they are not exactly the
same, data corruption could occur. Any incompatibilities between libraries cannot be detected by the
compiler or linker, therefore it is the programmers responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a FILE shared by .DLLs and .EXE, only one .DLL should
define the FILE without the EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the FILE with the EXTERNAL and DLL attributes. This ensures that there is only one memory
allocation for the FILE and all the .DLLs and the .EXE will reference the same memory when referring to
that FILE.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same FILEs
would have one .DLL containing the actual file definition that only contains FILE and global data
definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes one central library in
which the actual file definitions are maintained. This one central .DLL is linked into all .EXEs that use
those common files. All other .DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

Example:
Cust FILE,PRE(Cus),EXTERNAL(),DLL !File defined in PROGRAM module of a .DLL
CustKey KEY(Cus:Name)
Record RECORD
Name STRING(20)

. .

See Also: EXTERNAL

OEM (set international string support)
OEM

The OEM attribute specifies that the FILE on which it is placed contains non-English language string data.
These strings are automatically translated from the OEM ASCII character set data contained in the file to
the ANSI character set for display in Windows. All string data in the record is automatically translated from
the ANSI character set to the OEM ASCII character set before the record is written to disk.

The specific OEM ASCII character set used for the translation comes from the DOS code page loaded by
the country.SYS file. This makes the data file specific to the language used for that code page, and
means the data may not be useable on a computer with a different code page loaded.

Example:
Cust FILE,DRIVER(TopSpeed),PRE(Cus),OEM !Contains international strings
CustKey KEY(Cus:Name)
Record RECORD
Name STRING(20)

. .
Screen WINDOW(Window)
 ENTRY(@S20),USE(Cus:Name)
 BUTTON(&OK),USE(?Ok),DEFAULT
 BUTTON(&Cancel),USE(?Cancel)

 END
CODE
OPEN(Cust) !Open Cust file
SET(Cust)
NEXT(Cust) !Get record, ASCII strings are automatically

! translated to ANSI character set
OPEN(Screen) !Open window and display ANSI data
ACCEPT
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
PUT(Cust) !Put record, ANSIstrings are automatically

! translated to the OEM ASCII character set
! per the loaded DOS code page

BREAK
END

END
END
CLOSE(Screen)
CLOSE(Cust)

File Structure Statements
INDEX (declare static file access index)

KEY (declare dynamic file access index)

MEMO (declare a text field)

RECORD (declare record structure)

INDEX (declare static file access index)
label INDEX([-/+][field],...,[-/+][field]) [,NAME()] [,NOCASE] [,OPT]

INDEX Declares a static index into the data file.

-/+ The - (minus sign) preceding an index component field specifies descending order for that
component. If omitted, or + (plus sign) the component is sorted in ascending order.

field The label of a field in the RECORD structure of the FILE in which the INDEX is
declared. The field is an index component. A field declared with the DIM attribute (an
array) may not be used as an index component.

NAME Specifies the disk file specification for the INDEX.

OPT Excludes, from the INDEX, those records with null values (zero or blank) in all index
component fields.

NOCASE Specifies case insensitive sort order.
INDEX declares a "static key" for a FILE structure. An INDEX is updated only by the BUILD statement. It
is used to access records in a different logical order than the "physical order" of the file. An INDEX may
be used for either sequential file processing or direct random access. An INDEX always allows duplicate
entries. An INDEX may have more than one component field. The order of the components determines
the sort sequence of the index. The first component is the most general, and the last component is the
most specific. Generally, a data file may have up to 255 indexes (and/or keys) and each index may be up
to 255 bytes, but the exact numbers are file driver dependent. See Also: Supported File Systems.

An INDEX declared without a field creates a "dynamic index." A dynamic index may use any field (or
fields) in the RECORD as components (except arrays). The component fields of a dynamic index are
defined at run time in the second parameter of the BUILD statement. The same dynamic index
declaration may be built and re-built using different component fields each time.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameNdx INDEX(Nam:Name),NOCASE !Declare the name index
NbrNdx INDEX(Nam:Number),OPT !Declare the number index
DynamicNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20)
Number SHORT

. .
See Also:

KEY

BUILD

KEY (declare dynamic file access index)
label KEY([-/+]field,...,[-/+][field]) [,DUP] [,NAME()] [,NOCASE] [,OPT] [,PRIMARY]

KEY Declares a dynamically maintained index into the data file.

-/+ The - (minus sign) preceding a key component field specifies descending order for that
component. If omitted, or + (plus sign), the component is sorted in ascending order.

field The label of a field in the RECORD structure of the FILE in which the KEY is declared.
The field is a key component. A field declared with the DIM attribute (an array) may not
be used as a key component.

NAME Specifies the disk file specification of the KEY.

DUP Allows multiple records with duplicate values in their key component fields.

OPT Excludes, from the KEY, those records with null (zero or blank) values in all key
component fields.

NOCASE Specifies case insensitive sort order.
A KEY is an index into the data file which is automatically updated whenever records are added,
changed, or deleted. It is used to access records in a different logical order than the "physical order" of
the file. A KEY may be used for either sequential file processing or direct random access.

A KEY may have more than one component field. The order of the components determines the sort
sequence of the key. The first component is the most general, and the last component is the most
specific. Generally, a data file may have up to 255 keys (and indexes) and each key may be up to 255
bytes, but the exact numbers are file driver dependent. See Also: Supported File Systems.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE,DUP !Declare the name key
NbrKey KEY(Nam:Number),OPT !Declare the number key
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
Nam:Name = ´Clarion Software´ !Initialize key field
GET(Names,Nam:NameKey) !Get the record
SET(Nam:NbrKey) !Set sequential by number

See Also:

SET

GET

INDEX

MEMO (declare a text field)
label MEMO(length) [,BINARY] [,NAME()]

MEMO Declares a fixed-length string which is stored variable-length on disk.

length A numeric constant that determines the maximum number of characters. The range is
from 1 to 65,520 bytes.

BINARY Declares the MEMO a storage area for binary data.

NAME Specifies the disk filename for the MEMO field. (Use of this parameter is file driver
dependent.)

MEMO declares a fixed-length string field which is stored variable-length on disk. The length parameter
defines the maximum size of a memo. A MEMO must be declared before the RECORD structure. Memory
is allocated for a MEMO field´s buffer when the file is opened, and is de-allocated when the file is closed.

Generally, up to 255 MEMO fields may be declared in a FILE structure. The exact number of MEMO fields
and their manner of storage on disk is file driver dependent. See Also: Supported File Systems.

MEMO fields are usually displayed in TEXT controls in WINDOW and REPORT structures.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameKey KEY(Nam:Name)
NbrKey KEY(Nam:Number)
Notes MEMO(4800) !Memo, 4800 bytes
Rec RECORD
Name STRING(20)
Number SHORT

. .

RECORD (declare record structure)
[label] RECORD [,PRE()] [,NAME()]

 fields
END

RECORD Declares the beginning of the data structure within the FILE declaration.

fields Multiple variable declarations.

PRE Specify a label prefix for the structure.

NAME Specifies an external name for the RECORD structure. (Use of this parameter is file
driver dependent.)

The RECORD statement declares the beginning of the data structure within the FILE declaration. A
RECORD structure is required in a FILE declaration. Each field is an element of the RECORD structure.
The length of a RECORD structure is the sum of the length of its fields. When the label of a RECORD
structure is used in an assignment statement, expression, or parameter list, it is treated as a GROUP data
type.

At run time, static memory is allocated as a data buffer for the RECORD structure. The fields in the record
buffer are available whether the file is open or closed.

If the fields contain variable declarations with initial values, that initial value is only used to determine the
size of the variable, the record buffer is not initialized to the value. For example, a STRING(´abc´) field
declaration creates a three-byte string, but it´s value is not automatically initialized to ´abc´ unless the
program´s executable code assigns it that value.

Records from the data file on disk are read into the data buffer with the NEXT, PREVIOUS, or GET
statements. Data in the fields are processed, then written to the data file as a single RECORD unit by the
ADD, PUT, or DELETE statements.

Example:
Names FILE,DRIVER(´Clarion´) !Declare a file structure
Record RECORD ! begin record declaration
Name STRING(20) ! declare name field
Number SHORT ! declare number field

. . !End file, end record declaration

INDEX, KEY and MEMO Attributes
BINARY (MEMO contains binary data)

DUP (allow duplicate KEY entries)

NOCASE (case insensitive KEY or INDEX)

PRIMARY (set relational primary key)

OPT (exclude null KEY or INDEX entries)

NAME (set external name)

BINARY (MEMO contains binary data)
BINARY

The BINARY attribute of a MEMO declaration specifies the MEMO field will receive data that is not just
ASCII characters. This attribute is normally used to store small graphic images for display in an IMAGE
field on screen.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameKey KEY(Nam:Name)
NbrKey KEY(Nam:Number)
Picture MEMO(48000),BINARY !Binary memo - 48,000 bytes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also:

MEMO

IMAGE

DUP (allow duplicate KEY entries)
DUP

The DUP attribute of a KEY declaration allows multiple records with the same key value to occur in a file.
If the DUP attribute is omitted, attempting to ADD or PUT records with duplicate key values will cause the
"Creates Duplicate Key" error, an` the record will not be written to the file. During sequential processing
using the KEY, records with duplicate key values are accessed in the physical order their entries appear
in the KEY file. The GET and SET statements access the first record in a set of duplicates. The DUP
attribute is unnecessary on INDEX declarations because an INDEX always allows duplicate entries.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameKey KEY(Nam:Name),DUP !Declare name key, allow duplicate names
NbrKey KEY(Nam:Number) !Declare number key, no duplicates allowed
Rec RECORD
Name STRING(20)
Number SHORT

. .

NOCASE (case insensitive KEY or INDEX)
NOCASE

The NOCASE attribute of a KEY or INDEX declaration makes the sorted sequence of alphabetic
characters insensitive to the ASCII upper/lower case sorting convention. All alphabetic characters in key
fields are converted to upper case as they are written to the KEY. This case conversion has no affect on
the case of the stored data. The NOCASE attribute has no effect on non-alphabetic characters.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE !Declare name key, make case insensitive
NbrKey KEY(Nam:Number) !Declare number key
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also:

INDEX

KEY

PRIMARY (set relational primary key)
PRIMARY

The PRIMARY attribute specifies the KEY is unique, includes all records in the file, and does not allow
"null" values in any of the fields comprising the KEY. This is the definition of a file's "Primary Key" per the
relational database theory as expressed by E. F. Codd.

Example:
Names FILE,DRIVER('TopSpeed'),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),OPT,PRIMARY !Declare number key, exclude zeroes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: KEY

OPT (exclude null KEY or INDEX entries)
OPT

The OPT attribute excludes entries in the KEY or INDEX for records with "null" values in all fields
comprising the KEY or INDEX. For the purpose of this attribute, a "null" value is defined as zero in a
numeric field or all blank spaces in a string field.

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),OPT !Declare number key, exclude zeroes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also:

INDEX

KEY

NAME (set external name)
NAME([| constant |])

| variable |

NAME Specifies an "external" name for the file driver.

constant A string constant.

variable The label of a static string variable. This may be declared as Global data, Module data, or
Local data with the STATIC attribute.

The NAME attribute on a KEY or INDEX or MEMO statement specifies an "external" name for the key or
memo for the file driver. Some file drivers require that KEYs, INDEXes, or MEMOs be in separate files,
which is specified in the NAME attribute. See Also: Supported File Systems.

NAME(constant) may be used on any field declared within the RECORD structure. This provides the file
driver with the name of a field as it may be used in that driver´s file system.

A NAME attribute without a constant or variable defaults to the label of the declaration statement on which
it is placed (including any specified prefix).

Example:
Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(´Cus:Name´),NAME(´c:\data\cust.idx´) !Declare key, cust.idx
Record RECORD
Name STRING(20)

. .

See Also:

FILE

INDEX

KEY

File Commands
BUILD (build keys and indexes)

CLOSE (close a data file)

COPY (copy a data file)

CREATE (create an empty data file)

EMPTY (empty a data file)

FLUSH (flush DOS buffers)

LOCK (exclusive file access)

OPEN (open a data file)

PACK (remove deleted records)

REMOVE (erase the data file)

RENAME (change data file directory name)

SHARE (open a data file)

STREAM (enable DOS buffering)

UNLOCK (unlock a locked data file)

BUILD (build keys and indexes)
| key |

BUILD(|index | [,components])
| file |

BUILD Builds keys and indexes.

key The label of a KEY declaration.

index The label of an INDEX declaration.

file The label of a FILE declaration.

components A string constant or variable containing the list of the component fields on which to
BUILD the dynamic INDEX. If the file has the CREATE attribute, field labels may be
used in the components parameter. Without the CREATE attribute, the contents of each
field´s NAME attribute must be used. The fields must be separated by commas, with
leading plus (+) or minus (-) to indicate ascending or descending sequence (if supported
by the file driver).

The BUILD statement builds keys and indexes. BUILD(key), BUILD(index), and BUILD(file) require
exclusive access to the file. Therefore, the file must LOCKed or opened with access mode set to 12h
(Read/Write Deny All) or 22h (Read/Write Deny Write). BUILD(index,components) does not require
exclusive access to the file.

 BUILD(key) or BUILD(index)
Builds only that KEY or INDEX. The file must be closed, LOCKed, or opened with
access mode set to 12h or 22h.

 BUILD(file) Builds all the KEYs declared for the file. The file must be closed, LOCKed, or opened
with access mode set to 12h or 22h.

 BUILD(index,components)
Allows you to BUILD a dynamic INDEX. This form of BUILD does not require
exclusive access to the file, however, the file must be open (with any valid access mode).
The dynamic INDEX is created as a temporary file, exclusive to the user who BUILDs it.
The temporary file is automatically deleted when the file is closed.

Errors Posted: 37 File Not Open
40 Creates Duplicate Key
63 Exclusive Access Required
76 Invalid Index String

Example:
Names FILE,DRIVER(´Clarion´),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key
NbrNdx INDEX(Nam:Number),OPT !Declare number index
DynNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20),NAME(´Nam:Name´)
Number SHORT,NAME(´Nam:Number´)

. .
CODE
OPEN(Names,12h) !Open file, exclusive read/write

BUILD(Names) !Build all keys on Names file
BUILD(Nam:NbrNdx) !Build the number index
BUILD(Nam:DynNdx,´+Nam:Number,+Nam:Name´)
 !Build dynamic index ascending number, ascending name

See Also:

OPEN

SHARE

CLOSE (close a data file)
CLOSE(file)

CLOSE Closes a FILE.

file The label of a FILE.

The CLOSE statement closes a FILE. Generally, this flushes DOS buffers and frees any memory used by
the open file other than the RECORD structure´s data buffer. The exact action CLOSE takes is file driver
dependent. See Also: Supported File Systems.

Example:
CLOSE(Customer) !Close the customer file

COPY (copy a data file)
COPY(file,new file)

COPY Duplicates a FILE.

file The label of the FILE to copy.

new file A string constant or a STRING variable containing a DOS directory file specification. If
the file specification does not contain a drive and path, the current drive and directory are
assumed. If only the path is specified, the filename and extension of the original file are
used for the new file.

The COPY statement duplicates a FILE and enters the specification for the new file in the DOS directory.
The file to be copied must be closed, or the "File Already Open" error is posted. If the file specification of
the new file is identical to the original file, the COPY statement is ignored.

Since some file drivers use multiple physical disk files for one logical FILE structure, the default filename
and extension assumptions are file driver dependent. See Also: Supported File Systems. If any error is
posted, the file is not copied.

Errors Posted: 02 File Not Found
03 Path Not Found
05 Access Denied
52 File Already Open

Example:
COPY(Names,´A:\´) !Copy Names file to floppy
COPY(CompText,Filename) !Copy the text file to another file

CREATE (create an empty data file)
CREATE(file)

CREATE Creates an empty data file.

file The label of the FILE to be created.
The CREATE statement adds an empty data file to the DOS directory. If the file already exists, it is
deleted and recreated as an empty file. The file must be closed, or the "File Already Open" error is
posted. CREATE does not open the file for access.

Errors Posted: 03 Path Not Found
04 Too Many Open Files
05 Access Denied
52 File Already Open
54 No Create Attribute

Example:
CREATE(Master) !Create a new master file
CREATE(Detail) !Create a new detail file

EMPTY (empty a data file)
EMPTY(file)

EMPTY Deletes all records from a FILE.

file The label of a FILE.
EMPTY deletes all records from the specified file. EMPTY requires exclusive access to the file. Therefore,
the file must be opened with access mode set to 12h (Read/Write Deny All) or 22h (Read/Write Deny
Write).

Errors Posted: 63 Exclusive Access Required

Example:
OPEN(Master,18) !Open the master file
EMPTY(Master) ! and start a new one

See Also:

OPEN

SHARE

FLUSH (flush DOS buffers)
FLUSH(file)

FLUSH Terminates a STREAM operation, flushing the DOS buffers.

file The label of a FILE.
The FLUSH statement terminates a STREAM operation. It flushes the DOS buffers, which updates the
DOS directory entry for that file. Support for this statement is dependent upon the file system and its
specific action is described in the file driver section. See Also: Supported File Systems.

Example:
STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK.
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers

See Also:

STREAM

LOCK (exclusive file access)
LOCK(file [,seconds])

LOCK Locks a data file.

file The label of a FILE opened for shared access.

seconds A numeric constant or variable which specifies the maximum wait time in seconds.
The LOCK statement locks a file against access by other workstations in a multi-user environment.
Generally, this excludes other users from writing to or reading from the file. The specific action LOCK
takes is file driver dependent. See Also: Supported File Systems.

 LOCK(file) Attempts to lock the file until it is successful. If it is already locked by another
workstation, LOCK will wait until the other workstation unlocks it.

 LOCK(file,seconds)
Posts the "File Is Already Locked" error after unsuccessfully trying to lock the file for the
specified number of seconds.

The most common problem to avoid when locking files is referred to as "deadly embrace." This condition
occurs when two workstations attempt to lock the same set of files in two different orders and both are
using the LOCK(file) form of LOCK. One workstation has already locked a file that the other is trying to
LOCK, and vice versa. This problem may be avoided by using the LOCK(file,seconds) form of LOCK, and
always locking files in the same order.

Errors Posted: 32 File Is Already Locked

Example:
LOOP !Loop to avoid "deadly embrace"
LOCK(Master,1) !Lock the master file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
LOCK(Detail,1) !Lock the detail file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) ! unlock the locked file
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

. .

OPEN (open a data file)
OPEN(file [,access mode])

OPEN Opens a FILE structure for processing.

file The label of a FILE declaration.

access mode A numeric constant, variable, or expression which determines the level of access granted
to both the user opening the file, and other users in a multi-user system. If omitted, the
default value is 22h (Read/Write + Deny Write).

The OPEN statement opens a FILE structure for processing and sets the access mode. Support for
various access modes are file driver dependent. All files must be explicitly opened before they may be
accessed. The access mode is a bitmap which tells the operating system what access to grant the user
opening the file and what access to deny to others using the file. The actual values for each access level
are:

Dec. Hex. Access
User Access: 0 0h Read Only

1 1h Write Only
2 2h Read/Write

Other´s Access: 0 0h Any Access (FCB compatibility
mode)
 16 10h Deny All
 32 20h Deny Write
 48 30h Deny Read
 64 40h Deny None

Errors Posted: 02 File Not Found
04 Too Many Open Files
05 Access Denied
52 File Already Open
75 Invalid Field Type Descriptor

Example:
ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)
CODE
OPEN(Names,ReadWrite+DenyNone) !Open fully shared access

See Also:

SHARE

PACK (remove deleted records)
PACK(file)

PACK Removes deleted records from a data file and rebuilds its keys.

file The label of a FILE declaration.
The PACK statement removes deleted records from a data file and rebuilds its keys. The resulting data
files are as compact as possible. PACK requires at least twice the disk space that the file, keys, and
memos occupy to perform the process. New files are created from the old, and the old files are deleted
only after the process is complete. PACK requires exclusive access to the file. Therefore, the file must be
opened with access mode set to 12h (Read/Write Deny All) or 22h (Read/Write Deny Write).

Errors Posted: 63 Exclusive Access Required

Example:
OPEN(Trans,12h) !Open the file in exclusive mode
PACK(Trans) ! and pack it

See Also:

OPEN

SHARE

REMOVE (erase the data file)
REMOVE(file)

REMOVE Deletes a FILE.

file The label of the FILE to be removed.
The REMOVE statement erases a file specification from the DOS directory in the same manner as the
DOS Delete command. The file must be closed, or the "File Already Open" error is posted. If any error is
posted, the file is not removed.

Errors Posted: 02 File Not Found
05 Access Denied
52 File Already Open

Example:
REMOVE(OldFile) !Delete the old file
REMOVE(Changes) !Delete the changes file

RENAME (change data file directory name)
RENAME(file,new file)

RENAME Renames a FILE.

file The label of the FILE to be renamed.

new file A string constant or a STRING variable containing a DOS directory file specification. If
the file specification does not contain a drive and path, the current drive and directory are
assumed. If only the path is specified, the filename and extension of the original file are
used for the new file. Files cannot be renamed to a new drive.

The RENAME statement changes the file specification to the specification for the new file in the directory.
The file to be renamed must be closed, or the "File Already Open" error is posted. If the file specification
of the new file is identical to the original file, the RENAME statement is ignored. If any error is posted, the
file is not renamed.

Since some file drivers use multiple physical disk files for one logical FILE structure, the default filename
and extension assumptions are file driver dependent. See Also: Supported File Systems.

Errors Posted: 02 File Not Found
03 Path Not Found
05 Access Denied
52 File Already Open

Example:
RENAME(Text,´text.bak´) !Make it the backup
RENAME(Master,´\newdir´) !Move it to another directory

SHARE (open a data file)
SHARE(file [,access mode])

SHARE Opens a FILE structure for processing.

file The label of a FILE declaration.

access mode A numeric constant, variable, or expression which determines the level of access granted
to both the user opening the file, and other users in a multi-user system. If omitted, the
default value is 42h (Read/Write, Deny None).

The SHARE statement opens a FILE structure for processing and sets the access mode. The SHARE
statement is the same as the OPEN statement, with the exception of the default value of access mode.
The access mode is a bitmap which tells the operating system what access to grant the user opening the
file and what access to deny to others using the file. The actual values for each access level are:

Dec. Hex. Access
User Access: 0 0h Read Only

1 1h Write Only
2 2h Read/Write

Other´s Access: 0 0h Any Access (FCB compatibility
mode)
 16 10h Deny All
 32 20h Deny Write
 48 30h Deny Read
 64 40h Deny None

Errors Posted: 02 File Not Found

04 Too Many Open Files
05 Access Denied
52 File Already Open
75 Invalid Field Type Descriptor

Example:
ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)
CODE
SHARE(Master,ReadOnly+DenyWrite) !Open read only mode

See Also:

OPEN

STREAM (enable DOS buffering)
STREAM(file)

STREAM Disables automatic FILE flushing.

file The label of a FILE.
Some file systems flush the DOS buffers on each disk write. The STREAM statement disables this
automatic flushing operation. DOS buffers are allocated by the BUFFERS= statement in the Config.Sys
file. They store disk writes until the buffers are full, then write the buffers to disk all at once. The directory
entries for the file are updated only when the buffers are written to disk (flushed). A STREAM operation is
terminated by closing the file, which automatically flushes the buffers, or by issuing a FLUSH statement.

Support for this statement is dependent upon the file system and is described in its file driver´s
documentation. See Also: Supported File Systems.

Example:
STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK.
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers

See Also:

FLUSH

UNLOCK (unlock a locked data file)
UNLOCK(file)

UNLOCK Unlocks a previously locked data file.

file The label of a FILE declaration.
The UNLOCK statement unlocks a previously LOCKed data file. It will not unlock a file locked by another
user. If the file is not locked, or is locked by another user, UNLOCK is ignored. UNLOCK posts no errors.
The specific action UNLOCK takes is file driver dependent. See Also: Supported File Systems.

Example:
LOOP !Loop to avoid "deadly embrace"
LOCK(Master,1) !Lock the master file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
LOCK(Detail,1) !Lock the detail file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) ! unlock the locked file
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

. . !End if, end loop

Record Access Commands
ADD (add a new file record)

APPEND (add a new file record)

DELETE (delete a file record)

GET (read a file record by direct access)

HOLD (exclusive file record access)

NEXT (read next file record in sequence)

NOMEMO (read file record without reading memo)

PREVIOUS (read previous file record in sequence)

PUT (write record back to file)

RELEASE (release a held file record)

REGET (reget file record)

RESET (reset file record sequence position)

SET (initiate sequential file processing)

SKIP (bypass file records in sequence)

WATCH (automatic file concurrency check)

ADD (add a new file record)
ADD(file [,length])

ADD Writes a new record to a FILE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which contains the number of bytes to write
to the file. The length must be greater than zero and not greater than the length of the
RECORD. If omitted or out of range, length defaults to the length of the RECORD
structure.

The ADD statement writes a new record from the RECORD structure data buffer to the data file. All KEYs
associated with the file are also updated during each ADD. If an error is posted, no record is added to the
file. The specific action ADD takes is file driver dependent. See Also: Supported File Systems.

If there is no room for the record on disk, the "Access Denied" error is posted.

Errors Posted: 05 Access Denied
37 File Not Open
40 Creates Duplicate Key

Example:
ADD(Customer) !Add a new customer record
IF ERRORCODE() THEN STOP(ERROR()). ! and check for errors

APPEND (add a new file record)
APPEND(file [,length])

APPEND Writes a new record to a FILE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which contains the number of bytes to write
to the file. The length must be greater than zero and not greater than the length of the
RECORD. If omitted or out of range, length defaults to the length of the RECORD
structure.

The APPEND statement writes a new record from the RECORD structure data buffer to the data file. No
KEYs associated with the file are updated during an APPEND. After APPENDing records, the KEYs must
be rebuilt with the BUILD command. APPEND is usually used in batch adding a number of records at one
time.

If an error is posted, no record is added to the file. The specific action APPEND takes is file driver
dependent. See Also: Supported File Systems.

If there is no room for the record on disk, the "Access Denied" error is posted.

Errors Posted: 05 Access Denied
37 File Not Open

Example:
LOOP !Process an input file
NEXT(InFile) ! getting each record in turn
IF ERRORCODE() THEN BREAK. ! break loop on error

Cus:Record = Inf:Record !Copy the data to Customer file
APPEND(Customer) ! and APPEND a customer record
IF ERRORCODE() THEN STOP(ERROR()). ! check for errors

END
BUILD(Customer) !Re-build Keys

See Also:

BUILD

DELETE (delete a file record)
DELETE(file)

DELETE Removes a record from a FILE.

file The label of a FILE declaration.
The DELETE statement removes the last record accessed by NEXT, PREVIOUS, GET, ADD, or PUT.
The key entries for that record are also removed from the KEYs. DELETE does not clear the record
buffer. Therefore, data values from the record just deleted still exist and are available for use until the
record buffer is overwritten.

If no record was previously accessed, or the record is held by another workstation, DELETE posts the
"Record Not Available" error and no record is deleted. The specific action DELETE takes is file driver
dependent. See Also: Supported File Systems.

Errors Posted: 05 Access Denied
33 Record Not Available

Example:
CustomerFILE,DRIVER(´Clarion´),PRE(Cus)
NameKey KEY(Cus:Name),OPT
NbrKey KEY(Cus:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
Cus:Number = 12345 !Initialize key field
GET(Customer,Cus:NbrKey) !Get that record
IF ERRORCODE() THEN STOP(ERROR()).

DELETE(Customer) !Delete the customer record

See Also:

ADD

GET

HOLD

NEXT

PREVIOUS

PUT

GET (read a file record by direct access)
| file,key |

GET(| file,filepointer [, length] |)
| key,keypointer |

GET Retrieves a specific record from a FILE.

file The label of a FILE declaration.

key The label of a KEY or INDEX declaration.

filepointer A numeric constant, variable, or expression for the value returned by the POINTER(file)
function. The specific value is file driver dependent.

keypointer A numeric constant, variable, or expression for the value returned by the POINTER(key)
function. The specific value is file driver dependent.

length An integer constant, variable, or expression which contains the number of bytes to read
from the file. The length must be greater than zero and not greater than the RECORD
length. If omitted or out of range, length defaults to the length of the RECORD structure.

The GET statement locates a specific record in the data file and reads it into the RECORD structure data
buffer. Direct access to the record is achieved by relative record position within the file, or by matching
key values.

 GET(file,key) Gets the first record from the file (as listed in the key) which contains values matching the
values in the component fields of the key.

 GET(file,filepointer [,length])
Gets a record from the file based on the filepointer relative position within the file. If
filepointer is zero, the current record pointer is cleared and no record is retrieved.

 GET(key,keypointer)
Gets a record from the file based on the keypointer relative position within the key.

The values for filepointer and keypointer are file driver dependent. They could be: record number; relative
byte position within the file; or, some other kind of "seek position" within the file. See Also: Supported File
Systems.

If the filepointer or keypointer value is out of range, or there are no matching key values in the data file,
the "Record Not Found" error is posted.

Errors Posted: 35 Record Not Found
37 File Not Open
43 Record Is Already Held

Example:
CustomerFILE,DRIVER(´Clarion´),PRE(Cus)
NameKey KEY(Cus:Name),OPT
NbrKey KEY(Cus:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
Cus:Name = ´Clarion´ !Initialize key field

GET(Customer,Cus:NameKey) ! get record with matching value
IF ERRORCODE() THEN STOP(ERROR()).

GET(Customer,3) !Get 3rd rec in physical file order
IF ERRORCODE() THEN STOP(ERROR()).

GET(Cus:NameKey,3) !Get 3rd rec in keyed order
IF ERRORCODE() THEN STOP(ERROR()).

See Also:

POINTER

DUPLICATE

HOLD (exclusive file record access)
HOLD(file [,seconds])

HOLD Arms record locking.

file The label of a FILE opened for shared access.

seconds A numeric constant or variable which specifies the maximum wait time in seconds.
The HOLD statement arms record locking for a following GET, NEXT, or PREVIOUS statement in a multi-
user environment. The GET, NEXT, or PREVIOUS flags the record as "held" when it successfully gets the
record. Generally, this excludes other users from writing to, but not reading, the record. The specific
action HOLD takes is file driver dependent. See Also: Supported File Systems.

 HOLD(file) Arms the process so that the following GET, NEXT, or PREVIOUS attempts to hold the
record until it is successful. If it is held by another workstation, GET, NEXT, or
PREVIOUS will wait until the other workstation releases it.

 HOLD(file,seconds)
Arms the process for the following GET, NEXT, or PREVIOUS to post the "Record Is
Already Held" error after unsuccessfully trying to hold the record for seconds.

A user may HOLD one record at a time in each file. If a second record is accessed in the same file, the
previously held record in that file is automatically released. A common problem to avoid is "deadly
embrace." This occurs when two workstations attempt to hold the same set of records in two different
orders and both are using the HOLD(file) form of HOLD. One workstation has already held a record that
the other is trying to HOLD, and vice versa. You can avoid this problem by using the HOLD(file,seconds)
form of HOLD, and trapping for the "Record Is Already Held" error.

Example:
LOOP !Loop to avoid "deadly embrace"
HOLD(Master,1) !Arm Hold on master file, try for 1 second
GET(Master,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
BEEP(0,100); CYCLE ! pause for 1 second and try again

END
HOLD(Detail,1) !Lock the detail file, try for 1 second
GET(Detail,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
RELEASE(Master) ! release the held record
BEEP(0,100); CYCLE ! pause for 1 second and try again

END
BREAK

END
See Also:

RELEASE

GET

NEXT

PREVIOUS

NEXT (read next file record in sequence)
NEXT(file)

NEXT Reads the next record in sequence from a FILE.

file The label of a FILE declaration.
NEXT reads the next record in sequence from a data file and places it in the RECORD structure data
buffer. The SET statement determines the sequence in which records are read. The first NEXT following a
SET reads the record at the position specified by the SET statement. Subsequent NEXT statements read
subsequent records in that sequence. The sequence is not effected by any GET, ADD, PUT, or DELETE.

Executing NEXT without a preceding SET, or attempting to read past the end of file posts the "Record Not
Available" error.

Errors Posted: 33 Record Not Available
37 File Not Open
43 Record Is Already Held

Example:
SET(Cus:NameKey) !Beginning of file in keyed sequence
LOOP !Read all records through end of file
NEXT(Customer) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END

See Also:

SET

PREVIOUS

EOF

HOLD

NOMEMO (read file record without reading memo)
NOMEMO(file)

NOMEMO Arms "memoless" record retrieval.

file The label of a FILE.
The NOMEMO statement arms "memoless" record retrieval for the next GET, NEXT, or PREVIOUS
statement encountered. The following GET, NEXT, or PREVIOUS gets the record but does not get any
associated MEMO field(s) for the record. Generally, this speeds up access to the record when the
contents of the MEMO field(s) are not needed by the procedure.

Example:
SET(Master)
LOOP
NOMEMO(Master) !Arm "memoless" access
NEXT(Master) !Get record without memo
IF ERRORCODE() THEN BREAK.

Queue = Mst:Record !Fill memory queue
ADD(Queue)
IF ERRORCODE() THEN STOP(ERROR()).

. .
DISPLAY(?ListBox) !Display the queue

See Also:

GET

NEXT

PREVIOUS

PREVIOUS (read previous file record in sequence)
PREVIOUS(file)

PREVIOUS Reads the previous record in sequence from a FILE.

file The label of a FILE declaration.
PREVIOUS reads the previous record in sequence from a data file and places it in the RECORD structure
data buffer. The SET statement determines the sequence in which records are read. The first PREVIOUS
following a SET reads the record at the position specified by the SET statement. Subsequent PREVIOUS
statements read subsequent records in reverse sequence. The sequence is not effected by any GET,
ADD, PUT, or DELETE.

Executing PREVIOUS without a preceding SET, or attempting to read past the beginning of file posts the
"Record Not Available" error.

Errors Posted: 33 Record Not Available
37 File Not Open
43 Record Is Already Held

Example:
SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP !Read all records in reverse order
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file

DO LastInFirstOut ! call last in first out routine
END

See Also:

SET

NEXT

BOF

HOLD

PUT (write record back to file)
PUT(file [,filepointer] [,length])

PUT Writes a record back to a FILE.

file The label of a FILE declaration.

filepointer A numeric constant, variable, or expression for the value returned by the POINTER(file)
function. The specific value is file driver dependent. See Also: Supported File Systems.

length An integer constant, variable, or expression containing the number of bytes to write to the
file. This must be greater than zero and not greater than the RECORD length. If omitted
or out of range, the RECORD length is used.

The PUT statement writes the current values in the RECORD structure data buffer to a previously
accessed record in the file.

 PUT(file) Writes back the last record accessed with NEXT, PREVIOUS, GET, or ADD. If the
values in the key variables were changed, the KEYs are updated.

 PUT(file,filepointer)
Writes the record to the filepointer location in the file and the KEYs are updated.

 PUT(file,filepointer,length)
Writes length bytes to the filepointer location in the file and the KEYs are updated.

If a record was not accessed with NEXT, PREVIOUS, GET, ADD, or was deleted, the "Record Not
Available" error is posted. PUT also posts the "Creates Duplicate Key" error. If any error is posted, the
record is not written to the file.

Errors Posted: 05 Access Denied
33 Record Not Available
40 Creates Duplicate Key

Example:
SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP !Read all records in reverse order
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file

DO LastInFirstOut !Call last in first out routine
PUT(Trans) !Write transaction record back to the file
IF ERRORCODE() THEN STOP(ERROR()).

END

See Also:

GET

NEXT

PREVIOUS

ADD

RELEASE (release a held file record)
RELEASE(file)

RELEASE Releases the held record.

file The label of a FILE declaration.
The RELEASE statement releases a previously held record. It will not release a record held by another
user. If the record is not held, or is held by another user, RELEASE is ignored.

Example:
LOOP !Loop to avoid "deadly embrace"
HOLD(Master,1) !Arm Hold on master file, try for 1 second
GET(Master,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
HOLD(Detail,1) !Hold the detail file, try for 1 second
GET(Detail,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
RELEASE(Master) ! release the held record
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
BREAK

END

See Also:

HOLD

REGET (reget file record)
REGET(file,string)

REGET Regets a specific record in the FILE.

file The label of a FILE declaration.

string The string returned by the POSITION function.
The REGET reads the record identified by the string returned by the POSITION function. The value
contained in the string returned by the POSITION function, and its length, are file driver dependent. See
Also: Supported File Systems.

Errors Posted: 33 Record Not Available

Example:
RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans) !20 records in queue or end of file?
SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
REGET(Trans,SavPosition) ! and get the record again

. .

See Also:

POSITION

RESET

RESET (reset file record sequence position)
RESET(sequence,string)

RESET Resets the sequential processing pointer to a specific record in the FILE.

sequence The label of a FILE, KEY, or INDEX declaration.

string The string returned by the POSITION function.
RESET restores the record pointer to the record identified by the string returned by the POSITION
function. Once RESET has restored the record pointer, either NEXT or PREVIOUS will read that record.

The value contained in the string returned by the POSITION function, and its length, are file driver
dependent. See Also: Supported File Systems.

RESET is used in conjunction with POSITION to temporarily suspend and resume sequential file
processing.

Example:
RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans) !20 records in queue or end of file?
SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
RESET(Trn:DateKey,SavPosition) !Reset the record pointer
NEXT(Trans) ! and get the record again

. .

See Also:

POSITION

NEXT

PREVIOUS

SET (initiate sequential file processing)
| file |

SET(| file,key |)
| file,filepointer |
| key |
| key,key |
| key,keypointer |
| key,key,filepointer |

SET Initializes sequential processing of a FILE.

file The label of a FILE declaration. This parameter specifies processing in the physical order
in which records occur in the data file.

key The label of a KEY or INDEX declaration. When used in the first parameter position, key
specifies processing in the sort sequence of the KEY or INDEX.

filepointer A numeric constant, variable, or expression for the value returned by the POINTER(file)
function. The specific value is file driver dependent.

keypointer A numeric constant, variable, or expression for the value returned by the POINTER(key)
function. The specific value is file driver dependent.

SET initializes sequential processing of a data file. SET does not get a record, but only sets up
processing order and starting point for the following NEXT or PREVIOUS statements. The first parameter
determines the order in which records are processed. The second and third parameters determine the
starting point within the file. If omitted, processing begins at the beginning (or end) of the file.

 SET(file) Specifies physical record order processing and positions to the beginning (SET...NEXT)
or end (SET...PREVIOUS) of the file.

 SET(file,key) Specifies physical record order processing and positions to the first record which contains
values matching the values in the component fields of the key.

 SET(file,filepointer)
Specifies physical record order processing and positions to the filepointer record within
the file.

 SET(key) Specifies keyed sequence processing and positions to the beginning (SET...NEXT) or end
(SET...PREVIOUS) of the file in that sequence.

 SET(key,key) Specifies keyed sequence processing and positions to the first or last record which
contains values matching the values in the component fields of the key. Both key
parameters must be the same.

 SET(key,keypointer)
Specifies keyed sequence processing and positions to the keypointer record within the
key.

 SET(key,key,filepointer)
Specifies keyed sequence processing and positions to a record which contains values
matching the values in the component fields of the key at the exact record number
specified by filepointer. Both key parameters must be the same.

When key is the second parameter, processing begins at the first or last record containing values
matching the values in the component fields of the KEY or INDEX. If an exact match is found, NEXT will
read the first matching record while PREVIOUS will read the last matching record. If no exact match is
found, the record with the next greater value is read by NEXT, the record with next lesser value is read by

PREVIOUS.

The values for filepointer and keypointer are file driver dependent. They could be a record number, the
relative byte position within the file, or some other kind of "seek position" within the file. See Also:
Supported File Systems. These parameters are used to begin processing at a specific record within the
file.

For all file drivers, an attempt to SET past the end of the file will set the EOF function to true, and an
attempt to SET before the beginning of the file will set the BOF function to true.

Example:
SET(Customer) !Physical file order, beginning of file
Cus:Name = ´Smith´
SET(Customer,Cus:NameKey) !Physical file order, first record where Name = ´Smith´
SavePtr = POINTER(Customer)
SET(Customer,SavePtr) !Physical file order, physical record number = SavePtr
SET(Cus:NameKey) !NameKey order, beginning of file (relative to the key)
SavePtr = POINTER(Cus:NameKey)
SET(Cus:NameKey,SavePtr) !NameKey order, key-relative record number = SavePtr
Cus:Name = ´Smith´
SET(Cus:NameKey,Cus:NameKey)

!NameKey order, first record where Name = ´Smith´
Cus:Name = ´Smith´
SavePtr = POINTER(Customer)
SET(Cus:NameKey,Cus:NameKey,SavePtr)
 !NameKey order, Name = ´Smith´ and rec number = SavePtr

See Also:

NEXT

PREVIOUS

KEY

RECORD

POINTER

SKIP (bypass file records in sequence)
SKIP(file,count)

SKIP Bypasses records during sequential file processing.

file The label of a FILE declaration.

count A numeric constant or variable. The count specifies the number of records to bypass. If
the value is positive, records are skipped in forward (NEXT) sequence. If count is
negative, records are skipped in reverse (PREVIOUS) sequence.

The SKIP statement is used to bypass records during sequential file processing. It bypasses records, in
the sequence specified by the SET statement, by moving the file pointer count records. SKIP is more
efficient than NEXT or PREVIOUS for skipping past records because it does not move records into the
RECORD structure data buffer.

If SKIP reads past the end or beginning of file, the EOF() and BOF() functions return true. If no SET has
been issued, SKIP is ignored.

Example:
SET(Itm:InvoiceKey) !Start at beginning of Items file
LOOP !Process all records
NEXT(Items) ! Get a record
IF ERRORCODE() THEN BREAK.

IF Itm:InvoiceNo <> SavInvNo ! Check for first item in order
Hea:InvoiceNo = Itm:InvoiceNo ! Initialize key field
GET(Header,Hea:InvoiceKey) ! Get the associated header record
IF ERRORCODE() THEN STOP(ERROR()).

IF Hea:InvoiceStatus = ´Cancel´ ! Is it a canceled order?
SKIP(Items,Hea:ItemCount-1) ! SKIP rest of the items
CYCLE ! and process next order

. .
DO ItemProcess ! process the item
SavInvNo = Itm:InvoiceNo ! save the invoice number

END

WATCH (automatic file concurrency check)
WATCH(file)

WATCH Arms automatic optimistic concurrency checking.

file The label of a FILE declaration.
The WATCH statement arms automatic optimistic concurrency checking by the file driver for a following
GET, NEXT, or PREVIOUS statement in a multi-user environment. Generally, the file driver retains a copy
of the retrieved record on the GET, NEXT, or PREVIOUS when it successfully gets the record. When the
retrieved record is PUT to the file, the record on disk is compared to the original record retrieved. An error
is returned by the PUT statement if the record has been changed by another user. The specific action
WATCH takes is file driver dependent. See Also: Supported File Systems.

Example:
SET(Itm:InvoiceKey) !Start at beginning of Items file
LOOP !Process all records
WATCH(Items) !Arm concurrency check
NEXT(Items) ! Get a record
IF ERRORCODE() THEN BREAK.

DO ItemProcess ! process the item
PUT(Items) ! and put it back
IF ERRORCODE() THEN STOP(ERROR()). !Stop on any error, including
 ! record changed by another user

END

File Functions
BOF (beginning of file function)

BYTES (return size in bytes)

DUPLICATE (check for duplicate key entries)

EOF (end of file function)

POINTER (return relative record position)

POSITION (return file record sequence position)

RECORDS (return number of file or key records)

SEND (send message to file driver)

BOF (beginning of file function)
BOF(file)

BOF Flags the beginning of the FILE during sequential processing.

file The label of a FILE declaration.
The BOF function returns a non-zero value (true) when the first record in relative file sequence has been
read by PREVIOUS or passed by SKIP. Otherwise, the return value is zero (false).

The BOF function is most often used as a LOOP UNTIL condition. Since a LOOP condition is evaluated at
the top of the LOOP, BOF returns true after the last record has been read and processed in reverse order.

The BOF function may not be supported by all file drivers (or may be inefficient). Check the driver
documentation before using this function.

Return Data Type: LONG

Example:
SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP UNTIL BOF(Trans) !Process file backwards
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).

DO LastInFirstOut ! call last in first out routine
END

See Also:

PREVIOUS

SKIP

LOOP

BYTES (return size in bytes)
BYTES(file)

BYTES Returns number of bytes in FILE, or most recently read.

file The label of a FILE.
The BYTES function returns the size of a FILE in bytes or the number of bytes in the last record
accessed. Following an OPEN statement, BYTES returns the size of the file. After the file has been
accessed by GET, NEXT, ADD, or PUT, the BYTES function returns the number of bytes accessed in the
RECORD. The BYTES function may be used to return the number of bytes read in a variable length
record.

Return Data Type: LONG

Example:
OPEN(DosFile) !Open the file
IF (BYTES(DosFile) % 80) > 0 !Check for short record
SavPtr = INT(BYTES(DosFile) % 80) + 1 ! compute short record pointer

ELSE
SavPtr = BYTES(DosFile) / 80 ! compute last record pointer

END
GET(DosFile,SavPtr) !Get the last record
LastRec = BYTES(DosFile) !Save size of the short record

DUPLICATE (check for duplicate key entries)
DUPLICATE(| key |)

| file |

DUPLICATE Checks duplicate entries in unique keys.

key The label of a KEY declaration.

file The label of a FILE declaration.
The DUPLICATE function returns a non-zero value (true) if writing the current record to the data file would
post the "Creates Duplicate Key" error. With a key parameter, the specified KEY is checked. With a file
parameter, all KEYs declared without a DUP attribute are checked.

The DUPLICATE function assumes that the contents of the RECORD structure data buffer are duplicated
at the current record pointer location. Therefore, when using DUPLICATE prior to ADDing a record, the
record pointer should be cleared with: GET(file,0).

Return Data Type: LONG

Example:
IF Action = ´ADD´ THEN GET(Vendor,0). !If adding, clear the file pointer
IF DUPLICATE(Vendor) !If this vendor already exists
SCR:MESSAGE = ´Vendor Number already assigned´ ! display message
SELECT(?) ! and stay on the field

END
See Also:

GET

EOF (end of file function)
EOF(file)

EOF Flags the end of the FILE during sequential processing.

file The label of a FILE declaration.
The EOF function returns a non-zero value (true) when the last record in relative file sequence has been
read by NEXT or passed by SKIP. Otherwise, the return value is zero (false). The EOF function is most
often used as a LOOP UNTIL condition. Since a LOOP condition is evaluated at the top of the LOOP,
EOF returns true after the last record has been read and processed.

The EOF function may not be supported by all file drivers (or may be inefficient). Check the driver
documentation before using this function.

Return Data Type: LONG

Example:
SET(Trn:DateKey) !Beginning of file in keyed sequence
LOOP UNTIL EOF(Trans) !Process all records
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).

DO LastInFirstOut ! call last in first out routine
END

See Also:

NEXT

SKIP

LOOP

POINTER (return relative record position)
POINTER(| file |)

| key |

POINTER Returns relative record position.

file The label of a FILE declaration. This specifies physical record order within the file.

key The label of a KEY or INDEX declaration. This specifies the entry order within the KEY
or INDEX file.

POINTER returns the relative record position within the data file (in file sequence), or the relative record
position within the KEY or INDEX file (in key sequence) of the last record accessed. The value returned
by the POINTER function is file driver dependent. It may be a record number, the relative byte position
within the file, or some other kind of "seek position" within the file. See Also: Supported File Systems.

Return Data Type: LONG

Example:
SavePtr# = POINTER(Customer) !Save file pointer

See Also:

SET

POSITION (return file record sequence position)
POSITION(sequence)

POSITION Identifies a record´s unique position in the FILE.

sequence The label of a FILE, KEY, or INDEX declaration.
POSITION returns a STRING which identifies a record´s unique position within the sequence. POSITION
returns the position of the last record accessed in the file (the record currently in the file´s record buffer).
POSITION is used in conjunction with RESET to temporarily suspend and resume sequential file
processing.

The value contained in the returned STRING and the length of that STRING are file driver dependent.
See Also: Supported File Systems. As a general rule, for file systems that have record numbers, the size
of the STRING returned by POSITION(file) is 4 bytes. The return string from POSITION(key) is 4 bytes
plus the sum of the sizes of the fields in the key. For file systems that do not have record numbers the
size of the STRING returned by POSITION(file) is the sum of the sizes of the fields in the Primary Key
(the first KEY on the FILE that does not have the DUP or OPT attribute). The return string from
POSITION(key) is the sum of the sizes of the fields in the Primary Key plus the sum of the sizes of the
fields in the key.

Return Data Type: STRING

Example:
RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans)
 !20 records in queue?
SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
RESET(Trn:DateKey,SavPosition) !Reset the record pointer
NEXT(Trans) ! and get record

. .
See Also:

RESET

RECORDS (return number of file or key records)
RECORDS(| file |)

| key |

RECORDS Returns the number of records.

file The label of a FILE declaration.

key The label of a KEY or INDEX declaration.
The RECORDS function returns the number of records in a file or key. Since the OPT attribute of a KEY
or INDEX excludes "null" entries, RECORDS may return a smaller number for the KEY or INDEX than the
FILE.

Return Data Type: LONG

Example:
SaveCount = RECORDS(Master) !Save the record count
SaveNameCount = RECORDS(Nam:NameKey) !Number of records with names filled in

See Also:

INDEX

KEY

OPT

SEND (send message to file driver)
SEND(file,message)

SEND Sends a message to the file driver.

file The label of a FILE declaration. The FILE´s DRIVER attribute identifies the file driver to
receive the message.

message A string constant or variable containing the information to supply to the file driver.
The SEND function allows the program to pass any parameters specific to a file driver during program
execution. Specific examples of valid SEND messages are listed in the file driver´s documentation.

Return Data Type: STRING

Example:
FileCheck = SEND(ClarionFile,´RECOVER=120´)

!Arm recovery process for a Clarion data file
See also Driver Strings for:

ASCII

Basic

Btrieve

Clarion

Clipper

dBase III

dBase IV

DOS Files

FoxPro and FoxBase

TopSpeed

Transaction Processing
COMMIT (terminate successful transaction)

LOGOUT (begin transaction)

ROLLBACK (terminate unsuccessful transaction)

COMMIT (terminate successful transaction)
COMMIT

The COMMIT statement terminates an active transaction. Execution of a COMMIT statement assumes
that the transaction was completely successful and no ROLLBACK is necessary. Once COMMIT has
been executed, ROLLBACK of the transaction is impossible.

COMMIT informs the file driver involved in the transaction that the temporary files containing the
information necessary to restore the database to its previous state may be deleted. The file driver then
performs the actions necessary to its file system to successfully terminate a transaction. See Also:
Supported File Systems.

Example:
LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction

DO ErrHandler ! always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(´Transaction Error - ´ & ERROR())
RETURN ! and get out

See Also:

LOGOUT

ROLLBACK

LOGOUT (begin transaction)
LOGOUT(timeout ,file [,file,...,file])

LOGOUT Initiates transaction processing.

timeout A numeric constant or variable which specifies the number of seconds to attempt to begin
the transaction for a file before aborting the transaction and returning an error.

file The label of a FILE declaration. There may be multiple file parameters, separated by
commas, in the parameter list. All files that will be in the transaction set must be listed.

The LOGOUT statement initiates transaction processing for a specified set of files. All files in the
transaction set must have the same file driver. LOGOUT informs the file driver that a transaction is
beginning. The file driver then performs the actions necessary to that file system to initiate transaction
processing for the specified set of files. If the file system requires that the files be locked for transaction
processing, LOGOUT automatically locks the files.

Only one LOGOUT transaction may be active at a time. A second LOGOUT statement without a prior
COMMIT or ROLLBACK halts the program with an error message, returning the user to DOS.

Errors Posted: 32 File Is Already Locked

Example:
LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction

DO ErrHandler ! always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(´Transaction Error - ´ & ERROR())
RETURN ! and get out

See Also:

COMMIT

ROLLBACK

ROLLBACK (terminate unsuccessful transaction)
ROLLBACK

The ROLLBACK statement terminates an active transaction. Execution of a ROLLBACK statement
assumes that the transaction was unsuccessful and the database must be restored to the state it was in
before the transaction began.

ROLLBACK informs the file driver involved in the transaction that the temporary files containing the
information necessary to restore the database to its previous state must be used to restore the database.
The file driver then performs the actions necessary to its file system to roll back the transaction. See Also:
Supported File Systems.

Example:
LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction

DO ErrHandler ! always check for errors
ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(´Transaction Error - ´ & ERROR())
RETURN ! and get out

See Also:

LOGOUT

COMMIT

Null Data Processing
The concept of a null "value" in a field of a FILE or VIEW indicates that the user has never entered data
into the field. Null actually means "value not known" for the field. This is completely different from a blank
or zero value, and makes it possible to detect the difference between a field which has never had data,
and a field which has a (true) blank or zero value.

In expressions, null does not equal blank or zero. Therefore, any expression which compares the value of
a field from a FILE or VIEW with another value will always evaluate as unknown if the field is null. This is
true even if the value of both elements in the expression are unknown (null) values. For example, the
conditional expression Pre:Field1 = Pre:Field2 will evaluate as true only if both fields contain known
values. If both fields are null, the result of the expression is also unknown.

Known = Known !Evaluates as True or False
Known = Unknown !Evaluates as unknown
Unknown = Unknown !Evaluates as unknown
Unknown <> 10 !Evaluates as unknown
1 + Unknown !Evaluates as unknown

The only four exceptions to this rule are boolean expressions using OR and AND where only one portion
of the entire expression in unknown and the other protion of the expression meets the expression criteria:

Unknown OR True !Evaluates as True
True OR Unknown !Evaluates as True
Unknown AND False !Evaluates as False
False AND Unknown !Evaluates as False

Support for null "values" in a FILE or VIEW is entirely dependent upon the file driver. Some file drivers
support the null field concept (SQL drivers, for the most part), while others do not. Consult the
documentation for the specific file driver to determine whether or not your file system´s driver supports
nulls. See Also: Supported File Systems.

See also:

NULL (return null file field)

SETNULL (set file field null)

SETNONNULL (set file field non-null)

NULL (return null file field)
NULL(field)

NULL Determines null "value" of a field.

field The label (including prefix) of a field in a FILE or VIEW structure.
The NULL function returns a non-zero value (true) if the field is null, and zero (false) if the field contains
any known value (including blank or zero). Support for null "values" in a FILE or VIEW is entirely
dependent upon the file driver. See Also: Supported File Systems.

Return Data Type: LONG

Example:
CustomerFILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

. .
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

. .
CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

IF NULL(Hea:ShipToName) !Check for null ship-to address
Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

Hea:ShipToName = Cus:Name ! and assign customer address
Hea:ShipToAddr = Cus:Addr ! as the ship-to address
Hea:ShipToCSZ = Cus:CSZ

END
PUT(Header) !Put Header record back

END

SETNULL (set file field null)
SETNULL(field)

SETNULL Assigns null "value" to a field.

field The label (including prefix) of a field in a FILE or VIEW structure.
The SETNULL statement assigns a null "value" to a field in a FILE or VIEW structure. Support for null
"values" in a FILE or VIEW is entirely dependent upon the file driver.

Return Data Type: LONG

Example:
CustomerFILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

. .
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

. .
CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

IF NOT NULL(Hea:ShipToName) AND Hea:ShipToName = Cus:Name
 !Check ship-to address

SETNULL(Hea:ShipToName) ! and assign null "values"
SETNULL(Hea:ShipToAddr) ! to ship-to address
SETNULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END

SETNONNULL (set file field non-null)
SETNONNULL(field)

SETNONNULL Assigns non-null value (blank or zero) to a field.

field The label (including prefix) of a field in a FILE or VIEW structure.
The SETNONNULL statement assigns a non-null value (blank or zero) to a field in a FILE or VIEW
structure. Support for null "values" in a FILE or VIEW is entirely dependent upon the file driver. See Also:
Supported File Systems.

Return Data Type: LONG

Example:
Customer FILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

 . .
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)

. .
CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

IF NULL(Hea:ShipToName) OR Hea:ShipToName = Cus:Name
 !Check same ship-to address

Hea:ShipToName = ´Same as Customer Address´ ! flag the record
SETNONNULL(Hea:ShipToAddr) ! and blank out ship-to address
SETNONNULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END

See Also:

NULL

SETNULL

Internationalization
Environment Files

CONVERTANSITOOEM (convert ANSI strings to ASCII)

CONVERTOEMTOANSI (convert ASCII strings to ANSI)

ISALPHA (return alphabetic string)

ISLOWER (return lower case alphabetic string)

ISUPPER (return upper case alphabetic string)

LOCALE (load environment file)

Environment Files
An environment file contains internationalization settings for an application. On program initialization, the
Clarion run-time library attempts to locate an environment file with the same name and location as your
application's program file (appname.ENV). If an environment file is not found, the run-time library
defaults to standard English/ASCII. You can also use these settings to specify internationalization issues
for the Clarion environment by creating a CW.ENV file (the Database Manager uses these settings when
displaying data files).

 The .ENV file is compatible with the .INI files used by Clarion for DOS (both versions 3 and 3.1) if the
CLACHARSET is set to OEM, because Clarion for DOS .INI files are generally written using OEM ASCII,
not the ANSI character set.

The LOCALE procedure can be used to load environment files at run-time to dynamically change the
international settings. LOCALE can also be used to set individual entries. International support is
dependent on support in the File Driver (generally for the OEM attribute). All file drivers included with
Clarion fior Windows, except ODBC, support the OEM attribute.

The following settings can be set in an environment file:

CLACHARSET=WINDOWS
CLACHARSET=OEM

This determines the character set used by the entries in the .ENV file. WINDOWS is the
default if this setting is omitted from the environment file. Use the OEM setting if you
are using a DOS editor to edit the .ENV file, or if it has to be compatible with Clarion for
DOS. Otherwise, specify WINDOWS or omit the entry. This shoud always be the first
setting in the environment file.

CLACOLSEQ=WINDOWS
CLACOLSEQ="string"

Specifies a specific collating sequence for use at run-time. This collating sequence is used
for building KEY and INDEX files, as well as for sorting QUEUEs and all
string/character comparisons.

If the WINDOWS setting is used, then the default collation sequence is defined by
Windows' Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

Using the WINDOWS setting, the ordering can 'interleave' characters of differing case
(AaBbCc ...), so code such as

CASE SomeString[1]

 OF 'A' TO 'Z'

includes 'a' TO 'y' as well. Use the ISUPPER and ISLOWER functions in preference to
this kind of code if WINDOWS (or other non-default) collation sequences are used.

In addition to the WINDOWS setting, you may specify a string of characters (in double
quotes) to explicitly define the collation sequence to use. Only those characters that need
to have their sort order specified need be included; all other characters not listed remain
in their same relative order. For example, if CLACOLSEQ="CA" is specified for the
standard English sort (ABCD ...) the resulting sort order is "CBAD." This is a change
from the Clarion for DOS versions of this setting that needed exactly 222 characters, but
it is backward compatible.

NOTE: You should always read and write files using the same collation sequence.
Using a different sequence may result in keys becoming out of order and records
becoming inaccessible. Specifying CLACOLSEQ=WINDOWS means that the collation
sequence may change if the user changes the Country in Windows' Control Panel.

example:

CLAAMPM=WINDOWS
CLAAMPM="AMstring","PMstring"

This specifies the text used to indicate AM or PM as a part of a time display field. The
WINDOWS setting specifies use of the AM/PM strings set up in the Windows Control
Panel. The AMstring and PMstring settings are the same as in Clarion for DOS, except
that they take notice of the setting of CLACHARSET.

CLAMONTH="Month1","Month2", ... ,"Month12"
Specifies the text returned by functions and picture formats involving the month full
name.

CLAMON="AbbrevMonth1","AbbrevMonth2", ... ,"AbbrevMonth12"
Specifies the text returned by functions and picture formats involving the abbreviated
month name.

CLADIGRAPH="DigraphChar1Char2, ... "
This allows Digraph characters to collate correctly. A Digraph is a single logical
character that is a combination of two characters (Char1 and Char2). The Digraph is
collated as the two characters that combine to create it. They are more common in non-
English languages. For example, with CLADIGRAPH="ÆAe,æae" specified, the word
"Jæger" sorts before "Jager" (since "Jae" comes before "Jag").

Multiple DigraphChar1Char2 combinations may be defined, separated by commas. This
setting takes notice of the CLACHARSET setting.

CLACASE=WINDOWS
CLACASE="UpperString","LowerString"

Allows you to specify upper and lower case letter pairs.

The WINDOWS setting uses the default upper/lower case pair sets as defined by the
Windows Country setting (in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used, not the windows default.

The UpperString and LowerString parameters specify a set of uppercase characters and
each one's lowercase equivalent. The length of the UpperString and LowerString
parameters must be equal. CLACASE takes notice of the setting of CLACHARSET.
ANSI characters less than 127 are not affected.

CLABUTTON="OK","&Yes","&No","&Abort","&Ignore","&Retry","Cancel","&Help"
This defines the text used by the buttons of the MESSAGE function. The text is specified
as a list of comma separated strings in the following order: OK, YES, NO, ABORT,
RETRY, IGNORE, CANCEL, HELP. The default is as specified above.

CLAMSGerrornumber="ErrorMessage"
This allows run-time error messages to be overridden with translated strings. The

errornumber is a standard Clarion error code number appended to CLAMSG.
ErrorMessage is the string value used to replace that error number's default message. For
example, CLAMSG2="No File Found" makes "No File Found" the return value of the
ERROR() function when ERRORCODE() = 2.

Example:
CLACHARSET=WINDOWS
CLACOLSEQ="AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsßTtUÜuùúûü
VvWwXxYyZzÿ"
CLAAMPM="AM","PM"
CLAMONTH="January","February","March","April","May","June","July","August","September"
,"October","November","December"
CLAMON="Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
CLADIGRAPH="ÆAe,æae"
CLACASE="ÄÅÆÇÉÑÖÜ","äåæçéñòü"
CLABUTTON="OK","&Si","&No","&Abortar","&Ignora","&Volveratratar","Cancelar","&Ayuda"
CLAMSG2="No File Found"

Tip: By default, the Clarion environment and Clarion applications utilize the ASCII character set
for all file I/O -- not the ANSI set, which is the Windows default character set. If you develop
international applications, you can use the Internationalization functions or the OEM FILE
attribute.

CONVERTANSITOOEM (convert ANSI strings to ASCII)
CONVERTANSITOOEM(string)

CONVERTANSITOOEM
Translates ANSI strings to OEM ASCII.

string The label of the string to convert. This may be a single variable or a any structure that is
treated as a GROUP (RECORD, QUEUE, etc.).

The CONVERTANSITOOEM statement translates either a single string or the strings within a GROUP
from the ANSI (Windows display) character set into the OEM character set (ASCII with extra characters
defined by the active code page).

This procedure is not required on data files if the OEM attribute is set on the file.

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

 . .
WinWINDOW,SYSTEM

STRING(@s20),USE(Cus:Name)
END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also:

CONVERTOEMTOANSI

CONVERTOEMTOANSI (convert ASCII strings to ANSI)
CONVERTOEMTOANSI(string)

CONVERTOEMTOANSI
Translates OEM ASCII strings to ANSI.

string The label of the string to convert. This may be a single variable or a any structure that is
treated as a GROUP (RECORD, QUEUE, etc.).

The CONVERTOEMTOANSI statement translates either a single string or the strings within a GROUP
from the the OEM character set (ASCII with extra characters defined by the active code page) into ANSI
(Windows display) character set.

This procedure is not required on data files if the OEM attribute is set on the file.

Example:
Customer FILE,DRIVER('Clarion'),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

 . .
WinWINDOW,SYSTEM

STRING(@s20),USE(Cus:Name)
END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also:

CONVERTANSITOOEM

ISALPHA (return alphabetic string)
ISALPHA(string)

ISALPHA Returns whether the string passed to it contains an alphabetic character.

string The label of the character string to test. If the string contains more than one character,
only the first character is tested.

The ISALPHA function returns TRUE if the string passed to it is alphabetic (an upper or lower case
letter) and false otherwise. This is independent of the language and collation sequence.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'A' !ISALPHA returns true
IF ISALPHA(SomeString)
X#= MESSAGE('Alpha string')

END
SomeString = '1' !ISALPHA returns false
IF ISALPHA(SomeString)
X#= MESSAGE('Alpha string')

ELSE
X#= MESSAGE('Not Alpha string')

END

See Also:

ISUPPER

ISLOWER

ISLOWER (return lower case alphabetic string)
ISLOWER(string)

ISLOWER Returns whether the string passed to it contains a lower case alphabetic character.

string The label of the string to test. If the string contains more than one character, only the first
character is tested.

The ISLOWER function returns TRUE if the string passed to it is a lower case letter and false otherwise.
This is independent of the language and collation sequence.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'a' !ISLOWER returns true
IF ISLOWER(SomeString)
X#= MESSAGE('lower case string')

END
SomeString = 'A' !ISLOWER returns false
IF ISLOWER(SomeString)
X#= MESSAGE('lower case string')

ELSE
X#= MESSAGE('Not lower case string')

END

See Also:

ISUPPER

ISALPHA

ISUPPER (return upper case alphabetic string)
ISUPPER(string)

ISUPPER Returns whether the string passed to it contains an upper case alphabetic character.

string The label of the string to test. If the string contains more than one character, only the first
character is tested.

The ISUPPER function returns TRUE if the string passed to it is an upper case letter and false otherwise.
This is independent of the language and collation sequence.

Return Data Type: LONG

Example:
SomeString STRING(1)
CODE
SomeString = 'A' !ISUPPER returns true
IF ISUPPER(SomeString)
X#= MESSAGE('Upper case string')

END
SomeString = 'a' !ISUPPER returns false
IF ISUPPER(SomeString)
X#= MESSAGE('Upper case string')

ELSE
X#= MESSAGE('Not upper case string')

END

See Also:

ISLOWER

ISALPHA

LOCALE (load environment file)
LOCALE(| file |)
 | setting, value |

LOCALE Allows the user to load a specific environment file (.ENV) at run-time and also to set individual environment
settings.

file A string constant or variable containing the name (including extension) of the
environment file (.ENV) to load, or the keyword WINDOWS. This may be a fully-
qualified DOS pathname.

setting A string constant or variable containing the name of the environment variable to set. Valid
choices are listed under the Environment Files section.

value A string constant or variable containing the environment variable setting.
The LOCALE procedure allows the user to load a specific environment file (.ENV) at run-time and also to
set individual environment settings. This allows an application to load another file to override the default
appname.ENV file, or to specify individual environment file settings when no environment file exists.

The WINDOWS keyword as the file parameter specifies use of Windows' default values for CLACOLSEQ,
CLACASE and CLAAMPM. When specifying individual settings, the value parameter does not require
double quotes around each individual item in the value string, unlike the syntax required in an .ENV file.

Example:
LOCALE('MY.ENV') !Load an environment file
LOCALE('WINDOWS') !Set default CLACOLSEQ, CLACASE and CLAAMPM
LOCALE('CLABUTTON','OK,&Si,&No,&Abortar,&Ignora,&Volveratratar,Cancelar,&Ayuda')

!Set CLABUTTON to Spanish
LOCALE('CLACOLSEQ','AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsß
TtUÜuùúûüVvWwXxYyZzÿ')

!Set the collating sequence
LOCALE('CLACASE','ÄÅÆÇÉÑÖÜ,äåæçéñòü') !Set upper/lower case pairs
LOCALE('CLAMSG2','No File Found') !Set ERROR() message for ERRORCODE()=2

See Also: Environment Files

File Views
View Structures

VIEW (declare a virtual file)

FILTER (set view filter expression)

PROJECT (set view fields)

JOIN (declare a join operation)

View Commands

CLOSE (close a VIEW)

OPEN (open a VIEW)

DELETE (delete a view primary file record)

HOLD (exclusive view record access)

NEXT (read next view record in sequence)

NOMEMO (read view record without reading memos)

PREVIOUS (read previous view record in sequence)

PUT (write VIEW primary file record back)

REGET (reget view record)

RELEASE (release a held view record)

RESET (reset view record sequence position)

SKIP (bypass view records in sequence)

WATCH (automatic view concurrency check)

View Functions

POSITION (return view record sequence position)

View Structures
VIEW (declare a virtual file)

FILTER (set view filter expression)

PROJECT (set view fields)

JOIN (declare a join operation)

VIEW (declare a "virtual" file)
label VIEW(primary file) [,FILTER()]

[PROJECT()]
[JOIN()

[PROJECT()]
[JOIN()

[PROJECT()]
 END]

 END]
END

VIEW Declares a "virtual" file as a composite of related files.

label The name of the VIEW.

primary file The label of the primary FILE of the VIEW.

FILTER Declares an expression used to filter valid records for the VIEW.

PROJECT Specifies the fields from the primary file, or the secondary related file specified by a
JOIN structure, that the VIEW will retrieve. If omitted, all fields from the file are
retrieved.

JOIN Declares a secondary related file.
VIEW declares a "virtual" file as a composite of related data files. The data elements declared in a VIEW
do not physically exist in the VIEW, because the VIEW structure is a logical construct. VIEW is a separate
method of addressing data physically residing in multiple, related FILE structures. At run-time, the VIEW
structure is not assigned memory for a data buffer, so the fields used in the VIEW are placed in their
respective FILE structure´s record buffer.

A VIEW structure must be explicitly OPENed before use, and all primary and secondary related files used
in the VIEW must have been previously OPENed. File I/O operations that operate directly on the primary
or any secondary related file in the VIEW are not permitted while the VIEW is OPEN.

The VIEW data structure allows sequential access, only. A SET statement on the VIEW´s primary file
must be issued before the OPEN(view) to set the VIEW´s processing order and starting point, then
NEXT(view) or PREVIOUS(view) allow sequential access to the VIEW. The REGET statement is also
available for VIEW, but only to specify the primary and secondary related file records that should be
current in their respective record buffers after the VIEW is CLOSEd. If no REGET statement is issued
immediately before the CLOSE(view) statement, the primary and secondary related file record buffers are
set to no current record. The processing sequence of the primary and secondary related files is undefined
after the VIEW is CLOSEd. Therefore, SET or RESET must be used to establish sequential file
processing order, if necessary, after closing the VIEW.

The VIEW data structure is designed to facilitate database access on client-server systems. It
accomplishes two relational operations at once: the relational "Join" and "Project" operations. On client-
server systems, these operations are performed on the file server, and only the result of the operation is
sent to the client. This can dramatically improve performance of network applications.

A relational "Join" retrieves data from multiple files, based upon the relationships defined between the
files. The JOIN structure in a VIEW structure defines the relational "Join" operation. There may be
multiple JOIN structures within a VIEW, and they may be nested within each other to perform multiple-
level "Join" operations.

A relational "Project" operation retrieves only specified data elements from the files involved, not their
entire record structure. Only those fields explicitly declared in PROJECT statements in the VIEW structure

are retrieved. Therefore, the relational "Project" operation is automatically implemented by the VIEW
structure. The contents of fields that are not contained in the PROJECT are undefined.

The FILTER attribute restricts the VIEW to a sub-set of records. The FILTER expression may include any
of the fields explicitly declared in the VIEW structure and restrict the VIEW based upon the contents of
any of the fields. This makes the FILTER operate across all levels of the "Join" operation.

Example:
CustomerFILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
Detail FILE,DRIVER(´Clarion´),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

 . .
Product FILE,DRIVER(´Clarion´),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

 . .
ViewOrder VIEW(Customer),PRE(Vew) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

FILTER (set view filter expression)
FILTER(expression)

FILTER Specifies a filter expression used to evaluate records to include in the VIEW.

expression A string constant containing a logical expression.
The FILTER attribute specifies a filter expression used to evaluate records to include in the VIEW. The
expression may reference any field in the VIEW, at all levels of JOIN structures. The entire expression
must evaluate as true for a record to be included in the VIEW.

Example:
 !Get only orders for customer 9999 since order number 100
ViewOrder VIEW(Customer),FILTER(´Cus:AcctNumber = 9999 AND Hea:OrderNumber > 100´)

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

 PROJECT(Pro:Description,Pro:Price)
END

END
END

END

PROJECT (set view fields)
PROJECT(fields)

PROJECT Declares the fields retrieved for the VIEW.

fields A comma delimited list of fields (including prefixes) from the primary file of the VIEW,
or the secondary related file named in the JOIN structure, containing the PROJECT
declaration.

The PROJECT statement in a VIEW structure declares fields retrieved for a relational "Project" operation.
A relational "Project" operation retrieves only the specified fields from the file, not the entire record
structure. Only those fields explicitly declared in PROJECT declarations in the VIEW structure are
retrieved.

A PROJECT statement may be declared in the VIEW, or within one of its component JOIN structures. If
there is no PROJECT declaration in the VIEW or JOIN structure, all fields in the relevant file are retrieved.

Example:
Detail FILE,DRIVER(´Clarion´),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT
Description STRING(20) !Line item comment

 . .
Product FILE,DRIVER(´Clarion´),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20) !Product description
Price DECIMAL(9,2)

 . .
ViewOrder VIEW(Detail)

PROJECT(Det:OrderNumber,Det:Item,Det:Description)
JOIN(Pro:ItemKey,Det:Item)
PROJECT(Pro:Description,Pro:Price)

END
END

JOIN (declare a "join" operation)
JOIN(secondary key,linking fields)

[PROJECT()]
[JOIN()

[PROJECT()]
 END]

END

JOIN Declares a secondary file for a relational "Join" operation.

secondary key The label of a KEY which defines the secondary FILE and its access key.

linking fields A comma-delimited list of fields in the related file that contain the values the secondary
key uses to access records.

PROJECT Specifies the fields from the secondary related file specified by a JOIN structure that the
VIEW will retrieve. If omitted, all fields from the file are retrieved.

The JOIN structure declares a secondary file for a relational "Join" operation. A relational "Join" retrieves
data from multiple files, based upon the relationships defined between the files. There may be multiple
JOIN structures within a VIEW, and they may be nested within each other to perform multiple-level "Join"
operations.

The secondary key defines the access key for the secondary file. The linking fields name the fields in the
file to which the secondary file is related, that contain the values used to retrieve the related records. For
a JOIN directly within the VIEW, these fields come from the VIEW´s primary file. For a JOIN nested within
another JOIN, these fields come from the secondary file of the JOIN in which it is nested. Non-linking
fields in the secondary key are allowed as long as they appear in the list of the key´s component fields
after all the linking fields.

When data is retrieved, if there are no matching secondary file records for a primary file record, null
values are supplied in the fields specified in the PROJECT. This type of relational "Join" operation is
known as an "outer join." The FILTER attribute of the VIEW can be used to accomplish all other forms of
the relational "Join" operation.

Example:
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:AcctNumber,Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
Detail FILE,DRIVER(´Clarion´),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:AcctNumber,Dtl:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Item LONG
Quantity SHORT
 . .

Product FILE,DRIVER(´Clarion´),PRE(Pro) !Declare product file layout

ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

. .
ViewOrder VIEW(Header) !Declare VIEW structure

PROJECT(Hea:AcctNumber,Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:AcctNumber,Hea:OrderNumber) !Join Detail file

PROJECT(Dtl:ItemDtl:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

View Commands
CLOSE (close a VIEW)

OPEN (open a VIEW)

DELETE (delete a view primary file record)

HOLD (exclusive view record access)

NEXT (read next view record in sequence)

NOMEMO (read view record without reading memos)

PREVIOUS (read previous view record in sequence)

PUT (write VIEW primary file record back)

REGET (reget view record)

RELEASE (release a held view record)

RESET (reset view record sequence position)

SKIP (bypass view records in sequence)

WATCH (automatic view concurrency check)

CLOSE (close a VIEW)
CLOSE(view)

CLOSE Closes a VIEW.

view The label of a VIEW.
The CLOSE statement closes a VIEW. A VIEW declared within a procedure is implicitly closed upon
RETURN from the procedure, if it has not already been explicitly CLOSEd.

If the CLOSE(view) statement is not immediately preceded by a REGET statement, the primary and
secondary related files in the VIEW are set to no current record. This means the contents of their record
buffers are undefined and a SET or RESET statement must be issued before performing sequential
processing on the file.

Example:
Customer FILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
ViewCust VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 END
CODE
OPEN(Customer,22h)
SET(Cus:AcctKey)
OPEN(ViewCust) !Open the customer view
 !executable statements
CLOSE(ViewCust) !and close it again

OPEN (open a VIEW)
OPEN(view)

OPEN Opens a VIEW structure for processing.

view The label of a VIEW declaration.
The OPEN statement opens a VIEW structure for processing. A VIEW must be explicitly opened before it
may be accessed. The files used in the VIEW must already be open.

Immediately before the OPEN(view) statement, you must issue a SET statement on the VIEW structure´s
primary file to setup sequential processing for the VIEW. You cannot issue a SET statement to the primary
file while the VIEW is OPEN; you must CLOSE(view) then issue the SET before a subsequent
OPEN(view).

Example:
Header FILE,DRIVER(´Clarion´),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
Detail FILE,DRIVER(´Clarion´),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .
Product FILE,DRIVER(´Clarion´),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

. .
ViewOrder VIEW(Header) !Declare VIEW structure

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 . . .

CODE
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Open

DELETE (delete a view primary file record)
DELETE(view)

DELETE Removes a primary file record from a VIEW.

view The label of a VIEW declaration.
The DELETE statement removes the last VIEW primary file record that was accessed by a NEXT or
PREVIOUS statement. The key entries for that record are also removed from the KEYs. DELETE does
not remove records from any secondary JOIN files in the VIEW.

DELETE only deletes the primary file record in the VIEW because the VIEW structure performs both
relational Project and Join operations at the same time. Therefore, it is possible to create a VIEW
structure that, if all its component files were updated, would violate the Referential Integrity rules set for
the database. The common solution to this problem in SQL-based database products is to write only to
the Primary file. Therefore, Clarion has adopted this same industry standard solution.

If no record was previously accessed, or the record is held by another workstation, DELETE posts the
"Record Not Available" error and no record is deleted. The specific disk action DELETE performs in the
file is file driver dependent. See Also: Supported File Systems.

Errors Posted: 05 Access Denied
33 Record Not Available

Example:
Customer FILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 END
CODE
OPEN(Customer)
Cus:AcctNumber = 12345 !Initialize key field
SET(Cus:AcctKey,Cus:AcctKey)
OPEN(CustView)
NEXT(CustView) !Get that record
IF ERRORCODE() THEN STOP(ERROR()).

DELETE(CustView) !Delete the customer record

See Also:

HOLD

NEXT

PREVIOUS

PUT

HOLD (exclusive view record access)
HOLD(view [,seconds])

HOLD Arms record locking.

view The label of a VIEW opened for shared access.

seconds A numeric constant or variable which specifies the maximum wait time in seconds.
The HOLD statement arms record locking for the primary file in the VIEW in a multi-user environment.
The following NEXT or PREVIOUS statement flags the primary file record as "held" when it successfully
gets the record. Generally, this excludes other users from writing to the record, although it does not
prevent them from reading the record. The specific action HOLD takes is file driver dependent. See Also:
Supported File Systems.

 HOLD(view) Arms the process so that the following NEXT or PREVIOUS attempts to hold the record
until it is successful. If it is held by another workstation, GET, NEXT, or PREVIOUS will
wait until the other workstation releases it.

 HOLD(view,seconds)
Arms the process so that the following NEXT or PREVIOUS statement posts the "Record
Is Already Held" error after unsuccessfully trying to hold the record for seconds.

A user may only HOLD one record at a time in the VIEW. If a second record is to be accessed in the
same file, the previously held record must be released (see RELEASE).

As with LOCK, a common problem to avoid when holding records is "deadly embrace." This condition
occurs when two workstations attempt to hold the same set of records in two different orders and both are
using the HOLD(view) form of HOLD. One workstation has already held a record that the other is trying to
HOLD, and vice versa. This problem may be avoided by using the HOLD(view,seconds) form of HOLD,
and trapping for the "Record Is Already Held" error.

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
END

 END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)

 LOOP !Process records Loop
LOOP !Loop to avoid "deadly embrace"
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second

NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE ! try again

ELSE
BREAK !Break if not held

END
END
IF ERRORCODE() THEN BREAK. !Check for end of file

 !Process the records
RELEASE(ViewOrder) !release held records

END
CLOSE(ViewOrder)

See Also:

RELEASE

NEXT

PREVIOUS

NEXT (read next view record in sequence)
NEXT(view)

NEXT Reads the next record(s) in sequence for a VIEW.

view The label of a VIEW declaration.
NEXT reads the next record(s) in sequence from a VIEW and places the appropriate fields in the VIEW
structure component files´ data buffer(s). If the VIEW contains JOIN structures, NEXT retrieves the
appropriate next set of related records.

The SET statement issued on the VIEW´s primary file before the OPEN(view) statement determines the
sequence in which records are read. The first NEXT(view) reads the record at the position specified by
the SET statement. Subsequent NEXT statements read subsequent records in that sequence. The
sequence is not affected by PUT or DELETE statements.

Executing NEXT without a preceding SET, or attempting to read past the end of the primary file in the
VIEW posts the "Record Not Available" error.

Errors Posted: 33 Record Not Available
37 File Not Open
43 Record Is Already Held

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

END
 END

 END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Read all records through end of primary file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END !End loop

See Also:

PREVIOUS

HOLD

NOMEMO (read view record without reading memos)
NOMEMO(view)

NOMEMO Arms "memoless" record retrieval.

view The label of a VIEW.
The NOMEMO statement arms "memoless" record retrieval for the next NEXT or PREVIOUS statement
encountered. The following NEXT or PREVIOUS gets the record but does not get any associated MEMO
field(s) for the record. Generally, this speeds up access to the record when the contents of the MEMO
field(s) are not needed by the procedure.

Example:
Customer FILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Notes MEMO(1024)
Record RECORD
AcctNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure

END
CODE
OPEN(Customer)
Cus:AcctNumber = 12345 !Initialize key field
SET(Cus:AcctKey,Cus:AcctKey)
OPEN(CustView)
LOOP
NOMEMO(CustView)
NEXT(CustView) !Get that record
IF ERRORCODE() THEN BREAK.

!Process the record
END
CLOSE(CustView)

See Also:

GET

NEXT

PREVIOUS

PREVIOUS (read previous view record in sequence)
PREVIOUS(view)

PREVIOUS Reads the previous record in sequence from a VIEW.

view The label of a VIEW declaration.
PREVIOUS reads the previous record(s) in sequence from a VIEW and places the appropriate fields in
the VIEW structure component files´ data buffer(s). If the VIEW contains JOIN structures, PREVIOUS
retrieves the appropriate previous set of related records.

The SET statement issued on the VIEW´s primary file before the OPEN(view) statement determines the
sequence in which records are read. The first PREVIOUS(view) reads the record at the position specified
by the SET statement. Subsequent PREVIOUS statements read subsequent records in that sequence.
The sequence is not affected by PUT or DELETE statements.

Executing PREVIOUS without a preceding SET, or attempting to read past the beginning of the primary
file in the VIEW posts the "Record Not Available" error.

Errors Posted: 33 Record Not Available
37 VIEW Not Open
43 Record Is Already Held

Example:
ViewOrder VIEW(Header)

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END
CODE
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Read all records through beginning of primary file
PREViOUS(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END !End loop

See Also:

NEXT

HOLD

PUT (write VIEW primary file record back)
PUT(view)

PUT Writes the VIEW´s primary file record back to disk.

view The label of a VIEW declaration.
The PUT statement writes the current values in the VIEW structure´s primary file´s data buffer to a
previously accessed primary file record in the view. If the record was held, it is automatically released.
PUT writes to the last record accessed with the NEXT or PREVIOUS statements. If the values in the key
variables were changed, then the KEYs are updated.

PUT only writes to the primary file in the VIEW because the VIEW structure performs both relational
Project and Join operations at the same time. Therefore, it is possible to create a VIEW structure that, if
all its component files were updated, would violate the Referential Integrity rules set for the database. The
common solution to this problem in SQL-based database products is to write only to the Primary file.
Therefore, Clarion has adopted this same industry standard solution.

If a record was not accessed with NEXT or PREVIOUS statements, or was deleted, then the "Record Not
Available" error is posted. PUT also posts the "Creates Duplicate Key" error. If any error is posted, then
the record is not written to disk.

Errors Posted: 05 Access Denied
33 Record Not Available
40 Creates Duplicate Key

Example:
ViewOrder VIEW(Header)

 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)

 END
 END
CODE
OPEN((Header,22h)
OPEN(Detail,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Read all records in reverse order
PREVIOUS(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file
DO LastInFirstOut !Call last in first out routine
PUT(ViewOrder) !Write transaction record back to the file
IF ERRORCODE() THEN STOP(ERROR()).

END !End loop

See Also:

NEXT

PREVIOUS

REGET (reget view record)
REGET(view,string)

REGET Re-gets a specific record in the VIEW.

view The label of a VIEW declaration.

string A string constant or variable containing the string returned by the POSITION function.
The REGET reads the VIEW record identified by the string returned by the POSITION(view) function. The
value contained in the string returned by the POSITION function, and its length, are file driver dependent.
See Also: Supported File Systems.

 If the VIEW contains JOIN structures, REGET retrieves the appropriate set of related records.

REGET re-loads all the VIEW component files´ record buffers with complete records. It does not perform
the relational "Project" operation. REGET(view) is explicitly designed to reset the record buffers to the
appropriate records immediately prior to a CLOSE(view) statement. However, the processing sequence of
the files must be reset with a SET or RESET statement.

Errors Posted: 33 Record Not Available

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

 END
RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)
SavPosition STRING(260)

END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)

 OPEN(ViewOrder)
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
SavPosition = POSITION(ViewOrder) !Save record position
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

END
ACCEPT
CASE ACCEPTED()
OF ?ListBox
GET(RecordQue,CHOICE())
REGET(ViewOrder,Que:SavPosition) !Reset the record buffers
CLOSE(ViewOrder) ! and get the record again
FREE(RecordQue)
UpdateProc !Call Update Procedure
BREAK

END
END

See Also:

POSITION

RESET

RELEASE (release a held view record)
RELEASE(view)

RELEASE Releases the held record(s).

view The label of a VIEW declaration.
The RELEASE statement releases a previously held record in a VIEW. It will not release a record held by
another user in a multi-user environment. If the record is not held, or is held by another user, RELEASE is
ignored.

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

 END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Process records Loop
LOOP !Loop to avoid "deadly embrace"
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second
NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE ! and try again

ELSE
BREAK !Break if not held

END
END
IF ERRORCODE() THEN BREAK. !Check for end of file

 !Process the records
RELEASE(ViewOrder) !release held records

END

See Also:

HOLD

RESET (reset view record sequence position)
RESET(view,string)

RESET Resets the sequential processing pointer to a specific record in the VIEW.

view The label of a VIEW.

string The string returned by the POSITION function.
RESET restores the record pointer to the record identified by the string that was returned by the
POSITION function. Once RESET has restored the record pointer, either NEXT or PREVIOUS will read
that record.

The value contained in the string (returned by the POSITION function) and its length, are file driver
dependent. See Also: Supported File Systems.

RESET is used in conjunction with POSITION to temporarily suspend and resume sequential VIEW
processing.

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

END
RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END
SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue

RecordQue :=: Pro:Record !Move record into queue
 ADD(RecordQue) ! and add it

IF ERRORCODE() THEN STOP(ERROR()).
IF RECORDS(RecordQue) = 20 !20 records in queue?
 DO DisplayQue !Display the queue

 . . !End loop
DisplayQue ROUTINE

SavPosition = POSITION(ViewOrder) !Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) ! and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) ! and get the record again

See Also:

POSITION

NEXT

PREVIOUS

SKIP (bypass view records in sequence)
SKIP(view,count)

SKIP Bypasses records during sequential VIEW processing.

view The label of a VIEW declaration.

count A numeric constant or variable. The count specifies the number of records to bypass. If
the value is positive, records are skipped in forward (NEXT) sequence; if count is
negative, records are skipped in reverse (PREVIOUS) sequence.

The SKIP statement is used to bypass records during sequential VIEW processing. It bypasses records
(in the sequence specified by the SET statement) by moving the file pointer count records. SKIP is more
efficient than NEXT or PREVIOUS for skipping past records because it does not move records into the
data buffer(s).

If SKIP reads past the end or beginning of VIEW, the EOF and BOF functions return true (if supported by
the file system in use). If no SET has been issued, SKIP is ignored.

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

 END
SavOrderNo LONG
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Process all records
NEXT(ViewOrder) ! Get a record
IF ERRORCODE() THEN BREAK.

IF Hea:OrderNumber <> SavOrderNo ! Check for first item in order
IF Hea:OrderStatus = ´Cancel´ ! Is it a canceled order?
SKIP(Items,Vew:ItemCount-1) ! SKIP rest of the items
CYCLE ! and process next order

. . ! end ifs
DO ItemProcess ! process the item
SavInvNo = Hea:OrderNUmber ! save the invoice number

END !End loop

WATCH (automatic view concurrency check)
WATCH(view)

WATCH Arms automatic optimistic concurrency checking.

view The label of a VIEW declaration.
The WATCH statement arms automatic optimistic concurrency checking by the file driver for a following
NEXT or PREVIOUS statement in a multi-user environment. Generally, the file driver retains a copy of the
retrieved fields from each file on the NEXT or PREVIOUS when it successfully gets the view. When the
fields are PUT to the view, the fields on disk are compared to the original data retrieved. An error is
returned by the PUT statement if the data has been changed by another user. The specific action WATCH
performs is file driver dependent. See Also: Supported File Systems.

Example:
Customer FILE,DRIVER(´Clarion´),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure
 END
CODE
OPEN(Customer,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Process all records
WATCH(ViewOrder) !Arm concurrency check
NEXT(ViewOrder) ! Get a record
IF ERRORCODE() THEN BREAK.

DO ItemProcess ! process the item
PUT(ViewOrder) ! and put it back
IF ERRORCODE() THEN STOP(ERROR()). !Stop on any error, including

 ! record changed by another user
END

View Functions
POSITION (return view record sequence position)

POSITION (return view record sequence position)
POSITION(sequence)

POSITION Identifies a record´s unique position in the VIEW.

sequence The label of a VIEW declaration.
POSITION returns a STRING which identifies a record´s unique position within the sequence. POSITION
returns the position of the last record accessed in the VIEW. The POSITION function is used with RESET
to temporarily suspend and resume sequential processing.

The return string for POSITION(view) contains the sequence set by the SET statement on the primary file
issued immediately before the OPEN(view) statement. It also contains the file system´s POSITION return
value for the primary file key and all secondary file linking keys. This allows POSITION(view) to accurately
define a position for all related records in the VIEW.

As a general rule, for file systems that have record numbers, the size of the STRING returned by
POSITION(file) is 4 bytes. The return string from POSITION(key) is 4 bytes plus the sum of the sizes of
the fields in the key. For file systems that do not have record numbers, the size of the STRING returned
by POSITION(file) is usually the sum of the sizes of the fields in the Primary Key (the first KEY on the
FILE that does not have the DUP or OPT attribute). The return string from POSITION(key) is the sum of
the sizes of the fields in the Primary Key plus the sum of the sizes of the fields in the key.

Return Data Type: STRING

Example:
ViewOrder VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
 JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file

PROJECT(Hea:OrderNumber)
 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file

PROJECT(Det:Item,Det:Quantity)
 JOIN(Pro:ItemKey,Dtl:Item) !Join Product file

PROJECT(Pro:Description,Pro:Price)
 END

 END
 END

 END
RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END
SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially

IF ERRORCODE()
DO DisplayQue !Display the queue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 !20 records in queue?
DO DisplayQue !Display the queue

 . .
DisplayQue ROUTINE

SavPosition = POSITION(ViewOrder) !Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) ! and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) ! and get the record again

See Also:

RESET

Memory Queues
Queue Structure

QUEUE (declare a memory QUEUE structure)

PRE (set label prefix)

STATIC (set local queue static)

THREAD (set thread-specific static queue)

NAME (set queue variable external name)

TYPE (QUEUE type definition)

EXTERNAL (set queue defined externally)

DLL (set queue defined externally in .DLL)

Queue Procedures

ADD (add an entry)

DELETE (delete an entry)

FREE (delete all entries)

GET (read an entry)

PUT (write an entry)

SORT (sort entries)

Queue Functions

POINTER (return last entry position)

RECORDS (return number of entries)

Queue Structure
QUEUE (declare a memory QUEUE structure)

PRE (set label prefix)

STATIC (set local queue static)

THREAD (set thread-specific static queue)

NAME (set queue variable external name)

TYPE (QUEUE type definition)

QUEUE (declare a memory QUEUE structure)
label QUEUE [,PRE] [,STATIC] [,THREAD] [,TYPE] [,BINDABLE] [,EXTERNAL] [,DLL]
fieldlabel variable [,NAME()]

END

QUEUE Declares a memory queue structure.

label The name of the QUEUE.

PRE Declare a fieldlabel prefix for the structure.

STATIC Declares a QUEUE, local to a PROCEDURE or FUNCTION, whose buffer is allocated
in static memory.

THREAD Specify memory for the queue is allocated once for each execution thread. Must be used
with the STATIC attribute on Procedure Local data.

TYPE Specify the QUEUE is a type definition for QUEUEs passed as parameters.

BINDABLE Specify all variables in the queue may be used in dynamic expressions.

EXTERNAL Specify the QUEUE is defined, and its memory is allocated, in an external library.

DLL Specify the QUEUE is defined in a .DLL. This is required in addition to the EXTERNAL
attribute.

fieldlabel The name of the variables in the queue.

variable Data declaration. The sum of the memory required for all declared variables in the
QUEUE must not be greater than 65,000 bytes in 16-bit applications and 4MB in 32-bit
applications.

QUEUE declares a memory QUEUE structure. The label of the QUEUE structure is used in queue
processing statements and functions. When used in assignment statements, expressions, or parameter
lists, a QUEUE is treated like a GROUP data type.

A QUEUE may be thought of as a memory file which is internally implemented as a dynamic array of the
QUEUE entries. When a QUEUE is declared, a data buffer is allocated (just as with a file). Each entry in
the QUEUE occupies exactly the same amount of memory as the data buffer with no per-entry overhead
(also no data compression or clipping).

The data buffer for a Procedure local QUEUE (declared in the data section of a PROCEDURE or
FUNCTION) is allocated on the stack (unless it has the STATIC attribute or is too large). The memory
allocated to the entries in a procedure-local QUEUE without the STATIC attribute is allocated only until
you FREE the QUEUE, or you RETURN from the PROCEDURE or FUNCTIONthe QUEUE is
automatically FREEd upon RETURN.

For a Global data, Module data, or Local data QUEUE with the STATIC attribute, the data buffer is
allocated static memory and the data in the buffer is persistent between procedure calls. The memory
allocated to the entries in the QUEUE remains allocated until you FREE the QUEUE.

The variables in the QUEUEs data buffer are not automatically initialized to any value, they must be
explicitly assigned values. Do not assume that they contain blanks or zero before your programs first
assignment to them.

As entries are added to the QUEUE, memory for the entry is dynamically allocated and the data is copied
from the buffer to the entry. As entries are deleted from the QUEUE, the memory used by the deleted
entry is freed. The maximum number of entries in a QUEUE is 1,000,000. The memory used by each

entry in the QUEUE is equal to the total of the field sizes.

A QUEUE with the BINDABLE attribute makes all the variables within the QUEUE available for use in a
dynamic expression, without requiring a separate BIND statement for each (allowing BIND(queue) to
enable all the fields in the queue). The contents of each variables NAME attribute is the logical name
used in the dynamic expression. If no NAME attribute is present, the label of the variable (including prefix)
is used. Space is allocated in the .EXE for the names of all of the variables in the structure. This creates a
larger program that uses more memory than it normally would. Therefore, the BINDABLE attribute should
only be used when a large proportion of the constituent fields are going to be used.

A QUEUE with the TYPE attribute is not allocated any memory; it is only a type definition for QUEUEs
that are passed as parameters to PROCEDUREs or FUNCTIONs. This allows the receiving procedure to
directly address component fields in the passed QUEUE. The parameter declaration on the
PROCEDURE or FUNCTION statement instantiates a local prefix for the passed QUEUE as it names the
passed QUEUE for the procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type declaration) to
directly address component fields of the QUEUE actually passed as the parameter.

Example:
NameQue QUEUE,PRE(Nam) !Declare a queue
Name STRING(20)
Zip DECIMAL(5,0),NAME(SortField)

END !End queue structure

See Also:

PRE

STATIC

NAME

FREE

THREAD

PRE (set label prefix)
PRE(prefix)

PRE Provides a label prefix for variables declared in the QUEUE.

prefix Acceptable characters are alphabet letters, numerals 0 through 9, and the underscore
character. A prefix must start with an alphabet character and must not be a reserved word.

The PRE attribute provides a label prefix for variables declared in the QUEUE. It is used to distinguish
between identical variable names that occur in different structures. When referenced in executable
statements, assignments, and parameter lists, a prefix is attached to a label by a colon (Pre:Label).

Example:
SaveQueue QUEUE,PRE(Sav)
Field1 LONG !Referenced as Sav:Field1
Field2 STRING !Referenced as Sav:Field2

END

See Also:

Reserved Words

STATIC (set local queue static)
STATIC

The STATIC attribute allows the data buffer of a QUEUE declared within a PROCEDURE or FUNCTION
to be allocated static memory instead of stack memory. This makes any value contained in the data buffer
"persistent" from one instance of the procedure to the next.

Example:
SomeProc PROCEDURE
SaveQueue QUEUE,STATIC !Static QUEUE data buffer
Field1 LONG !Value retained between
Field2 STRING ! procedure calls

END

See Also:

Data Declarations and Memory Allocation

THREAD (set thread-specific static queue)
THREAD

The THREAD attribute declares a static QUEUE which is allocated memory separately for each execution
thread in the program. This makes the values contained in the QUEUE dependent upon which thread is
executing. Whenever a new execution thread is begun, a new instance of the QUEUE, specific to that
thread, is created.

The THREAD attribute implies a static QUEUE, so the STATIC attribute is unnecessary on a Procedure
Local QUEUE. This attribute creates a lot of runtime "overhead," particularly on Global or Module data.
Therefore, it should be used only when absolutely necessary.

Example:
SomeProc PROCEDURE
SaveQueue QUEUE,THREAD !Static QUEUE data buffer
Field1 LONG !Thread-specific QUEUE
Field2 STRING

END

See Also:

Data Declarations and Memory Allocation

NAME (set queue variable external name)
NAME([name])

NAME Specifies an "external" name for queue processing.

name A string constant containing the "external" name of the variable.
The NAME attribute on a variable declared in a QUEUE structure specifies an "external" name for queue
processing. The name is an alternate method of addressing the variables in the QUEUE used by the
SORT, GET, PUT, and ADD statements.

Example:
SortQue QUEUE,PRE(Que)
Field1 STRING(10),NAME(´FirstField´) !QUEUE SORT NAME
Field2 LONG,NAME(´SecondField´) !QUEUE SORT NAME
 END

See Also:

QUEUE

SORT

GET

PUT

ADD

TYPE (QUEUE type definition)
TYPE

The TYPE attribute creates a QUEUE that is not allocated any memory; it is only a type definition for
QUEUEs that are passed as parameters to PROCEDUREs or FUNCTIONs. This allows the receiving
procedure to directly address component fields in the passed QUEUE. The parameter declaration on the
PROCEDURE or FUNCTION statement instantiates a local prefix for the passed QUEUE as it names the
passed QUEUE for ther procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used in the type definition) to
directly address component fields of the QUEUE passed as the parameter.

Example:
PassQue QUEUE,TYPE !Type-definition for passed QUEUE parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END
MAP
MyProc1(PassQue) !Passes a QUEUE defined the same as PassGroup

END
NameQue QUEUE,PRE(Nme) !Name queue
First STRING(20) ! first name
Middle STRING(1) ! middle initial
Last STRING(20) ! last name

END !End queue declaration
CODE
MyProc1(NameQue) !Call proc passing NameQue as parameter

MyProc1 PROCEDURE(LOC:PassedGroup) !Proc to receive QUEUE parameter
LocalVar STRING(20)
CODE
LocalVar = LOC:F1 !Assign value in Nme:First to LocalVar

! from passed parameter

EXTERNAL (set queue defined externally)
EXTERNAL

The EXTERNAL attribute specifies that the QUEUE on which it is placed is defined in an external library.
Therefore, a QUEUE with the EXTERNAL attribute is declared and may be referenced in the Clarion
code, but is not allocated memory. The memory for the QUEUE is allocated by the external library. This
allows the Clarion program access to QUEUEs declared as public in external libraries.

When using EXTERNAL to declare a QUEUE shared by multiple libraries (.LIBs, or .DLLs and .EXE), only
one library should define the QUEUE without the EXTERNAL attribute. All the other libraries (and
the .EXE) should declare the QUEUE with the EXTERNAL attribute. This ensures that there is only one
memory allocation for the QUEUE and all the libraries and the .EXE will reference the same memory
when referring to that QUEUE.

The QUEUE declarations in all libraries (or .EXEs) that reference common QUEUEs must be EXACTLY
the same (with the appropriate addition of the EXTERNAL attribute). If they are not exactly the same, data
corruption could occur. Any incompatibilities between libraries cannot be detected by the compiler or
linker, therefore it is the programmers responsibility to ensure that consistency is maintained.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
variables would have one .DLL containing the actual data definition that only contains FILE and global
variable and QUEUE definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes
one central library in which the actual file definitions are maintained. This one central .DLL is linked into all
.EXEs that use those common files. All other .DLLs and/or .EXEs in the system would declare the
common FILEs, QUEUEs, and variables with the EXTERNAL attribute.

Example:
Names QUEUE,EXTERNAL !A queue declared in an external library
Name STRING(20)
FileName STRING(8),NAME(FName) !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME(EXT) !Dynamic name: EXT

END

DLL (set queue defined externally in .DLL)
DLL([flag])

DLL Declares a QUEUE defined externally in a .DLL.

flag A numeric constant, equate, or Project system define which specifies the attribute as
active or not. If the flag is zero, the attribute is not active, just as if it were not present. If
the flag is any value other than zero, the attribute is active.

The DLL attribute specifies that the QUEUE on which it is placed is defined in a .DLL. A QUEUE with DLL
attribute must also have the EXTERNAL attribute. The DLL attribute is required for 32-bit applications
because .DLLs are relocatable in a 32-bit flat address space, which requires one extra dereference by the
compiler to address the QUEUE.

The QUEUE declarations in all libraries (or .EXEs) that reference common QUEUEs must be EXACTLY
the same (with the appropriate addition of the EXTERNAL and DLL attributes). If they are not exactly the
same, data corruption could occur. Any incompatibilities between libraries cannot be detected by the
compiler or linker, therefore it is the programmers responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a QUEUE shared by .DLLs and .EXE, only one .DLL should
define the QUEUE without the EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the QUEUE with the EXTERNAL and DLL attributes. This ensures that there is only one memory
allocation for the QUEUE and all the .DLLs and the .EXE will reference the same memory when referring
to that QUEUE.

One suggested way of coding large systems using many .DLLs and/or .EXEs that share the same
QUEUEs would have one .DLL containing the actual data definition that only contains FILE and global
QUEUE and variable definitions that are shared among all (or most) of the .DLLs and .EXEs. This makes
one central library in which the actual file definitions are maintained. This one central .DLL is linked into all
.EXEs that use those common files. All other .DLLs and/or .EXEs in the system would declare the
common variables with the EXTERNAL and DLL attributes.

Example:
DLLQueue QUEUE,PRE(Que),EXTERNAL,DLL !A queue declared in an external .DLL
TotalCount LONG

END

See Also: EXTERNAL

Queue Procedures
 ADD (add an entry)

 DELETE (delete an entry)

 FREE (delete all entries)

 GET (read an entry)

 PUT (write an entry)

 SORT (sort entries)

ADD (add an entry)
| pointer |

ADD(queue [, | [+]key,...,[-]key] |])
| name |

ADD Writes a new entry to the QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

pointer A numeric constant, variable, or numeric expression. The pointer must be in the range
from 1 to the number of entries in the memory queue.

+ - The leading plus or minus sign specifies the key is sorted in ascending or descending
sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a PRE
attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of QUEUE
fields, separated by commas, and optional leading + or - signs for each attribute. This
parameter is case sensitive.

ADD writes a new entry from the QUEUE structure data buffer to the QUEUE. If there is not enough
memory to ADD a new entry, the "Insufficient Memory" error is posted.

 ADD(queue) Appends a new entry to the end of the QUEUE.

 ADD(queue,pointer)
Places a new entry at the relative position specified by the pointer parameter. If there is
an entry already at the relative pointer position, it is "pushed down" to make room for the
new entry. All following pointers are readjusted to account for the new entry. For
example, an entry added at position 10 pushes entry 10 to position 11, entry 11 to position
12, etc. If pointer is zero or greater than the number of entries in the QUEUE, the entry is
added at the end.

 ADD(queue,key) Inserts a new entry in a sorted memory queue. Multiple key parameters may be
used (up to 16), separated by commas, with optional leading plus or minus signs to
indicate ascending or descending sequence. The entry is inserted immediately after all
other entries with matching key values. If there are no entries, ADD(queue,key) may be
used to build the QUEUE in sorted order.

 ADD(queue,name)
Inserts a new queue entry in a sorted memory queue. The name string must contain the
NAME attributes of the fields, separated by commas, with optional leading plus or minus
signs to indicate ascending or descending sequence. The entry is inserted immediately
after all other entries with matching field values. If there are no entries,
ADD(queue,name) may be used to build the QUEUE in sorted order.

Errors Posted: 08 Insufficient Memory
75 Invalid Field Type Descriptor

Example:
NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(´FirstField´)
Zip DECIMAL(5,0),NAME(´SecondField´)
 END

CODE
ADD(NameQue) !Add an entry at the end of the QUEUE
ADD(NameQue,1) !Add an entry at position 1
Que:Name = ´Jones´ !Initialize fields
Que:Zip = 12345
ADD(NameQue,+Que:Name,-Que:Zip) !Ascending name, descending zip order
Que:Name = ´Smith´ !Initialize fields
Que:Zip = 12345
ADD(NameQue,´+FirstField,-SecondField´)

!Add in name, descending zip order

DELETE (delete an entry)
DELETE(queue)

DELETE Removes a QUEUE entry.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.
DELETE removes the QUEUE entry at the position of the last successful GET or ADD and de-allocates
its memory. If no previous GET or ADD was executed, the "Queue Entry Not Found" error is posted. All
forward and backward chain pointers are automatically adjusted to compensate for the deleted entry.

Errors Posted: 08 Insufficient Memory
30 Entry Not Found

Example:
Que:Name = ´Jones´ !Initialize the key
GET(NameQue,Que:Name) !Get the matching record
DELETE(NameQue) !Delete the entry

FREE (delete all entries)
FREE(queue)

FREE Deletes all entries from a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.
FREE deletes all entries from a QUEUE and de-allocates the memory they occupied. It also de-allocates
the memory used by the QUEUE´s "overhead." FREE does not clear the QUEUE´s data buffer.

Errors Posted: 08 Insufficient Memory

Example:
FREE(Location) !Free the location queue
FREE(NameQue) !Free the name queue

GET (read an entry)
| pointer |

GET(queue , | [+]key,...,[-]key] |)
| name |

GET Retrieves a specific QUEUE entry.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

pointer A numeric constant, variable, or numeric expression. The pointer must be in the range
from 1 to the number of entries in the memory queue.

+ - The leading plus or minus sign specifies the key is sorted in ascending or descending
sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a PRE
attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of QUEUE
fields, separated by commas, and optional leading + or - signs for each attribute. This
parameter is case sensitive.

GET reads an entry into the QUEUE structure data buffer for processing. If GET does not find a match,
the "Queue Entry Not Found" error is posted.

 GET(queue,pointer)
Retrieves the entry at the relative entry position specified by the pointer value.

 GET(queue,key) Searches for a QUEUE entry that matches the value in the key field(s). Multiple
key parameters may be used (up to 16), separated by commas. The QUEUE must already
be sorted on the field(s) used as the key parameter(s).

 GET(queue,name)
Searches for a QUEUE entry that matches the value in the name field(s). The name
string must contain the NAME attributes of the fields, separated by commas, with
optional leading plus or minus signs to indicate ascending or descending sequence. The
QUEUE must already be sorted on the field(s) listed in the name parameter.

Errors Posted: 08 Insufficient Memory
30 Entry Not Found
75 Invalid Field Type Descriptor

Example:
NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(´FirstField´)
Zip DECIMAL(5,0),NAME(´SecondField´)
 END
CODE
DO BuildQue !Call routine to build the queue
GET(NameQue,1) !Get the first entry
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Jones´ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = Fil:Name !Initialize to value in Fil:Name

GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Smith´ !Initialize the key fields
Que:Zip = 12345
GET(NameQue,´FirstField,SecondField´) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

See Also:

SORT

PUT (write an entry)
PUT(queue , | [+]key,...,[-]key] |)

| name |

PUT Writes an entry back to the QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

+ - The leading plus or minus sign specifies the key is sorted in ascending or descending
sequence.

key The label of a field declared within the QUEUE structure. If a the QUEUE has a PRE
attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of QUEUE
fields, separated by commas, and optional leading + or - signs for each attribute. This
parameter is case sensitive.

PUT writes the contents of the data buffer back to the QUEUE after a successful GET or ADD. If no
previous GET or ADD was executed, the "Queue Entry Not Found" error is posted.

 PUT(queue) Writes the data buffer back to the same relative position within the QUEUE of the last
successful GET or ADD.

 PUT(queue,key) Returns an entry to a sorted memory queue after a successful GET or ADD,
maintaining the sort order if any key fields have changed value. Multiple key parameters
may be used (up to 16), separated by commas, with optional leading plus or minus signs
to indicate ascending or descending sequence. The entry is inserted immediately after all
other entries with matching key values.

 PUT(queue,name)
Returns an entry to a sorted memory queue after a successful GET or ADD, maintaining
the sort order if any key fields have changed value. The name string must contain the
NAME attributes of the fields, separated by commas, with optional leading plus or minus
signs to indicate ascending or descending sequence. The entry is inserted immediately
after all other entries with matching field values.

Errors Posted: 08 Insufficient Memory
30 Entry Not Found
75 Invalid Field Type Descriptor

Example:
NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(´FirstField´)
Zip DECIMAL(5,0),NAME(´SecondField´)
 EBD
CODE
DO BuildQue !Call routine to build the queue
Que:Name = ´Jones´ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Zip = 12345 !Change the zip
PUT(NameQue) !Write the changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Jones´ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Smith´ !Change key field
PUT(NameQue,Que:Name) !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Smith´ !Initialize key field
GET(NameQue,´FirstField´) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ´Jones´ !Change key field
PUT(NameQue,´FirstField´) !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).

SORT (sort entries)
SORT(queue, | [+]key,...,[-]key] |)

| name |

SORT Reorders entries in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.

+ - The leading plus or minus sign specifies the key will be sorted in ascending or descending
sequence.

key The label of a field declared within the QUEUE structure. If the QUEUE has a PRE
attribute, the key must include the prefix.

name A string constant, variable, or expression containing the NAME attribute of QUEUE
fields, separated by commas, and optional leading + or - signs for each attribute. This
parameter is case sensitive.

SORT reorders the entries in a QUEUE. QUEUE entries with identical key values maintain their relative
position. SORT does not move data, it rearranges the pointers between the entries.

 SORT(queue,key) Reorders the QUEUE in the sequence specified by the key. Multiple key
parameters may be used (up to 16), separated by commas, with optional leading plus or
minus signs to indicate ascending or descending sequence.

 SORT(queue,name)
Reorders the QUEUE in the sequence specified by the name string. The name string must
contain the NAME attributes of the fields, separated by commas, with leading plus or
minus signs to indicate ascending or descending sequence.

Errors Posted: 08 Insufficient Memory
75 Invalid Field Type Descriptor

Example:
Location QUEUE,PRE(Loc)
Name STRING(20),NAME(´FirstField´)
City STRING(10),NAME(´SecondField´)
State STRING(2)
Zip DECIMAL(5,0)
 END
CODE
SORT(Location,Loc:State,Loc:City,Loc:Zip) !Sort by zip in city in state
SORT(Location,+Loc:State,-Loc:Zip) !Sort descending by zip in state
SORT(Location,´FirstField,-SecondField´) !Sort descending by city in name

Queue Functions
 POINTER (return last entry position)

 RECORDS (return number of entries)

POINTER (return last entry position)
POINTER(queue)

POINTER Returns the entry number of the last entry accessed in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.
The POINTER function returns a LONG integer specifying the entry number of the last QUEUE entry
accessed by ADD or GET.

Return Data Type: LONG

Example:
Que:Name = ´Jones´ !Initialize key field
GET(NameQue,Que:Name) !Get the entry
IF ERRORCODE() THEN STOP(ERROR()). ! and check for errors

SavPoint = POINTER(NameQue) !Save the pointer

RECORDS (return number of entries)
RECORDS(queue)

RECORDS Returns the number of entries in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed QUEUE parameter.
The RECORDS function returns a LONG integer containing the number of entries in the QUEUE.

Return Data Type: LONG

Example:
Entries# = RECORDS(Location) !Determine number of entries
LOOP I# = 1 TO Entries# !Loop through QUEUE
GET(Location,I#) ! getting each entry
IF ERRORCODE() THEN STOP(ERROR()).

DO SomeProcess ! process the entry
END

Miscellaneous Procedures and Functions
Mathematical Functions

ABS (return absolute value)

INRANGE (check number within range)

INT (truncate fraction)

LOGE (return natural logarithm)

LOG10 (return base 10 logarithm)

RANDOM (return random number)

ROUND (return rounded number)

SQRT (return square root)

Trigonometric Functions

SIN (return sine)

COS (return cosine)

TAN (return tangent)

ASIN (return arcsine)

ACOS (return arccosine)

ATAN (return arctangent)

String Functions

ALL (return repeated characters)

CENTER (return centered string)

CHR (return character from ASCII)

CLIP (return string without trailing spaces)

DEFORMAT (remove formatting from numeric string)

FORMAT (format numbers into a picture)

INLIST (search for entry in list)

INSTRING (search for substring)

LEFT (return left justified string)

LEN (return length of string)

LOWER (return lower case)

NUMERIC (check numeric string)

RIGHT (return right justified string)

SUB (return substring of string)

UPPER (return upper case)

VAL (return ASCII value)

Bit Manipulation Functions

BAND (return bitwise AND)

BOR (return bitwise OR)

BXOR (return bitwise exclusive OR)

BSHIFT (return shifted bits)

Date / Time Procedures and Functions

Standard Date

Standard Time

TODAY (return system date)

SETTODAY (set system date)

CLOCK (return system time)

SETCLOCK (set system time)

DATE (return standard date)

DAY (return day of month)

MONTH (return month of date)

YEAR (return year of date)

AGE (return age from base date)

DOS Procedures and Functions

COMMAND (return command line)

PATH (return current DOS directory)

RUNCODE (return DOS exit code)

SETCOMMAND (set command line parameters)

SETPATH (change current drive and directory)

Error Reporting Functions

Mathematical Functions
ABS (return absolute value)

INRANGE (check number within range)

INT (truncate fraction)

LOGE (return natural logarithm)

LOG10 (return base 10 logarithm)

RANDOM (return random number)

ROUND (return rounded number)

SQRT (return square root)

ABS (return absolute value)
ABS(expression)

ABS Returns absolute value.

expression A constant, variable, or expression.
The ABS function returns the absolute value of an expression. The absolute value of a number is always
positive (or zero).

Return Data Type: REAL or DECIMAL

Example:
C = ABS(A - B) !C is absolute value of the difference
IF B < 0 THEN B = ABS(B). !If b is negative make it positive

See Also:

BCD Operations and Functions

INRANGE (check number within range)
INRANGE(expression,low,high)

INRANGE Return number in valid range.

expression A numeric constant, variable, or expression.

low A numeric constant, variable, or expression of the lower boundary of the range.

high A numeric constant, variable, or expression of the upper boundary of the range.
The INRANGE function compares a numeric expression to an inclusive range of numbers. If the value of
the expression is within the range, the function returns the value 1 for "true." If the expression is greater
than the high parameter, or less than the low parameter, the function returns a zero for "false."

Return Data Type: LONG

Example:
IF INRANGE(Date % 7,1,5) !If this is a week day
DO WeekdayRate ! use the weekday rate

ELSE !Otherwise
DO WeekendRate ! use the weekend rate

END

INT (truncate fraction)
INT(expression)

INT Return integer.

expression A numeric constant, variable, or expression.
The INT function returns the integer portion of a numeric expression. No rounding is performed, and the
sign remains unchanged.

Return Data Type: REAL or DECIMAL

Example:
!INT(8.5) returns 8
!INT(-5.9) returns -5

x = INT(y) !Return integer portion of y variable contents

See Also:

BCD Operations and Functions

LOGE (return natural logarithm)
LOGE(expression)

LOGE Returns the natural logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is less than
zero, the return value is zero. The natural logarithm is undefined for values less than zero.

The LOGE (pronounced "log-e") function returns the natural logarithm of a numeric expression. The
natural logarithm of a value is the power to which e must be raised to equal that value. The value of e is
2.71828182846.

Return Data Type: REAL

Example:
!LOGE(2.71828182846) returns 1
!LOGE(1) returns 0

LogVal = LOGE(Val) !Get the natural log of Val

LOG10 (return base 10 logarithm)
LOG10(expression)

LOG10 Returns base 10 logarithm.

expression A numeric constant, variable, or expression. If the value of the expression is zero or less,
the return value will be zero. The base 10 logarithm is undefined for values less than or
equal to zero.

The LOG10 (pronounced "log ten") function returns the base 10 logarithm of a numeric expression. The
base 10 logarithm of a value is the power to which 10 must be raised to equal that value.

Return Data Type: REAL

Example:
!LOG10(10) returns 1
!LOG10(1) returns 0

LogStore = LOG10(Var) !Store the log 10 of var

RANDOM (return random number)
RANDOM(low,high)

RANDOM Returns random integer.

low A numeric constant, variable, or expression for the lower boundary of the range.

high A numeric constant, variable, or expression for the upper boundary of the range.
The RANDOM function returns a random integer between the low and high parameter values, inclusively.
The low and high parameters may be any numeric expression, but only their integer portion is used for
the inclusive range.

Return Data Type: LONG

Example:
LOOP X# = 1 TO 6
LottoNbr[X#] = RANDOM(1,49) !Pick numbers for Lotto

END

ROUND (return rounded number)
ROUND(expression,order)

ROUND Returns rounded value.

expression A numeric constant, variable, or expression.

order A numeric expression with a value equal to a power of ten, such as 1, 10, 100, 0.1, 0.001,
etc. If the value is not an even power of ten, the next lowest power is used; 0.55 will use
0.1 and 155 will use 100.

The ROUND function returns the value of an expression rounded to a power of ten. If the order is a LONG
or DECIMAL Base Type, then rounding is performed as a BCD operation. Note that if you want to round a
real number larger than 1e30, you should use ROUND(num,1.0e0), and not ROUND(num,1). The
ROUND function is very efficient ("cheap") as a BCD operation and should be used to compare REALs to
DECIMALs at decimal width.

Return Data Type: DECIMAL or REAL

Example:
!ROUND(5163,100) returns 5200
!ROUND(657.50,1) returns 658
!ROUND(51.63594,.01) returns 51.64

Commission = ROUND(Price / Rate,.01) !Round the commission to the nearest cent

See Also:

BCD Operations and Functions

SQRT (return square root)
SQRT(expression)

SQRT Returns square root.

expression A numeric constant, variable, or expression. If the value of the expression is less than
zero, the return value is zero.

The SQRT function returns the square root of the expression. If X represents any positive real number,
the square root of X is a number that, when multiplied by itself, produces a product equal to X.

Return Data Type: REAL

Example:
Length = SQRT(X^2 + Y^2) !Find the distance from 0,0 to x,y (pythagorean theorem)

Trigonometric Functions
Trigonometric functions return values representing angles and ratios of the sides of a right triangle (a
triangle containing a 90-degree angle). The hypotenuse is the side of the triangle opposite the right (90-
degree) angle. For either of the other two angles, the adjacent side forms the angle with the hypotenuse,
and the opposite side is opposite the angle. (See any good Trigonometry text for further explanation of
these terms.)

Angles are expressed in radians. PI is a constant which represents the ratio of the circumference and
radius of a circle. There are 2*PI radians (or 360 degrees) in a circle.

The following equates provide high precision constants for PI and the conversion factors between
degrees and radians.

PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(.0174532925199) !Number of radians in a degree

SIN (return sine)

COS (return cosine)

TAN (return tangent)

ASIN (return arcsine)

ACOS (return arccosine)

ATAN (return arctangent)

SIN (return sine)
SIN(radians)

SIN Returns sine.

radians A numeric constant, variable or expression for the angle expressed in radians.
The SIN function returns the trigonometric sine of an angle measured in radians. The sine is the ratio of
the length of the angle´s opposite side divided by the length of the hypotenuse.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
SineAngle = SIN(Angle) !Get the sine of 45 degree angle

COS (return cosine)
COS(radians)

COS Returns cosine.

radians A numeric constant, variable or expression for the angle in radians.
The COS function returns the trigonometric cosine of an angle measured in radians. The cosine is the
ratio of the length of the angle´s adjacent side divided by the length of the hypotenuse.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
CosineAngle = COS(Angle) !Get the cosine of 45 degree angle

TAN (return tangent)
TAN(radians)

TAN Returns tangent.

radians A numeric constant, variable or expression for the angle in radians.
The TAN function returns the trigonometric tangent of an angle measured in radians. The tangent is the
ratio of the angle´s opposite side divided by its adjacent side.

Return Data Type: REAL

Example:
Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
TangentAngle = TAN(Angle) !Get the tangent of 45 degree angle

ASIN (return arcsine)
ASIN(expression)

ASIN Returns inverse sine.

expression A numeric constant, variable, or expression for the value of the sine.
The ASIN function returns the inverse sine. The inverse of a sine is the angle that produces the sine. The
return value is the angle in radians.

Return Data Type: REAL

Example:
InvSine = ASIN(SineAngle) !Get the Arcsine

See Also:

SIN

ACOS (return arccosine)
ACOS(expression)

ACOS Returns inverse cosine.

expression A numeric constant, variable, or expression for the value of the cosine.
The ACOS function returns the inverse cosine. The inverse of a cosine is the angle that produces the
cosine. The return value is the angle in radians.

Return Data Type: REAL

Example:
InvCosine = ACOS(CosineAngle) !Get the Arccosine

See Also:

COS

ATAN (return arctangent)
ATAN(expression)

ATAN Returns inverse tangent.

expression A numeric constant, variable, or expression for the value of the tangent.
The ATAN function returns the inverse tangent. The inverse of a tangent is the angle that produces the
tangent. The return value is the angle in radians.

Return Data Type REAL

Example:
InvTangent = ATAN(TangentAngle) !Get the Arctangent

See Also:

TAN

String Functions
ALL (return repeated characters)

CENTER (return centered string)

CHR (return character from ASCII)

CLIP (return string without trailing spaces)

DEFORMAT (remove formatting from numeric string)

FORMAT (format numbers into a picture)

INLIST (search for entry in list)

INSTRING (search for substring)

LEFT (return left justified string)

LEN (return length of string)

LOWER (return lower case)

NUMERIC (check numeric string)

RIGHT (return right justified string)

SUB (return substring of string)

UPPER (return upper case)

VAL (return ASCII value)

ALL (return repeated characters)
ALL(string [,length])

ALL Returns repeated characters.

string A string expression containing the character sequence to be repeated.

length The length of the return string. If omitted the length of the return string is 255 characters.
The ALL function returns a string containing repetitions of the character sequence string.

Return Data Type: STRING

Example:
Starline = ALL(´*´,25) !Get 25 asterisks
Dotline = ALL(´.´) !Get 255 dots

CENTER (return centered string)
CENTER(string [,length])

CENTER Returns centered string.

string A string constant, variable or expression.

length The length of the return string. If omitted, the length of the string parameter is used.
The CENTER function first removes leading and trailing spaces from a string, then pads it with leading
and trailing spaces to center it within the length, and returns a centered string.

Return Data Type: STRING

Example:
 !CENTER(´ABC´,5) returns ´ ABC ´
 !CENTER(´ABC ´) returns ´ ABC ´
 !CENTER(´ ABC´) returns ´ ABC ´
 Message = CENTER(Message) !Center the message
Rpt:Title = CENTER(Name,60) !Center the name

CHR (return character from ASCII)
CHR(code)

CHR Returns the display character.

code A numeric expression containing a numeric ASCII character code.
The CHR function returns the character represented by the ASCII character code parameter.

Return Data Type: STRING

Example:
Stringvar = CHR(122) !Get lower case z
Stringvar = CHR(65) !Get upper case A

CLIP (return string without trailing spaces)
CLIP(string)

CLIP Removes trailing spaces.

string A string expression.
The CLIP function removes trailing spaces from a string. The return string is a substring with no trailing
spaces. CLIP is frequently used with the concatenation operator in string expressions.

Return Data Type: STRING

Example:
Name = CLIP(Last) & ´, ´ & CLIP(First) & Init & ´.´ !Full name in military order

DEFORMAT (remove formatting from numeric string)
DEFORMAT(string [,picture])

DEFORMAT Removes formatting characters from a numeric string.

string A string expression containing a numeric string.

picture A picture token or the label of a CSTRING, STRING, or PSTRING variable containing a
picture token (CSTRING is more efficient than STRING or PSTRING). If omitted, the
picture for the string parameter is used. If the string parameter was not declared with a
picture token, the return value will contain only characters that are valid for a numeric
constant.

The DEFORMAT function removes formatting characters from a numeric string, returning only the
numbers contained in the string.

Return Data Type: STRING

Example:
DialString = ´ATDT1´ & DEFORMAT(Phone,@P(###)###-####P) & ´<13,10>´

 !Get phone number for modem to dial
ClarionDate = DEFORMAT(dBaseDate,@D1) !Clarion Standard date from mm/dd/yy string

FORMAT (format numbers into a picture)
FORMAT(value,picture)

FORMAT Returns a formatted numeric string.

value A numeric expression for the value to be formatted.

picture A picture token or the label of a STRING, CSTRING, or PSTRING variable containing a
picture token (CSTRING is more efficient than STRING or PSTRING).

The FORMAT function returns a numeric string formatted according to the picture parameter.

Return Data Type: STRING

Example:
Rpt:SocSecNbr = FORMAT(Emp:SSN,@P###-##-####P) !Format the soc-sec-nbr
Phone = FORMAT(DEFORMAT(Phone,@P###-###-####P),@P(###)###-####P)

 !Change phone format from dashes to parens
DateString = FORMAT(DateLong,@D1) !Format a date as a string

INLIST (search for entry in list)
INLIST(searchstring,liststring,liststring [,liststring...])

INLIST Returns item in a list.

searchstring A constant, variable, or expression that contains the value for which to search. If the
value is numeric, it is converted to a string before comparisons are made.

liststring The label of a variable or constant value to compare against the searchstring. If the value
is numeric, it is converted to a string before comparisons are made. There may be any
number of liststring parameters, but there must be at least two.

The INLIST function compares the contents of the searchstring against the values contained in each
liststring parameter. If a matching value is found, the function returns the number of the liststring
parameter containing the matching value (relative to the first liststring parameter). If the searchstring is
not found in any liststring parameter, INLIST returns zero.

Return Data Type: LONG

Example:
 !INLIST(´D´,´A´,´B´,´C´,´D´,´E´) returns 4
 !INLIST(´B´,´A´,´B´,´C´,´D´,´E´) returns 2
EXECUTE INLIST(Emp:Status,´Fulltime´,´Parttime´,´Retired´,´Consultant´)
Scr:Message = ´All Benefits´ !Full timer
Scr:Message = ´Holidays Only´ !Part timer
Scr:Message = ´Medical/Dental Only´ !Retired
Scr:Message = ´No Benefits´ !Consultant

END

INSTRING (search for substring)
INSTRING(substring,string [,step] [,start])

INSTRING Searches for a substring in a string.

substring A string constant, variable, or expression that contains the string for which to search.

string A string constant, or the label of the STRING, CSTRING, or PSTRING variable to be
searched.

step A numeric constant, variable, or expression which specifies the step length of the search.
A step of 1 searches for the substring beginning at every character in the string, a step of
2 starts at every other character, and so on. If step is omitted, the step length defaults to
the length of the substring.

start A numeric constant, variable, or expression which specifies where to begin the search of
the string. If omitted, the search starts at the first character position.

The INSTRING function steps through a string, searching for the occurrence of a substring. If the
substring is found, the function returns the step number on which the substring was found. If the substring
is not found in the string, INSTRING returns zero.

Return Data Type: LONG

Example:
 !INSTRING(´DEF´,´ABCDEFGHIJ´,1,1) returns 4
 !INSTRING(´DEF´,´ABCDEFGHIJ´,2,1) returns 0
 !INSTRING(´DEF´,´ABCDEFGHIJ´,2,2) returns 2
 !INSTRING(´DEF´,´ABCDEFGHIJ´,3,1) returns 2
Extension = SUB(FileSpec,INSTRING(´.´,FileSpec) + 1,3)

!Extract extension from file spec
IF INSTRING(Search,Cus:Notes,1,1) !If search variable found
Scr:Message = ´Found´ ! display message

END

LEFT (return left justified string)
LEFT(string [,length])

LEFT Left justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If omitted,
length defaults to the length of the string.

The LEFT function returns a left justified string. Leading spaces are removed from the string.

Return Data Type: STRING

Example:
CompanyName = LEFT(CompanyName) !Left justify the company name

LEN (return length of string)
LEN(string)

LEN Returns length of a string.

string A string constant, variable, or expression.
The LEN function returns the length of a string. If the string parameter is the label of a variable, the
function will return the declared length of the variable. Numeric variables are automatically converted to
STRING intermediate values.

Return Data Type: LONG

Example:
IF LEN(CLIP(Title) & ´ ´ & CLIP(First) & ´ ´ & CLIP(Last)) > 30

!If full name won´t fit
Rpt:Name = CLIP(Title) & ´ ´ & SUB(First,1,1) & ´. ´ & Last

! use first initial
ELSE
Rpt:Name = CLIP(Title) & ´ ´ & CLIP(First) & ´ ´ & CLIP(Last)

! else use full name
END
Rpt:Title = CENTER(Cus:Name,LEN(Rpt:Title)) !Center the name in the title

LOWER (return lower case)
LOWER(string)

LOWER Converts a string to all lower case.

string A string constant, variable, or expression for the string to be converted.
The LOWER function returns a string with all letters converted to lower case.

Return Data Type: STRING

Example:
Name = SUB(Name,1,1) & LOWER(SUB(Name,2,19))

!Make the rest of the name lower case

NUMERIC (check numeric string)
NUMERIC(string)

NUMERIC Validates all numeric string.

string A string constant, variable, or expression.
The NUMERIC function returns the value 1 (true) if the string contains a valid numeric value. It returns
zero (false) if the string contains non-numeric characters. Valid numeric characters are the digits 0
through 9, a leading minus sign, and a decimal point.

Return Data Type: LONG

Example:
IF NOT NUMERIC(PartNumber) !If part number is not numeric
DO ChkValidPart ! check for valid part number

END !End if

RIGHT (return right justified string)
RIGHT(string [,length])

RIGHT Right justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the length of the return string. If omitted,
the length is set to the length of the string.

The RIGHT function returns a right justified string. Trailing spaces are removed, then the string is right
justified and returned with leading spaces.

Return Data Type: STRING

Example:
Message = RIGHT(Message) !Right justify the message

SUB (return substring of string)
SUB(string,position,length)

SUB Returns a portion of a string.

string A string constant, variable or expression.

position A integer constant, variable, or expression. If positive, it points to a character position
relative to the beginning of the string. If negative, it points to the character position
relative to the end of the string (i.e., a position value of -3 points to a position 3
characters from the end of the string).

length A numeric constant, variable, or expression of number of characters to return.
The SUB function parses out a sub-string from a string by returning length characters from the string,
starting at position.

The SUB function is similar to the "string slicing" operation on STRING, CSTRING, and PSTRING
variables, but is less flexible and efficient. "String slicing" is more flexible because it may be used on both
the destination and source sides of an assignment statement, while the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual character assignments or the
SUB function.

To take a "slice" of a string, the beginning and ending character numbers are separated by a colon (:) and
placed in the implicit array dimension position within the square brackets ([]) of the string. The position
numbers may be integer constants, variables, or expressions. If variables are used, there must be at least
one blank space between the variable name and the colon separating the beginning and ending number
(to prevent PREfix confusion).

Return Data Type: STRING

Example:
 !SUB(´ABCDEFGHI´,1,1) returns ´A´
 !SUB(´ABCDEFGHI´,-1,1)returns ´I´
 !SUB(´ABCDEFGHI´,4,3) returns ´DEF´
Extension = SUB(FileName,INSTRING(´.´,FileName,1,1)+1,3)
 !Get the file extension using SUB function

Extension = FileName[(INSTRING(´.´,FileName,1,1)+1):(INSTRING(´.´,FileName,1,1)+3)]
 !The same operation using string slicing

See Also:

INSTRING

STRING

CSTRING

PSTRING

String Slicing

UPPER (return upper case)
UPPER(string)

UPPER Returns all upper case string.

string A string constant, variable, or expression for the string to be converted.
The UPPER function returns a string with all letters converted to upper case.

Return Data Type: STRING

Example:
Name = UPPER(Name) !Make the name upper case

VAL (return ASCII value)
VAL(character)

VAL Returns ASCII code.

character A one-byte string containing a character.
The VAL function returns the ASCII code of a character.

Return Data Type: LONG

Example:
!VAL(´A´) returns 65
!VAT(´z´) returns 122

CharVal = VAL(StrChar) !Get the ASCII value of the string character

Bit Manipulation Functions
BAND (return bitwise AND)

BOR (return bitwise OR)

BXOR (return bitwise exclusive OR)

BSHIFT (return shifted bits)

BAND (return bitwise AND)
BAND(value,mask)

BAND Performs bitwise AND operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to a
LONG data type prior to the operation, if necessary.

The BAND function compares the value to the mask, performing a Boolean AND operation on each bit.
The return value is a LONG integer with a one (1) in the bit positions where the value and the mask both
contain one (1), and zeroes in all other bit positions.

BAND is usually used to determine whether an individual bit, or multiple bits, are on (1) or off (0) within a
variable.

Return Data Type: LONG

Example:
!BAND(0110b,0010b) returns 0010b !0110b = 6, 0010b = 2
RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
IF BAND(RateType,Female) | !If female

AND BAND(RateType,Over25) ! and over 25
DO BaseRate ! use base premium

ELSIF BAND(RateType,Male) !If male
DO AdjBase ! adjust base premium

END

BOR (return bitwise OR)
BOR(value,mask)

BOR Performs bitwise OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to a
LONG data type prior to the operation, if necessary.

The BOR function compares the value to the mask, performing a Boolean OR operation on each bit. The
return value is a LONG integer with a one (1) in the bit positions where the value, or the mask, or both,
contain a one (1), and zeroes in all other bit positions.

BOR is usually used to unconditionally turn on (set to one), an individual bit, or multiple bits, within a
variable.

Return Data Type: LONG

Example:
!BOR(0110b,0010b) returns 0110b !0110b = 6, 0010b = 2
RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
RateType = BOR(RateType,Over25) !Turn on over 25 bit
RateType = BOR(RateType,Male) !Set rate to male

BXOR (return bitwise exclusive OR)
BXOR(value,mask)

BXOR Performs bitwise exclusive OR operation.

value A numeric constant, variable, or expression for the bit value to be compared to the bit
mask. The value is converted to a LONG data type prior to the operation, if necessary.

mask A numeric constant, variable, or expression for the bit mask. The mask is converted to a
LONG data type prior to the operation, if necessary.

The BXOR function compares the value to the mask, performing a Boolean XOR operation on each bit.
The return value is a LONG integer with a one (1) in the bit positions where either the value or the mask
contain a one (1), but not both. Zeroes are returned in all bit positions where the bits in the value and
mask are alike.

BXOR is usually used to toggle on (1) or off (0) an individual bit, or multiple bits, within a variable.

Return Data Type: LONG

Example:
!BXOR(0110b,0010b) returns 0100b !0110b = 6, 0100b = 4, 0010b = 2
RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
Over65 EQUATE(1100b) !Over age 65 mask
CODE
RateType = BXOR(RateType,Over65) !Toggle over 65 bits

BSHIFT (return shifted bits)
BSHIFT(value,count)

BSHIFT Perfroms bit shift operation.

value A numeric constant, variable, or expression. The value is converted to a LONG data type
prior to the operation, if necessary.

count A numeric constant, variable, or expression for the number of bit positions to be shifted.
If count is positive, value is shifted left. If count is negative, value is shifted right.

The BSHIFT function shifts a bit value by a bit count. The bit value may be shifted left (toward the high
order), or right (toward the low order). Zero bits are supplied to fill vacated bit positions when shifting.

Return Data Type: LONG

Example:
!BSHIFT(0110b,1) returns 1100b
!BSHIFT(0110b,-1) returns 0011b

Varswitch = BSHIFT(20,3) !Multiply by eight
Varswitch = BSHIFT(Varswitch,-2) !Divide by four

Date / Time Procedures and Functions
Standard Date

Standard Time

TODAY (return system date)

SETTODAY (set system date)

CLOCK (return system time)

SETCLOCK (set system time)

DATE (return standard date)

DAY (return day of month)

MONTH (return month of date)

YEAR (return year of date)

AGE (return age from base date)

Standard Date
A Clarion standard date is the number of days that have elapsed since December 28, 1800. The range of
accessible dates is from January 1, 1801 (standard date 4) to December 31, 2099 (standard date
109,211). Date functions will not return correct values outside the limits of this range. The standard date
calendar also adjusts for each leap year within the range of accessible dates. Dividing a standard date by
modulo 7 gives you the day of the week: zero = Sunday, one = Monday, etc.

The LONG data type with a date format (@D) display picture is normally used for a standard date. The
DATE data type is a data format used in the Btrieve Record Manager. A DATE field is internally converted
to LONG containing the Clarion standard date before any mathematical or date function operation is
performed. Therefore, DATE should be used for external Btrieve file compatibility, and LONG should
normally be used for other dates.

Standard Time
A Clarion standard time is the number of hundredths of a second that have elapsed since midnight, plus
one (1). The valid range is from 1 (defined as midnight) to 8,640,000 (defined as 11:59:59:99). A standard
time of one is exactly equal to midnight (which allows a zero value to be used to detect no time entered).
Although time is expressed to the nearest hundredth of a second, the system clock is only updated 18.2
times a second (approximately every 5.5 hundredths of a second).

The LONG data type with a time format (@T) display picture is normally used for a standard time. The
TIME data type is a data format used in the Btrieve Record Manager. A TIME field is internally converted
to LONG containing the Clarion standard time before any mathematical or time function operation is
performed. Therefore, TIME should be used for external Btrieve file compatibility, and LONG should
normally be used for other times.

TODAY (return system date)
TODAY()

The TODAY function returns the DOS system date as a standard date. The range of possible dates is
from January 1, 1801 (standard date 4) to December 31, 2099 (standard date 109,211).

Return Data Type: LONG

Example:
OrderDate = TODAY() !Set the order date to system date

SETTODAY (set system date)
SETTODAY(date)

SETTODAY Sets the DOS system date.

date A numeric constant, variable, or expression for a standard date.
The SETTODAY statement sets the DOS system date.

Example:
SETTODAY(TODAY() + 1) !Set the date ahead one day

CLOCK (return system time)
CLOCK()

The CLOCK function returns the time of day from the DOS system time in standard time (expressed as
hundredths of a second since midnight). Although the time is expressed to the nearest hundredth of a
second, the system clock is only updated 18.2 times a second (approximately every 5.5 hundredths of a
second).

Return Data Type: LONG

Example:
Time = CLOCK() !Save the system time

SETCLOCK (set system time)
SETCLOCK(time)

SETCLOCK Sets the DOS system clock.

time A numeric constant, variable, or expression for a standard time (expressed as hundredths
of a second since midnight plus one).

The SETCLOCK statement sets the DOS system time of day.

Example:
SETCLOCK(1) !Set clock to midnight

DATE (return standard date)
DATE(month,day,year)

DATE Return standard date.

month A numeric constant, variable, or expression for the month.

day A numeric constant, variable, or expression for the day of the month.

year A numeric constant, variable or expression for the year. The valid range for a year value
is 00 through 99 (which assumes the range 1900 - 1999), or 1801 through 2099.

The DATE function returns a standard date for a given month, day, and year. The month and day
parameters allow out-of-range values. A month value of 13 is interpreted as January of the next year. A
day value of 32 in January is interpreted as the first of February. Consequently, DATE(12,32,87),
DATE(13,1,87), and DATE(1,1,88) all produce the same result.

Return Data Type: LONG

Example:
HireDate = DATE(Hir:Month,Hir:Day,Hir:Year)!Compute hire date

See Also:

Standard Date

DAY (return day of month)
DAY(date)

DAY Returns day of month.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING, or
PSTRING variable declared with a date picture token. The date must be a standard date.
A variable declared with a date picture token is automatically converted to a standard date
intermediate value.

The DAY function computes the day of the month (1 to 31) for a given standard date.

Return Data Type: LONG

Example:
OutDay = DAY(TODAY()) !Get the day from today´s date
DueDay = DAY(TODAY()+2) !Calculate the return day
See Also:

Standard Date

MONTH (return month of date)
MONTH(date)

MONTH Returns month in year.

date A numeric constant, variable, expression, or the label of a STRING, CSTRING, or
PSTRING variable declared with a date picture token. The date must be a standard date.
A variable declared with a date picture token is automatically converted to a standard date
intermediate value.

The MONTH function returns the month of the year (1 to 12) for a given standard date.

Return Data Type: LONG

Example:
PayMonth = MONTH(DueDate) !Get the month from the date

See Also:

Standard Date

YEAR (return year of date)
YEAR(date)

YEAR Returns the year.

date A numeric constant, variable, expression, or the label of a string variable declared with a
date picture, containing a standard date. A variable declared with a date picture is
automatically converted to a standard date intermediate value.

The YEAR function returns a four digit number for the year of a standard date (1801 to 2099).

Return Data Type: LONG

Example:
IF YEAR(LastOrd) < YEAR(TODAY()) !If last order date not from this year
DO StartNewYear ! start new year to date totals

END

See Also:

Standard Date

AGE (return age from base date)
AGE(birthdate [,base date])

AGE Returns elapsed time.

birthdate A numeric expression for a standard date.

base date A numeric expression for a standard date. If this parameter is omitted, the system date
from DOS is used for the computation.

The AGE function returns a string containing the time elapsed between two dates. The age return string is
in the following format:
 1 to 60 days - ´nn DAYS´
 61 days to 24 months - ´nn MOS´
 2 years to 999 years - ´nnn YRS´

Return Data Type: STRING

Example:
Message = Emp:Name & ´is ´ & AGE(Emp:DOB,TODAY()) & ´ old today.´

DOS Procedures and Functions
COMMAND (return command line)

PATH (return current DOS directory)

RUNCODE (return DOS exit code)

SETCOMMAND (set command line parameters)

SETPATH (change current drive and directory)

COMMAND (return command line)
COMMAND(flag)

COMMAND Returns command line parameters.

flag A string constant or variable containing the parameter for which to search, or the number
of the command line parameter to return.

The COMMAND function returns the value of the flag parameter from the command line. If the flag is not
found, COMMAND returns an empty string. If the flag is multiply defined, only the first occurrence
encountered is returned.

COMMAND searches the command line for flag=value and returns value. There must be no blanks
between flag, the equal sign, and value. The returned value terminates at the first comma or blank space.
If a blank or comma is desired in a command line parameter, everything to the right of the equal sign must
be enclosed in double quotes (flag="value").

COMMAND will also search the command line for a flag containing a leading slash (/). If found,
COMMAND returns the value of flag without the slash. If the flag only contains a number, COMMAND
returns the parameter at that numbered position on the command line. A flag of ´0´ returns the minimum
path DOS used to find the command. This minimum path always includes the command (without
command line parameters) but may not include the path (if DOS found it in the current directory). A flag
containing ´1´ returns the first command line parameter. If flag is an empty string (´´), all command
parameters are returned as entered on the command line, appended to a leading space.

Return Data Type: STRING

Example:
IF COMMAND(´/N´) !Was /N on the command line?
DO SomeProcess

END
CommandString = COMMAND(´´) !Get all command parameters
CommandItself = COMMAND(´0´) !Get the command itself
SecondParm = COMMAND(´2´) !Get second parameter from command line

See Also:

SETCOMMAND

PATH (return current DOS directory)
PATH()

PATH returns a string containing the current drive and directory.

Return Data Type: STRING

Example:
IF PATH() = ´C:\´ !If in the root
MESSAGE(´You are in the Root Directory´) ! display message

END

See Also:

SETPATH

RUNCODE (return DOS exit code)
RUNCODE()

The RUNCODE function returns the exit code passed to DOS from the command executed by the RUN
statement. This is the exit code passed by the HALT statement in Clarion programs and is the same as
the DOS ERRORLEVEL. RUNCODE returns a LONG integer which may be any value that is returned to
DOS as an exit code by the child program.

The child program may only supply DOS with a BYTE value as an exit code, therefore negative values
are not possible as DOS exit codes. This fact allows RUNCODE to reserve these values to handle
situations in which an exit code is not available:

 0 normal termination
 -1 program terminated with Ctrl-C
 -2 program terminated with Critical error
 -3 TSR exit
 -4 program did not run (check ERROR())

Return Data Type: LONG

Example:
RUN(´Nextprog.exe´) !Run next program
IF RUNCODE() = -4
IF ERROR() = ´Not Enough Memory´ !If program didn´t run for lack of memory
MESSAGE(´Insufficient memory´) ! display a message
RETURN ! and terminate the procedure

ELSE
STOP(ERROR()) ! terminate program

. .

See Also:

RUN

HALT

SETCOMMAND (set command line parameters)
SETCOMMAND(commandline)

SETCOMMAND Internally sets command line parameters.

commandline A string constant, variable, or expression containing the new command line parameters.
SETCOMMAND allows the program to internally specify command line parameters that may be read by
the COMMAND function. SETCOMMAND overwrites any previous command line flag of the same value.
To turn off a leading slash flag, append an equal sign (=) to it in the commandline.

SETCOMMAND may not be used to set system level switches which must be specified when the program
is loaded. Switches like virtual memory (CLAVM=), or the program´s configuration file (CLAINI=) must be
set at load time and may not be set with SETCOMMAND. The temporary files directory switch
(CLATMP=) may be set with SETCOMMAND.

Example:
SETCOMMAND(´ /N´) !Add /N parameter
SETCOMMAND(´ /N=´) !Turn off /N parameter

See Also:

COMMAND

SETPATH (change current drive and directory)
SETPATH(path)

SETPATH Changes the current DOS drive and directory.

path A string constant or the label of a STRING, CSTRING, or PSTRING variable containing
a new drive and/or directory specification.

SETPATH changes the current DOS drive and directory. If the drive and path entry is invalid, the "Path
Not Found" error is posted, and the current directory is not changed.

If the drive letter and colon are omitted from the path, the current drive is assumed. If only a drive letter
and colon are in the path, SETPATH changes to the DOS current directory of that drive.

Errors Posted: 03 Path Not Found

Example:
SETPATH(´C:\LEDGER´) !Change to the ledger directory
SETPATH(UserPath) !Change to the user´s directory

Error Reporting Functions
ERROR (return error message)

ERRORCODE (return error code number)

ERRORFILE (return error filename)

FILEERROR (return file driver error message)

FILEERRORCODE (return file driver error code number)

ERROR (return error message)
ERROR()

The ERROR function returns a string containing a description of any error that was posted. If no error was
posted, ERROR returns an empty string.

Return Data Type: STRING

Example:
PUT(NameQueue) !Write the record
IF ERROR() = ´Queue Entry Not Found´ !If not found
ADD(NameQueue) ! add new entry
IF ERRORCODE() THEN STOP(ERROR()). !Check for unexpected error

END

ERRORCODE (return error code number)
ERRORCODE()

The ERRORCODE function returns the code number for any error that was posted. If no error was
posted, ERRORCODE returns zero.

Return Data Type: LONG

Example:
ADD(Location) !Add new entry
IF ERRORCODE() = 8 !If not enough memory
MESSAGE(´Out of Memory´) ! display message

END

ERRORFILE (return error filename)
ERRORFILE()

The ERRORFILE function returns the name of the file for which an error was posted. If the file is open,
the full DOS file specification is returned. If the file is not open, the contents of the FILE statement´s
NAME attribute is returned. If the file is not open and the file has no NAME attribute, the label of the FILE
statement is returned. If no error was posted, or the posted error did not involve a file, ERRORFILE
returns an empty string.

Return Data Type: STRING

Example:
ADD(Location) !Add new entry
IF ERRORCODE()
MESSAGE(´Error with ´ & ERRORFILE()) !Display error filename

END

FILEERROR (return file driver error message)
FILEERROR(file)

The FILEERROR function returns a string containing the "native" error message from the file system (file
driver) being used to access a data file. If no error was posted, FILEERROR returns an empty string.

Return Data Type: STRING

Example:
PUT(NameFile) !Write the record
IF FILEERRORCODE()
MESSAGE(FILERROR())
RETURN

END

See Also:

FILEERRORCODE

FILEERRORCODE (return file driver error code number)
FILEERRORCODE()

The FILEERRORCODE function returns a string containing the code number for the "native" error
message from the file system (file driver) being used to access a data file. If no error was posted,
FILEERRORCODE returns an empty string.

Return Data Type: STRING

Example:
PUT(NameFile) !Write the record
IF FILEERRORCODE()
MESSAGE(FILERROR())
RETURN

END

See Also:

FILEERROR

Other Procedures and Functions
ADDRESS (return a memory address)

BEEP (sound tone on speaker)

CALL (call procedure from a DLL)

MAXIMUM (return maximum subscript value)

NAME (return DOS file or device name)

OMITTED (check omitted parameters)

ADDRESS (return a memory address)
ADDRESS(| segment,offset |)

| variable |
| procedure |

ADDRESS Returns memory address of a variable.

segment The label of a data element, or an integer variable or constant containing the segment
portion of a segment:offset real-mode absolute memory address.

offset An integer variable or constant containing the offset portion of a segment:offset real-
mode absolute memory address.

variable The label of a data element.

procedure The label of a PROCEDURE or FUNCTION.
The ADDRESS function returns a LONG integer containing a memory address in selector:offset format,
where the selector is a reference into the protected mode lookup table.

 ADDRESS(segment,offset)
Returns the protected mode selector:offset for the real mode address specified by the
segment and offset parameters. This allows protected mode direct memory access without
incurring a protection violation.

 ADDRESS(variable)
Returns the protected mode address of the data element specified by the variable
parameter.

 ADDRESS(procedure)
Returns the protected mode address of the PROCEDURE or FUNCTION specified by the
procedure parameter.

Tha ADDRESS function allows you to pass the address of a variable or procedure to external libraries
written in other languages.

Return Data Type: LONG

Example:
 MAP
 ClarionProc !A Clarion language procedure
 MODULE(´External.Obj´) !An external library
 ExternVarProc(LONG) !C function receiving variable address
 ExternProc(LONG) !C function receiving procedure address

 . .
Var1 CSTRING(10) !Define a null-terminated string
CODE
ExternVarProc(ADDRESS(Var1)) !Pass address of Var1 to external procedure
ExternProc(ADDRESS(ClarionProc)) !Pass address of ClarionProc

ClarionProc PROCEDURE !A Clarion language procedure
CODE
RETURN

BEEP (sound tone on speaker)
BEEP([sound])

BEEP Generates a sound through the system speaker.

sound A numeric constant, variable, expression, or EQUATE for the Windows sound to issue.
The BEEP statement generates a sound through the system speaker. These are standard Windows
sounds available through the [sounds] section of the WIN.INI file. Standard EQUATE values are listed in
the EQUATES.CLW file.

Example:
IF ERRORCODE() !If unexpected error
BEEP(-1) ! sound a standard beep
STOP(ERROR()) ! stop for the error

END

CALL (call procedure from a DLL)
CALL(file, procedure)

CALL Calls a procedure that has not been prototyped in the application´s MAP structure from a
Windows standard .DLL.

file A string constant, variable, or expression containing the name (including extension) of
the .DLL to open. This may include a full path.

procedure A string constant, variable, or expression containing the name of the procedure to call
(which may not receive parameters or return a value). This can also be the ordinal
number indicating the procedure´s position within the .DLL.

The CALL function calls a procedure from a Windows standard .DLL. The procedure does not need to be
prototyped in the application´s MAP structure. If it is not already loaded by Windows, the .DLL file is
loaded into memory.

CALL returns zero (0) for a successful procedure call, or one of the following error values:
2 File not found
3 Path not found
5 Attempted to load a task, not a .DLL
6 Library requires separate data segments for each task
10 Wrong Windows version
11 Invalid .EXE file (DOS file or error in program header)
12 OS/2 application
13 DOS 4.0 application
14 Unknown .EXE type
15 Attempt to load an .EXE created for an earlier version of Windows.

This error will not occur if Windows is run in Real mode.
16 Attempt to load a second instance of an .EXE file containing

multiple, writeable data segments.
17 EMS memory error on the second loading of a .DLL
18 Attempt to load a protected-mode-only application while Windows is

running in Real mode

Return Data Type: LONG

Example:
X# = CALL(´CUSTOM.DLL´,´1´) !Call first procedure in CUSTOM.DLL
IF X# THEN STOP(X#). !Check for successful execution

MAXIMUM (return maximum subscript value)
MAXIMUM(variable,subscript)

MAXIMUM Returns maximum subscript value.

variable The label of a variable declared with a DIM attribute.

subscript A numeric constant, variable, or expression for the subscript number. The subscript
identifies which array dimension is passed to the function.

The MAXIMUM function returns the maximum subscript value for an explicitly dimensioned variable.
MAXIMUM does not operate on the implicit array dimension of STRING, CSTRING, or PSTRING
variables. This is usually used to determine the size of an array passed as a parameter to a procedure or
function.

Return Data Type: LONG

Example:
Array BYTE,DIM(10,12) !Define a two-dimensional array

!For the above Array: MAXIMUM(Array,1) returns 10
 ! MAXIMUM(Array,2) returns 12
CODE
LOOP X# = 1 TO MAXIMUM(Array,1) !Loop until end of 1st dimension
LOOP Y# = 1 TO MAXIMUM(Array,2) ! Loop until end of 2nd dimension
Array[X#,Y#] = 27 ! Initialize each element to default

. .

See Also:

DIM

Arrays as Parameters of PROCEDUREs and FUNCTIONs

NAME (return DOS file or device name)
NAME(label)

NAME Returns name of a file.

label The label of a FILE declaration.
The NAME function returns a string containing the DOS device name for the structure identified by the
label. For FILE structures, if the file is OPEN, the complete DOS file specification (drive, path, name, and
extension) is returned. If the FILE is closed, the contents of the NAME attribute on the FILE are returned.

Return Data Type: STRING

Example:
OpenFile = NAME(Customer) !Save the name of the open file

OMITTED (check omitted parameters)
OMITTED(position)

OMITTED Tests for unpassed parameters.

position An integer constant or variable which specifies the parameter to test.
The OMITTED function tests whether a parameter of a PROCEDURE or FUNCTION was actually
passed. The return value is 1 (true) if the parameter in the specified position was omitted. The return
value is zero (false) if the parameter was passed. Any position past the last parameter passed is
considered omitted.

A parameter may only be omitted if its data type is enclosed in angle brackets (< >) in the PROCEDURE
or FUNCTION prototype in the MAP structure.

Return Data Type: LONG

Example:
PROGRAM
MAP
 SomeProc(STRING,<LONG>,STRING) !Procedure prototype
 SomeFunction(STRING,<LONG>),STRING !Function prototype
END
CODE
SomeProc(Field1,,Field3)

 !For this statement:
 ! OMITTED(1) returns 0
 ! OMITTED(2) returns 1

! OMITTED(3) returns 0
! OMITTED(4) returns 1

SomeProc PROCEDURE(Field1,Date,Field3)
CODE
IF OMITTED(2) !If date parameter was omitted
Date = TODAY() ! substitute the system date

END

See Also:

FUNCTION and PROCEDURE Prototypes

DDE Library Reference
Dynamic Data Exchange

DDE Events

DDE Functions

DDESERVER (return DDE server channel)

DDECLIENT (return DDE client channel)

DDEQUERY (return registered DDE servers)

DDECHANNEL (return DDE channel number)

DDEAPP (return server application)

DDEITEM (return server item)

DDETOPIC (return server topic)

DDEVALUE (return data value sent to server)

DDE Procedures

DDEREAD (get data from DDE server)

DDEWRITE (provide data to DDE client)

DDEEXECUTE (send command to DDE server)

DDEPOKE (send unsolicited data to DDE server)

DDECLOSE (terminate DDE server link)

Dynamic Data Exchange
Dynamic Data Exchange (DDE) is a very powerful Windows tool that allows a user to access data from
another separately executing Windows application. This allows the user to work with the data in its native
format (in the originating application), while ensuring that the application in which the data is used always
has the most current values.

DDE is based upon establishing "conversations" (links) between two concurrently executing Windows
applications. One of the applications acts as the DDE server to provide the data, and the other is the DDE
client that receives the data. A single application may be both a DDE client and server, getting data from
other applications and providing data to other applications. Multiple DDE "conversations" can occur
concurrently between any given DDE server and client.

To be a DDE server, a Clarion application must:

 Open at least one window, since all DDE servers must be associated with a window.

 Register with Windows as a DDE server, using the DDESERVER function.

 Provide the requested data to the client, using the DDEWRITE statement.

 When DDE is no longer required, terminate the link by using the DDECLOSE statement.
You can also allow it to terminate automatically when the user closes the server
application or the window that started the link.

To be a DDE client, a Clarion application must:

 Open a link to a DDE server as its client, using the DDECLIENT function.

 Ask the server for data, using the DDEREAD stateemnt, or ask the server for a service
using the DDEEXECUTE statement.

 When DDE is no longer required, terminate the link by using the DDECLOSE statement.
You can also allow it to terminate automatically when the user closes the client window
or application.

The DDE process posts DDE-specific field-independent events to the ACCEPT loop of the window that
opened the link between applications, either as a server or client.

DDE Events
The DDE process is governed by several field-independent events specific to DDE. These events are
posted to the ACCEPT loop of the window that opened the link between applications, either as a server or
client.

The following events are posted only to a Clarion server application:

 EVENT:DDErequest
A client has requested a data item.

 EVENT:DDEadvise
A client has requested continuous updates of a data item.

 EVENT:DDEexecute
A client has executed a DDEEXECUTE statement.

The following events are posted only to a Clarion client application:

 EVENT:DDEdata A server has supplied an updated data item.

 EVENT:DDEclose A server has terminated the DDE link.
When one of these DDE events occur there are several functions that tell you what posted the event:

 DDECHANNEL() returns the handle of the DDE server or client.

 DDEITEM() returns the item or command string passed to the server by the DDEREAD
or DDEEXECUTE statements.

 DDEAPP() returns the name of the application.

 DDETOPIC() returns the name of the topic.
When a Clarion program creates a DDE server, external clients can link to this server and request data.
Each data request is accompanied by a string (in some specific format which the server program knows)
indicating the required data item. If the Clarion server already knows the value for a given item, it supplies
it to the client automatically without generating any events. If it doesn´t, an EVENT:DDErequest or
EVENT:DDEadvise event is posted to the server window´s ACCEPT loop.

When a Clarion program creates a DDE client, it can link to external servers which can provide data.
When the server first provides the value for a given item, it supplies it to the client automatically without
generating any events. If the client has established a "hot" link with the server, an EVENT:DDEdata event
is posted to the client window´s ACCEPT loop whenever the server posts a new value for the data item.

DDE Functions

DDESERVER (return DDE server channel)
DDESERVER([application] [, topic])

DDESERVER Returns a new DDE server channel number.

application A string constant or variable containing the name of the application. Usually, this is the
name of the application. If omitted, the filename of the application (without extension) is
used.

topic A string constant or variable containing the name of the application-specific topic. If
omitted, the application will respond to any data request.

The DDESERVER function returns a new DDE server channel number for the application and topic. The
channel number specifies a topic for which the application will provide data. This allows a single Clarion
application to register as a DDE server for multiple topics.

Return Data Type: LONG

Example:
DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)
 ENTRY(@s20),USE(DDERetVal)

 END
MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER(´MyApp´,´DataEntered´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,´DataEntered´,DDERetVal) !Provide data once

OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,´DataEntered´,DDERetVal)

!Check for change every 15 seconds
! and provide data whenever changed

END
END

See Also: DDECLIENT, DDEWRITE

DDECLIENT (return DDE client channel)
DDECLIENT([application] [, topic])

DDECLIENT Returns a new DDE client channel number.

application A string constant or variable containing the name of the server application to link to.
Usually, this is the name of the application. If omitted, the first DDE server application
available is used.

topic A string constant or variable containing the name of the application-specific topic. If
omitted, the first topic available in the application is used.

The DDECLIENT function returns a new DDE client channel number for the application and topic. If the
application is not currently executing, DDECLIENT returns zero (0).

Typically, when opening a DDE channel as the client, the application is the name of the server application.
The topic is a string that the application has either registered with Windows as a valid topic for the
application, or represents some value that tells the application what data to provide. You can use the
DDEQUERY function to determine the applications and topics currently registered with Windows.

Return Data Type: LONG

Example:
DDEReadVal REAL
WinOne WINDOW,AT(0,0,160,400)
 ENTRY(@s20),USE(DDEReadVal)

 END
ExcelServer LONG
CODE
OPEN(WinOne)
ExcelServer = DDECLIENT(´Excel´,´MySheet.XLS´)

!Open as client to Excel spreadsheet
IF NOT ExcelServer !If the server is not running
MESSAGE(´Please start Excel´) !alert the user to start it
RETURN ! and try again

END
DDEREAD(ExcelServer,DDE:auto,´R5C5´,DDEReadVal)
ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) ! process the new data

END
END

See Also: DDEQUERY, DDEWRITE, DDESERVER

DDEQUERY (return registered DDE servers)
DDEQUERY([application] [, topic])

DDEQUERY Returns currently executing DDE servers.

application A string constant or variable containing the name of the application to query. For most
applications, this is the name of the application. If omitted, all registered applications
registered with the specified topic are returned.

topic A string constant or variable containing the name of the application-specific topic to
query. If omitted, all topics for the application are returned.

The DDEQUERY function returns a string containing the names of the currently available DDE server
applications and their topics.

If the topic parameter is omitted, all topics for the specified application are returned. If the application
parameter is omitted, all registered applications registered with the specified topic are returned. If both
parameters are omitted, DDEQUERY returns all currently available DDE servers.

The format of the data in the return string is application:topic and it can contain multiple application and
topic pairs delimited by commas (for example, ´Excel:MySheet.XLS,ClarionApp:DataFile.DAT´).

Return Data Type: STRING

Example:
!This example code does not handle DDEADVISE

WinOne WINDOW,AT(0,0,160,400)
 END
SomeServer LONG
ServerString STRING(200)
CODE
OPEN(WinOne)
LOOP
ServerString = DDEQUERY() !Return all registered servers
IF NOT INSTRING(´SomeApp:MyTopic´,ServerString,1,1)
MESSAGE(´Open SomeApp, Please´)

ELSE
BREAK

END
END
SomeServer = DDECLIENT(´SomeApp´,´MyTopic´) !Open as client
ACCEPT
END
DDECLOSE(SomeServer)

DDECHANNEL (return DDE channel number)
DDECHANNEL()

The DDECHANNEL function returns a LONG integer containing the channel number of the DDE client or
server application that has just posted a DDE event. This is the same value returned by the DDESERVER
or DDECLIENT function when the DDE channel is established.

Return Data Type: LONG

Example:
WinOne WINDOW,AT(0,0,160,400)
 END
TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
TimeServer = DDESERVER(´SomeApp´,´Time´) !Open as server
DateServer = DDESERVER(´SomeApp´,´Date´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL() !Check which channel
OF TimeServer
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,´Time´,FormatTime)

OF DateServer
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,´Date´,FormatDate)

END
END

END

DDEAPP (return server application)
DDEAPP()

The DDEAPP function returns a string containing the application name in the DDE channel that has just
posted a DDE event. This is usually the same as the first parameter to the DDESERVER or DDECLIENT
function when the DDE channel is established.

Return Data Type: STRING

Example:
ClientApp STRING(20)
WinOne WINDOW,AT(0,0,160,400)
 STRING(@S20),AT(5,5,90,20),USE(ClientApp)

 END
TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
TimeServer = DDESERVER(´SomeApp´,´Time´) !Open as server
DateServer = DDESERVER(´SomeApp´,´Date´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL()
OF TimeServer
ClientApp = DDEAPP() !Get client´s name
DISPLAY ! and display on screen
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,´Time´,FormatTime)

OF DateServer
ClientApp = DDEAPP() !Get client´s name
DISPLAY ! and display on screen
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,´Date´,FormatDate)

END
END

END

DDEITEM (return server item)
DDEITEM()

The DDEITEM function returns a string containing the name of the item for the current DDE event. This is
the item requested by a DDEREAD, the data item supplied by DDEPOKE, or the command to execute
from a DDEEXECUTE statement.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)
 END
Server LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
Server = DDESERVER(´SomeApp´,´Clock´) !Open as server for my topic
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDEITEM()
OF ´Time´
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,DDE:manual,´Time´,FormatTime)

OF ´Date´
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,DDE:manual,´Date´,FormatDate)

END
OF EVENT:DDEadvise
CASE DDEITEM()
OF ´Time´
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,1,´Time´,FormatTime)

OF ´Date´
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,60,´Date´,FormatDate)

END
END

END

See Also: DDEREAD, DDEEXECUTE

DDETOPIC (return server topic)
DDETOPIC()

The DDETOPIC function returns a string containing the topic name for the DDE channel that has just
posted a DDE event.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

END
TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
TimeServer = DDESERVER(´SomeApp´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDETOPIC() !Get requested topic
OF ´Time´
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,´Time´,FormatTime)

OF ´Date´
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,´Date´,FormatDate)

END
END

END

See Also: DDEREAD

DDEVALUE (return data value sent to server)
DDEVALUE()

The DDEVALUE function returns a string containing the data sent to a Clarion DDE server by the
DDEPOKE statement.

Return Data Type: STRING

Example:
WinOne WINDOW,AT(0,0,160,400)

END
TimeServer LONG
TimeStamp FILE,DRIVER(ASCII),PRE(Tim)
Record RECORD
FormatTime STRING(5)
FormatDate STRING(8)
Message STRING(50)

. .
CODE
OPEN(WinOne)
TimeServer = DDESERVER(´TimeStamp´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDEpoke
OPEN(TimeStamp)
Tim:FormatTime = FORMAT(CLOCK(),@T1)
Tim:FormatDate = FORMAT(TODAY(),@D1)
Tim:Message = DDEVALUE() !Get data
ADD(TimeStamp)
CLOSE(TimeStamp)
CYCLE !Ensure acknowledgement

END
END

See Also: DDEPOKE

DDE Procedures

DDEREAD (get data from DDE server)
DDEREAD(channel, mode, item [, variable])

DDEREAD Gets data from a previously opened DDE client channel.

channel A LONG integer constant or variable containing the client channel--the value returned by
the DDECLIENT function.

mode An EQUATE defining the type of data link: DDE:auto, DDE:manual, or DDE:remove
(defined in EQUATES.CLW).

item A string constant or variable containing the application-specific name of the data item to
retrieve.

variable The name of the variable to receive the retrieved data. If omitted and mode is
DDE:remove, all links to the item are canceled.

The DDEREAD procedure allows a DDE client program to read data from the channel into the variable.
The type of update is determined by the mode parameter. The item parameter supplies some string value
to the server application that tells it what specific data item is being requested. The format and structure
of the item string is dependent upon the server application.

If the mode is DDE:auto, the variable is continually updated by the server (a "hot" link). If the mode is
DDE:manual, the variable is updated once and another DDEREAD request must be sent to the server to
check for any changed value (a "cold" link). If the mode is DDE:remove, a previous "hot" link to the
variable is terminated. If the mode is DDE:remove and variable is omitted, all previous "hot" links to the
item are terminated, no matter what variables were linked. This means the client must send another
DDEREAD request to the server to check for any changed value.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Events Generated:

These events are posted to the client application:

 EVENT:DDEdata A server has supplied an updated data item for a hot link.

 EVENT:DDEclose A server has terminated the DDE link.
Example:
WinOne WINDOW,AT(0,0,160,400)
 END
ExcelServer LONG(0)
DDEReadVal REAL
CODE
OPEN(WinOne)
ExcelServer = DDECLIENT(´Excel´,´MySheet.XLS´)

!Open as client to Excel spreadsheet
IF NOT ExcelServer !If the server is not running
MESSAGE(´Please start Excel´) ! alert the user to start it
CLOSE(WinOne)
RETURN

END

END
DDEREAD(ExcelServer,DDE:auto,´R5C5´,DDEReadVal)

 !Request continual update from server
ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) ! call proc to process the new data

END
END

See Also: DDEQUERY, DDEWRITE

DDEWRITE (provide data to DDE client)
DDEWRITE(channel, mode, item [, variable])

DDEWRITE Provide data to an open DDE server channel.

channel A LONG integer constant or variable containing the server channel--the value returned by
the DDESERVER function.

mode An integer constant or variable containing the interval (in seconds) to poll for changes to
the variable, or an EQUATE defining the type of data link: DDE:auto, DDE:manual, or
DDE:remove (defined in EQUATES.CLW).

item A string constant or variable containing the application-specific name of the data item to
provide.

variable The name of the variable providing the data. If omitted and mode is DDE:remove, all
links to the item are canceled.

The DDEWRITE procedure allows a DDE server program to provide the variable´s data to the client. The
item parameter supplies a string value that identifies the specific data item being provided. The format
and structure of the item string is dependent upon the server application. The type of update performed is
determined by the mode parameter.

If the mode is DDE:auto, the client program receives the current value of the variable and the internal
libraries continue to provide that value whenever the client (or any other client) asks for it again. If the
client requested a "hot" link, any changes to the variable should be tracked by the Clarion program so it
can issue a new DDEWRITE statement to update the client with the new value.

If the mode is DDE:manual, the variable is updated only once. If the client requested a "hot" link, any
changes to the variable should be tracked by the Clarion program so it can issue a new DDEWRITE
statement to update the client with the new value.

If the mode is a positive integer, the internal libraries check the value of the variable whenever the
specified number of seconds has passed. If the value has changed, the client is automatically updated
with the new value by the internal libraries (without the need for any further Clarion code). This can incur
significant overhead, depending upon the data, and so should be used only when necessary.

If the mode is DDE:remove, any previous "hot" link to the variable is terminated. If the mode is
DDE:remove and variable is omitted, all previous "hot" links to the item are terminated, no matter what
variables were linked. This means the client must send another DDEREAD request to the server to check
for any changed value.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Events Generated:

 EVENT:DDErequest
A client has requested a data item (a "cold" link).

 EVENT:DDEadvise
A client has requested continuous updates of a data item (a "hot" link).

Example:
DDERetVal STRING(20)

WinOne WINDOW,AT(0,0,160,400)
 ENTRY(@s20),USE(DDERetVal)

 END
MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER(´MyApp´,´DataEntered´) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,´DataEntered´,DDERetVal)

!Provide data once
OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,´DataEntered´,DDERetVal)

!Check for change every 15 seconds
! and provide data whenever changed

END
END

See Also: DDEQUERY, DDEREAD

DDEEXECUTE (send command to DDE server)
DDEEXECUTE(channel, command)

DDEEXECUTE Sends a command string to an open DDE client channel.

channel A LONG integer constant or variable containing the client channel--the value returned by
the DDECLIENT function.

command A string constant or variable containing the application-specific command for the server
to execute.

The DDEEXECUTE procedure allows a DDE client program to communicate a command to the server.
The command must be in a format the server application can recognize and act on. The server does not
need to be a Clarion program. By convention, the entire command string is normally contained within
square brackets ([]).

A Clarion DDE server can use the DDEITEM() function to determine what command the client has
sent.The CYCLE statement after an EVENT:DDEexecute signals positive acknowledgement to the client
that sent the command.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
603 DDEEXECUTE Failed
605 Time Out

Events Generated:

 EVENT:DDEcommand
A client has sent a command.

 EVENT:DDEexecute
A client has sent a command.

Example:
 !The client application´s code contains:
WinOne WINDOW,AT(0,0,160,400)
 END
SomeServer LONG
DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT(´PROGMAN´,´PROGMAN´)

 !Open a channel to Windows Program Manager
DDEEXECUTE(DDEChannel,´[CreateGroup(Clarion Applications)]´)

 !Create a new program group
DDEEXECUTE(DDEChannel,´[ShowGroup(1)]´) !Display it
DDEEXECUTE(DDEChannel,´[AddItem(MYAPP.EXE,My Program,PROGMAN.EXE,2)]´)

!Create new item in the group
 ! using second icon in progman.exe

DDEPOKE (send unsolicited data to DDE server)
DDEPOKE(channel, item, value)

DDEPOKE Sends unsolicited data through an open DDE client channel to a DDE server.

channel A LONG integer constant or variable containing the client channel--the value returned by
the DDECLIENT function.

item A string constant or variable containing the application-specific item to receive the
unsolicited data.

value A string constant or variable containing the data to place in the item.
The DDEPOKE procedure allows a DDE client program to communicate unsolicited data to the server.
The item and value parameters must be in a format the server application can recognize and act on. The
server does not need to be a Clarion program.

A Clarion DDE server can use the DDEITEM() and DDEVALUE() functions to determine what the client
has sent. The CYCLE statement after an EVENT:DDEpoke signals positive acknowledgement to the
client that sent the unsolicited data.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
604 DDEPOKE Failed
605 Time Out

Events Generated:

 EVENT:DDEpoke
A client has sent unsolicited data

Example:
WinOne WINDOW,AT(0,0,160,400)
 END
DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT(´Excel´,´System´) !Open channel to Excel
DDEEXECUTE(DDEChannel,´[NEW(1)]´) !Create a new spreadsheet
DDEEXECUTE(DDEChannel,´[Save.As("DDE_CHART.XLS")]´) !Save it as DDE_CHART.XLS
DDECLOSE(DDEChannel) !Close conversation
DDEChannel = DDECLIENT(´Excel´,´DDE_CHART.XLA´) !Open channel to new chart
DDEPOKE(DDEChannel,´R1C2´,´Widgets´) !Send it data
DDEPOKE(DDEChannel,´R1C3´,´Gadgets´)
DDEPOKE(DDEChannel,´R2C1´,´East´)
DDEPOKE(DDEChannel,´R3C1´,´West´)
DDEPOKE(DDEChannel,´R2C2´,´450´)
DDEPOKE(DDEChannel,´R3C2´,´275´)
DDEPOKE(DDEChannel,´R2C3´,´340´)
DDEPOKE(DDEChannel,´R3C3´,´390´)
DDEEXECUTE(DDEChannel,´[SELECT("R1C1:R3C2")]´) !Highlight the data
DDEEXECUTE(DDEChannel,´[NEW(2,2)]´) ! and create a new chart
 !Send some more commands to format the chart and work with it

DDECLOSE(DDEChannel) !Close channel when done

DDECLOSE (terminate DDE server link)
DDECLOSE(channel)

DDECLOSE Closes an open DDE channel.

channel The label of the LONG integer variable containing the channel number--the value
returned by the DDESERVER or DDECLIENT function.

The DDECLOSE procedure allows a DDE client program to terminate the specified channel. A channel is
automatically terminated when the window which opened the channel is closed.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Example:
WinOne WINDOW,AT(0,0,160,400)
 END
SomeServer LONG
CODE
OPEN(WinOne)
SomeServer = DDECLIENT(´SomeApp´,´MyTopic´) !Open as client
ACCEPT
END
DDECLOSE(SomeServer)

Keycodes
Windows Keycode Mapping Format

KEYCODES.CLW

Clarion Keycodes
Windows Keycode Mapping Format

KEYCODES.CLW

Windows Keycode Mapping Format
Each key on the keyboard is assigned a keycode. Keycodes are 16-bit values where the low-order 8 bits
(values from 0 to 255) represent the key that was pressed, and the high-order 8 bits indicate the state of
the Shift, Ctrl, and Alt keys. Keycodes are returned by the KEYCODE() and KEYBOARD() functions, and
use the following format:

 | A | C | S | CODE |

 Bits: 10 9 8 7 0
CODE - The Key pressed
A - Alt key bit
C - Ctrl key bit
S - Shift key bit

Calculating a keycode´s numeric value is generally unnecessary, since most of the possible key
combinations are listed as EQUATES in KEYCODES.CLW (INCLUDE this file and use the equates
instead of the numbers). The contents of KEYCODES.CLW are listed in Appendix A.

KEYCODES.CLW
Keycode equate labels assign mnemonic labels to Clarion keycodes. The keycode equates file
(KEYCODES.CLW) is a Clarion source file which contains an EQUATE statement for each keycode. This
file is located in the directory in which you installed Clarion Database Developer. It may be merged into a
source PROGRAM with the statement: INCLUDE(´KEYCODES.CLW´).

This file contains EQUATE statements for all the keycodes:
Key0 EQUATE(0030H) !0 Key
Key1 EQUATE(0031H) !1 Key
Key2 EQUATE(0032H) !2 Key
Key3 EQUATE(0033H) !3 Key
Key4 EQUATE(0034H) !4 Key
Key5 EQUATE(0035H) !5 Key
Key6 EQUATE(0036H) !6 Key
Key7 EQUATE(0037H) !7 Key
Key8 EQUATE(0038H) !8 Key
Key9 EQUATE(0039H) !9 Key
AKey EQUATE(0041H) !A Key
BKey EQUATE(0042H) !B Key
CKey EQUATE(0043H) !C Key
DKey EQUATE(0044H) !D Key
EKey EQUATE(0045H) !E Key
FKey EQUATE(0046H) !F Key
GKey EQUATE(0047H) !G Key
HKey EQUATE(0048H) !H Key
IKey EQUATE(0049H) !I Key
JKey EQUATE(004AH) !J Key
KKey EQUATE(004BH) !K Key
LKey EQUATE(004CH) !L Key
MKey EQUATE(004DH) !M Key
NKey EQUATE(004EH) !N Key
OKey EQUATE(004FH) !O Key
PKey EQUATE(0050H) !P Key
QKey EQUATE(0051H) !Q Key
RKey EQUATE(0052H) !R Key
SKey EQUATE(0053H) !S Key
TKey EQUATE(0054H) !T Key
UKey EQUATE(0055H) !U Key
VKey EQUATE(0056H) !V Key
WKey EQUATE(0057H) !W Key
XKey EQUATE(0058H) !X Key
YKey EQUATE(0059H) !Y Key
ZKey EQUATE(005AH) !Z Key
F1Key EQUATE(0070H) !F1 Key
F2Key EQUATE(0071H) !F2 Key
F3Key EQUATE(0072H) !F3 Key
F4Key EQUATE(0073H) !F4 Key
F5Key EQUATE(0074H) !F5 Key
F6Key EQUATE(0075H) !F6 Key
F7Key EQUATE(0076H) !F7 Key
F8Key EQUATE(0077H) !F8 Key
F9Key EQUATE(0078H) !F9 Key
F10Key EQUATE(0079H) !F10 Key
F11Key EQUATE(007AH) !F11 Key
F12Key EQUATE(007BH) !F12 Key
AstKey EQUATE(006AH) !Asterisk Key
BSKey EQUATE(0008H) !Backspace Key

CapsLockKey EQUATE(0014H) !CapsLock Key
DecimalKey EQUATE(006EH) !Decimal Key
DeleteKey EQUATE(002EH) !Delete Key
DivideKey EQUATE(006FH) !Divide Key
DownKey EQUATE(0028H) !Cursor Down Key
EndKey EQUATE(0023H) !End Key
EnterKey EQUATE(000DH) !Enter Key
EscKey EQUATE(001BH) !Esc Key
HomeKey EQUATE(0024H) !Home Key
InsertKey EQUATE(002DH) !Insert Key
LeftKey EQUATE(0025H) !Cursor Left Key
MinusKey EQUATE(006DH) !Minus Key
PauseKey EQUATE(0013H) !Pause Key
PgDnKey EQUATE(0022H) !PgDn Key
PgUpKey EQUATE(0021H) !PgUp Key
PlusKey EQUATE(006BH) !Plus Key
PrintKey EQUATE(002CH) !PrintScreen Key
RightKey EQUATE(0027H) !Cursor Right Key
SlashKey EQUATE(006FH) !Slash Key
SpaceKey EQUATE(0020H) !Spacebar
TabKey EQUATE(0009H) !Tab Key
UpKey EQUATE(0026H) !Cursor Up Key
KeyPad0 EQUATE(0060H) !0 on numeric keypad
KeyPad1 EQUATE(0061H) !1 on numeric keypad
KeyPad2 EQUATE(0062H) !2 on numeric keypad
KeyPad3 EQUATE(0063H) !3 on numeric keypad
KeyPad4 EQUATE(0064H) !4 on numeric keypad
KeyPad5 EQUATE(0065H) !5 on numeric keypad
KeyPad6 EQUATE(0066H) !6 on numeric keypad
KeyPad7 EQUATE(0067H) !7 on numeric keypad
KeyPad8 EQUATE(0068H) !8 on numeric keypad
KeyPad9 EQUATE(0069H) !9 on numeric keypad
MouseLeft EQUATE(0001H) !Left mouse button
MouseRight EQUATE(0002H) !Right mouse button
MouseCenter EQUATE(0004H) !Middle mouse button
Alt0 EQUATE(0430H) !Alt-0 Key
Alt1 EQUATE(0431H) !Alt-1 Key
Alt2 EQUATE(0432H) !Alt-2 Key
Alt3 EQUATE(0433H) !Alt-3 Key
Alt4 EQUATE(0434H) !Alt-4 Key
Alt5 EQUATE(0435H) !Alt-5 Key
Alt6 EQUATE(0436H) !Alt-6 Key
Alt7 EQUATE(0437H) !Alt-7 Key
Alt8 EQUATE(0438H) !Alt-8 Key
Alt9 EQUATE(0439H) !Alt-9 Key
AltA EQUATE(0441H) !Alt-A Key
AltB EQUATE(0442H) !Alt-B Key
AltC EQUATE(0443H) !Alt-C Key
AltD EQUATE(0444H) !Alt-D Key
AltE EQUATE(0445H) !Alt-E Key
AltF EQUATE(0446H) !Alt-F Key
AltG EQUATE(0447H) !Alt-G Key
AltH EQUATE(0448H) !Alt-H Key
AltI EQUATE(0449H) !Alt-I Key
AltJ EQUATE(044AH) !Alt-J Key
AltK EQUATE(044BH) !Alt-K Key
AltL EQUATE(044CH) !Alt-L Key
AltM EQUATE(044DH) !Alt-M Key
AltN EQUATE(044EH) !Alt-N Key
AltO EQUATE(044FH) !Alt-O Key

AltP EQUATE(0450H) !Alt-P Key
AltQ EQUATE(0451H) !Alt-Q Key
AltR EQUATE(0452H) !Alt-R Key
AltS EQUATE(0453H) !Alt-S Key
AltT EQUATE(0454H) !Alt-T Key
AltU EQUATE(0455H) !Alt-U Key
AltV EQUATE(0456H) !Alt-V Key
AltW EQUATE(0457H) !Alt-W Key
AltX EQUATE(0458H) !Alt-X Key
AltY EQUATE(0459H) !Alt-Y Key
AltZ EQUATE(045AH) !Alt-Z Key
AltF1 EQUATE(0470H) !Alt-F1 Key
AltF2 EQUATE(0471H) !Alt-F2 Key
AltF3 EQUATE(0472H) !Alt-F3 Key
AltF4 EQUATE(0473H) !Alt-F4 Key
AltF5 EQUATE(0474H) !Alt-F5 Key
AltF6 EQUATE(0475H) !Alt-F6 Key
AltF7 EQUATE(0476H) !Alt-F7 Key
AltF8 EQUATE(0477H) !Alt-F8 Key
AltF9 EQUATE(0478H) !Alt-F9 Key
AltF10 EQUATE(0479H) !Alt-F10 Key
AltF11 EQUATE(047AH) !Alt-F11 Key
AltF12 EQUATE(047BH) !Alt-F12 Key
AltAst EQUATE(046AH) !Alt-Asterisk Key
AltBS EQUATE(0408H) !Alt-Backspace Key
AltDecimal EQUATE(046EH) !Alt-Decimal Key
AltDelete EQUATE(042EH) !Alt-Delete Key
AltDivide EQUATE(046FH) !Alt-Divide Key
AltDown EQUATE(0428H) !Alt-Cursor Down Key
AltEnd EQUATE(0423H) !Alt-End Key
AltEnter EQUATE(040DH) !Alt-Enter Key
AltEsc EQUATE(041BH) !Alt-Esc Key
AltHome EQUATE(0424H) !Alt-Home Key
AltInsert EQUATE(042DH) !Alt-Insert Key
AltLeft EQUATE(0425H) !Alt-Cursor Left Key
AltMinus EQUATE(046DH) !Alt-Minus Key
AltPause EQUATE(0413H) !Alt-Pause Key
AltPgDn EQUATE(0422H) !Alt-PgDn Key
AltPgUp EQUATE(0421H) !Alt-PgUp Key
AltPlus EQUATE(046BH) !Alt-Plus Key
AltPrint EQUATE(042CH) !Alt-PrintScreen Key
AltRight EQUATE(0427H) !Alt-Cursor Right Key
AltSlash EQUATE(046FH) !Alt-Slash Key
AltSpace EQUATE(0420H) !Alt-Spacebar
AltTab EQUATE(0409H) !Alt-Tab Key
AltUp EQUATE(0426H) !Alt-Cursor Up Key
AltPad0 EQUATE(0460H) !Alt-0 on numeric keypad
AltPad1 EQUATE(0461H) !Alt-1 on numeric keypad
AltPad2 EQUATE(0462H) !Alt-2 on numeric keypad
AltPad3 EQUATE(0463H) !Alt-3 on numeric keypad
AltPad4 EQUATE(0464H) !Alt-4 on numeric keypad
AltPad5 EQUATE(0465H) !Alt-5 on numeric keypad
AltPad6 EQUATE(0466H) !Alt-6 on numeric keypad
AltPad7 EQUATE(0467H) !Alt-7 on numeric keypad
AltPad8 EQUATE(0468H) !Alt-8 on numeric keypad
AltPad9 EQUATE(0469H) !Alt-9 on numeric keypad
AltMouseLeft EQUATE(0401H) !Alt-Left mouse button
AltMouseRight EQUATE(0402H) !Alt-Right mouse button
AltMouseCenter EQUATE(0404H) !Alt-Middle mouse button
Ctrl0 EQUATE(0230H) !Ctrl-0 Key

Ctrl1 EQUATE(0231H) !Ctrl-1 Key
Ctrl2 EQUATE(0232H) !Ctrl-2 Key
Ctrl3 EQUATE(0233H) !Ctrl-3 Key
Ctrl4 EQUATE(0234H) !Ctrl-4 Key
Ctrl5 EQUATE(0235H) !Ctrl-5 Key
Ctrl6 EQUATE(0236H) !Ctrl-6 Key
Ctrl7 EQUATE(0237H) !Ctrl-7 Key
Ctrl8 EQUATE(0238H) !Ctrl-8 Key
Ctrl9 EQUATE(0239H) !Ctrl-9 Key
CtrlA EQUATE(0241H) !Ctrl-A Key
CtrlB EQUATE(0242H) !Ctrl-B Key
CtrlC EQUATE(0243H) !Ctrl-C Key
CtrlD EQUATE(0244H) !Ctrl-D Key
CtrlE EQUATE(0245H) !Ctrl-E Key
CtrlF EQUATE(0246H) !Ctrl-F Key
CtrlG EQUATE(0247H) !Ctrl-G Key
CtrlH EQUATE(0248H) !Ctrl-H Key
CtrlI EQUATE(0249H) !Ctrl-I Key
CtrlJ EQUATE(024AH) !Ctrl-J Key
CtrlK EQUATE(024BH) !Ctrl-K Key
CtrlL EQUATE(024CH) !Ctrl-L Key
CtrlM EQUATE(024DH) !Ctrl-M Key
CtrlN EQUATE(024EH) !Ctrl-N Key
CtrlO EQUATE(024FH) !Ctrl-O Key
CtrlP EQUATE(0250H) !Ctrl-P Key
CtrlQ EQUATE(0251H) !Ctrl-Q Key
CtrlR EQUATE(0252H) !Ctrl-R Key
CtrlS EQUATE(0253H) !Ctrl-S Key
CtrlT EQUATE(0254H) !Ctrl-T Key
CtrlU EQUATE(0255H) !Ctrl-U Key
CtrlV EQUATE(0256H) !Ctrl-V Key
CtrlW EQUATE(0257H) !Ctrl-W Key
CtrlX EQUATE(0258H) !Ctrl-X Key
CtrlY EQUATE(0259H) !Ctrl-Y Key
CtrlZ EQUATE(025AH) !Ctrl-Z Key
CtrlF1 EQUATE(0270H) !Ctrl-F1 Key
CtrlF2 EQUATE(0271H) !Ctrl-F2 Key
CtrlF3 EQUATE(0272H) !Ctrl-F3 Key
CtrlF4 EQUATE(0273H) !Ctrl-F4 Key
CtrlF5 EQUATE(0274H) !Ctrl-F5 Key
CtrlF6 EQUATE(0275H) !Ctrl-F6 Key
CtrlF7 EQUATE(0276H) !Ctrl-F7 Key
CtrlF8 EQUATE(0277H) !Ctrl-F8 Key
CtrlF9 EQUATE(0278H) !Ctrl-F9 Key
CtrlF10 EQUATE(0279H) !Ctrl-F10 Key
CtrlF11 EQUATE(027AH) !Ctrl-F11 Key
CtrlF12 EQUATE(027BH) !Ctrl-F12 Key
CtrlAst EQUATE(026AH) !Ctrl-Asterisk Key
CtrlBS EQUATE(0208H) !Ctrl-Backspace Key
CtrlDecimal EQUATE(026EH) !Ctrl-Decimal Key
CtrlDelete EQUATE(022EH) !Ctrl-Delete Key
CtrlDivide EQUATE(026FH) !Ctrl-Divide Key
CtrlDown EQUATE(0228H) !Ctrl-Cursor Down Key
CtrlEnd EQUATE(0223H) !Ctrl-End Key
CtrlEnter EQUATE(020DH) !Ctrl-Enter Key
CtrlEsc EQUATE(021BH) !Ctrl-Esc Key
CtrlHome EQUATE(0224H) !Ctrl-Home Key
CtrlInsert EQUATE(022DH) !Ctrl-Insert Key
CtrlLeft EQUATE(0225H) !Ctrl-Cursor Left Key
CtrlMinus EQUATE(026DH) !Ctrl-Minus Key

CtrlPause EQUATE(0213H) !Ctrl-Pause Key
CtrlPgDn EQUATE(0222H) !Ctrl-PgDn Key
CtrlPgUp EQUATE(0221H) !Ctrl-PgUp Key
CtrlPlus EQUATE(026BH) !Ctrl-Plus Key
CtrlPrint EQUATE(022CH) !Ctrl-PrintScreen Key
CtrlRight EQUATE(0227H) !Ctrl-Cursor Right Key
CtrlSlash EQUATE(026FH) !Ctrl-Slash Key
CtrlSpace EQUATE(0220H) !Ctrl-Spacebar
CtrlTab EQUATE(0209H) !Ctrl-Tab Key
CtrlUp EQUATE(0226H) !Ctrl-Cursor Up Key
CtrlPad0 EQUATE(0260H) !Ctrl-0 on numeric keypad
CtrlPad1 EQUATE(0261H) !Ctrl-1 on numeric keypad
CtrlPad2 EQUATE(0262H) !Ctrl-2 on numeric keypad
CtrlPad3 EQUATE(0263H) !Ctrl-3 on numeric keypad
CtrlPad4 EQUATE(0264H) !Ctrl-4 on numeric keypad
CtrlPad5 EQUATE(0265H) !Ctrl-5 on numeric keypad
CtrlPad6 EQUATE(0266H) !Ctrl-6 on numeric keypad
CtrlPad7 EQUATE(0267H) !Ctrl-7 on numeric keypad
CtrlPad8 EQUATE(0268H) !Ctrl-8 on numeric keypad
CtrlPad9 EQUATE(0269H) !Ctrl-9 on numeric keypad
CtrlMouseLeft EQUATE(0201H) !Ctrl-Left mouse button
CtrlMouseRight EQUATE(0202H) !Ctrl-Right mouse button
CtrlMouseCenter EQUATE(0204H) !Ctrl-Middle mouse button
Shift0 EQUATE(0130H) !Shift-0 Key
Shift1 EQUATE(0131H) !Shift-1 Key
Shift2 EQUATE(0132H) !Shift-2 Key
Shift3 EQUATE(0133H) !Shift-3 Key
Shift4 EQUATE(0134H) !Shift-4 Key
Shift5 EQUATE(0135H) !Shift-5 Key
Shift6 EQUATE(0136H) !Shift-6 Key
Shift7 EQUATE(0137H) !Shift-7 Key
Shift8 EQUATE(0138H) !Shift-8 Key
Shift9 EQUATE(0139H) !Shift-9 Key
ShiftA EQUATE(0141H) !Shift-A Key
ShiftB EQUATE(0142H) !Shift-B Key
ShiftC EQUATE(0143H) !Shift-C Key
ShiftD EQUATE(0144H) !Shift-D Key
ShiftE EQUATE(0145H) !Shift-E Key
ShiftF EQUATE(0146H) !Shift-F Key
ShiftG EQUATE(0147H) !Shift-G Key
ShiftH EQUATE(0148H) !Shift-H Key
ShiftI EQUATE(0149H) !Shift-I Key
ShiftJ EQUATE(014AH) !Shift-J Key
ShiftK EQUATE(014BH) !Shift-K Key
ShiftL EQUATE(014CH) !Shift-L Key
ShiftM EQUATE(014DH) !Shift-M Key
ShiftN EQUATE(014EH) !Shift-N Key
ShiftO EQUATE(014FH) !Shift-O Key
ShiftP EQUATE(0150H) !Shift-P Key
ShiftQ EQUATE(0151H) !Shift-Q Key
ShiftR EQUATE(0152H) !Shift-R Key
ShiftS EQUATE(0153H) !Shift-S Key
ShiftT EQUATE(0154H) !Shift-T Key
ShiftU EQUATE(0155H) !Shift-U Key
ShiftV EQUATE(0156H) !Shift-V Key
ShiftW EQUATE(0157H) !Shift-W Key
ShiftX EQUATE(0158H) !Shift-X Key
ShiftY EQUATE(0159H) !Shift-Y Key
ShiftZ EQUATE(015AH) !Shift-Z Key
ShiftF1 EQUATE(0170H) !Shift-F1 Key

ShiftF2 EQUATE(0171H) !Shift-F2 Key
ShiftF3 EQUATE(0172H) !Shift-F3 Key
ShiftF4 EQUATE(0173H) !Shift-F4 Key
ShiftF5 EQUATE(0174H) !Shift-F5 Key
ShiftF6 EQUATE(0175H) !Shift-F6 Key
ShiftF7 EQUATE(0176H) !Shift-F7 Key
ShiftF8 EQUATE(0177H) !Shift-F8 Key
ShiftF9 EQUATE(0178H) !Shift-F9 Key
ShiftF10 EQUATE(0179H) !Shift-F10 Key
ShiftF11 EQUATE(017AH) !Shift-F11 Key
ShiftF12 EQUATE(017BH) !Shift-F12 Key
ShiftAst EQUATE(016AH) !Shift-Asterisk Key
ShiftBS EQUATE(0108H) !Shift-Backspace Key
ShiftDecimal EQUATE(016EH) !Shift-Decimal Key
ShiftDelete EQUATE(012EH) !Shift-Delete Key
ShiftDivide EQUATE(016FH) !Shift-Divide Key
ShiftDown EQUATE(0128H) !Shift-Cursor Down Key
ShiftEnd EQUATE(0123H) !Shift-End Key
ShiftEnter EQUATE(010DH) !Shift-Enter Key
ShiftEsc EQUATE(011BH) !Shift-Esc Key
ShiftHome EQUATE(0124H) !Shift-Home Key
ShiftInsert EQUATE(012DH) !Shift-Insert Key
ShiftLeft EQUATE(0125H) !Shift-Cursor Left Key
ShiftMinus EQUATE(016DH) !Shift-Minus Key
ShiftPause EQUATE(0113H) !Shift-Pause Key
ShiftPgDn EQUATE(0122H) !Shift-PgDn Key
ShiftPgUp EQUATE(0121H) !Shift-PgUp Key
ShiftPlus EQUATE(016BH) !Shift-Plus Key
ShiftPrint EQUATE(012CH) !Shift-PrintScreen Key
ShiftRight EQUATE(0127H) !Shift-Cursor Right Key
ShiftSlash EQUATE(016FH) !Shift-Slash Key
ShiftSpace EQUATE(0120H) !Shift-Spacebar
ShiftTab EQUATE(0109H) !Shift-Tab Key
ShiftUp EQUATE(0126H) !Shift-Cursor Up Key
ShiftPad0 EQUATE(0160H) !Shift-0 on numeric keypad
ShiftPad1 EQUATE(0161H) !Shift-1 on numeric keypad
ShiftPad2 EQUATE(0162H) !Shift-2 on numeric keypad
ShiftPad3 EQUATE(0163H) !Shift-3 on numeric keypad
ShiftPad4 EQUATE(0164H) !Shift-4 on numeric keypad
ShiftPad5 EQUATE(0165H) !Shift-5 on numeric keypad
ShiftPad6 EQUATE(0166H) !Shift-6 on numeric keypad
ShiftPad7 EQUATE(0167H) !Shift-7 on numeric keypad
ShiftPad8 EQUATE(0168H) !Shift-8 on numeric keypad
ShiftPad9 EQUATE(0169H) !Shift-9 on numeric keypad
ShiftMouseLeft EQUATE(0101H) !Shift-Left mouse button
ShiftMouseRight EQUATE(0102H) !Shift-Right mouse button
ShiftMouseCenter EQUATE(0104H) !Shift-Middle mouse button
AltShift0 EQUATE(0530H) !Alt-Shift-0 Key
AltShift1 EQUATE(0531H) !Alt-Shift-1 Key
AltShift2 EQUATE(0532H) !Alt-Shift-2 Key
AltShift3 EQUATE(0533H) !Alt-Shift-3 Key
AltShift4 EQUATE(0534H) !Alt-Shift-4 Key
AltShift5 EQUATE(0535H) !Alt-Shift-5 Key
AltShift6 EQUATE(0536H) !Alt-Shift-6 Key
AltShift7 EQUATE(0537H) !Alt-Shift-7 Key
AltShift8 EQUATE(0538H) !Alt-Shift-8 Key
AltShift9 EQUATE(0539H) !Alt-Shift-9 Key
AltShiftA EQUATE(0541H) !Alt-Shift-A Key
AltShiftB EQUATE(0542H) !Alt-Shift-B Key
AltShiftC EQUATE(0543H) !Alt-Shift-C Key

AltShiftD EQUATE(0544H) !Alt-Shift-D Key
AltShiftE EQUATE(0545H) !Alt-Shift-E Key
AltShiftF EQUATE(0546H) !Alt-Shift-F Key
AltShiftG EQUATE(0547H) !Alt-Shift-G Key
AltShiftH EQUATE(0548H) !Alt-Shift-H Key
AltShiftI EQUATE(0549H) !Alt-Shift-I Key
AltShiftJ EQUATE(054AH) !Alt-Shift-J Key
AltShiftK EQUATE(054BH) !Alt-Shift-K Key
AltShiftL EQUATE(054CH) !Alt-Shift-L Key
AltShiftM EQUATE(054DH) !Alt-Shift-M Key
AltShiftN EQUATE(054EH) !Alt-Shift-N Key
AltShiftO EQUATE(054FH) !Alt-Shift-O Key
AltShiftP EQUATE(0550H) !Alt-Shift-P Key
AltShiftQ EQUATE(0551H) !Alt-Shift-Q Key
AltShiftR EQUATE(0552H) !Alt-Shift-R Key
AltShiftS EQUATE(0553H) !Alt-Shift-S Key
AltShiftT EQUATE(0554H) !Alt-Shift-T Key
AltShiftU EQUATE(0555H) !Alt-Shift-U Key
AltShiftV EQUATE(0556H) !Alt-Shift-V Key
AltShiftW EQUATE(0557H) !Alt-Shift-W Key
AltShiftX EQUATE(0558H) !Alt-Shift-X Key
AltShiftY EQUATE(0559H) !Alt-Shift-Y Key
AltShiftZ EQUATE(055AH) !Alt-Shift-Z Key
AltShiftF1 EQUATE(0570H) !Alt-Shift-F1 Key
AltShiftF2 EQUATE(0571H) !Alt-Shift-F2 Key
AltShiftF3 EQUATE(0572H) !Alt-Shift-F3 Key
AltShiftF4 EQUATE(0573H) !Alt-Shift-F4 Key
AltShiftF5 EQUATE(0574H) !Alt-Shift-F5 Key
AltShiftF6 EQUATE(0575H) !Alt-Shift-F6 Key
AltShiftF7 EQUATE(0576H) !Alt-Shift-F7 Key
AltShiftF8 EQUATE(0577H) !Alt-Shift-F8 Key
AltShiftF9 EQUATE(0578H) !Alt-Shift-F9 Key
AltShiftF10 EQUATE(0579H) !Alt-Shift-F10 Key
AltShiftF11 EQUATE(057AH) !Alt-Shift-F11 Key
AltShiftF12 EQUATE(057BH) !Alt-Shift-F12 Key
AltShiftAst EQUATE(056AH) !Alt-Shift-Asterisk Key
AltShiftBS EQUATE(0508H) !Alt-Shift-Backspace
AltShiftDecimal EQUATE(056EH) !Alt-Shift-Decimal Key
AltShiftDelete EQUATE(052EH) !Alt-Shift-Delete Key
AltShiftDivide EQUATE(056FH) !Alt-Shift-Divide Key
AltShiftDown EQUATE(0528H) !Alt-Shift-Cursor Down
AltShiftEnd EQUATE(0523H) !Alt-Shift-End Key
AltShiftEnter EQUATE(050DH) !Alt-Shift-Enter Key
AltShiftEsc EQUATE(051BH) !Alt-Shift-Esc Key
AltShiftHome EQUATE(0524H) !Alt-Shift-Home Key
AltShiftInsert EQUATE(052DH) !Alt-Shift-Insert Key
AltShiftLeft EQUATE(0525H) !Alt-Shift-Cursor Left Key
AltShiftMinus EQUATE(056DH) !Alt-Shift-Minus Key
AltShiftPause EQUATE(0513H) !Alt-Shift-Pause Key
AltShiftPgDn EQUATE(0522H) !Alt-Shift-PgDn Key
AltShiftPgUp EQUATE(0521H) !Alt-Shift-PgUp Key
AltShiftPlus EQUATE(056BH) !Alt-Shift-Plus Key
AltShiftPrint EQUATE(052CH) !Alt-Shift-PrintScreen
AltShiftRight EQUATE(0527H) !Alt-Shift-Cursor Right
AltShiftSlash EQUATE(056FH) !Alt-Shift-Slash Key
AltShiftSpace EQUATE(0520H) !Alt-Shift-Spacebar
AltShiftTab EQUATE(0509H) !Alt-Shift-Tab Key
AltShiftUp EQUATE(0526H) !Alt-Shift-Cursor Up
AltShiftPad0 EQUATE(0560H) !Alt-Shift-0 on numeric keypad
AltShiftPad1 EQUATE(0561H) !Alt-Shift-1 on numeric keypad

AltShiftPad2 EQUATE(0562H) Alt-Shift-2 on numeric keypad
AltShiftPad3 EQUATE(0563H) !Alt-Shift-3 on numeric keypad
AltShiftPad4 EQUATE(0564H) !Alt-Shift-4 on numeric keypad
AltShiftPad5 EQUATE(0565H) !Alt-Shift-5 on numeric keypad
AltShiftPad6 EQUATE(0566H) !Alt-Shift-6 on numeric keypad
AltShiftPad7 EQUATE(0567H) !Alt-Shift-7 on numeric keypad
AltShiftPad8 EQUATE(0568H) !Alt-Shift-8 on numeric keypad
AltShiftPad9 EQUATE(0569H) !Alt-Shift-9 on numeric keypad
AltShiftMouseLeft EQUATE(0501H) !Alt-Shift-Left mouse button
AltShiftMouseRight EQUATE(0502H) !Alt-Shift-Right mouse button
AltShiftMouseCenter EQUATE(0504H) !Alt-Shift-Middle mouse button
CtrlShift0 EQUATE(0330H) !Ctrl-Shift-0 Key
CtrlShift1 EQUATE(0331H) !Ctrl-Shift-1 Key
CtrlShift2 EQUATE(0332H) !Ctrl-Shift-2 Key
CtrlShift3 EQUATE(0333H) !Ctrl-Shift-3 Key
CtrlShift4 EQUATE(0334H) !Ctrl-Shift-4 Key
CtrlShift5 EQUATE(0335H) !Ctrl-Shift-5 Key
CtrlShift6 EQUATE(0336H) !Ctrl-Shift-6 Key
CtrlShift7 EQUATE(0337H) !Ctrl-Shift-7 Key
CtrlShift8 EQUATE(0338H) !Ctrl-Shift-8 Key
CtrlShift9 EQUATE(0339H) !Ctrl-Shift-9 Key
CtrlShiftA EQUATE(0341H) !Ctrl-Shift-A Key
CtrlShiftB EQUATE(0342H) !Ctrl-Shift-B Key
CtrlShiftC EQUATE(0343H) !Ctrl-Shift-C Key
CtrlShiftD EQUATE(0344H) !Ctrl-Shift-D Key
CtrlShiftE EQUATE(0345H) !Ctrl-Shift-E Key
CtrlShiftF EQUATE(0346H) !Ctrl-Shift-F Key
CtrlShiftG EQUATE(0347H) !Ctrl-Shift-G Key
CtrlShiftH EQUATE(0348H) !Ctrl-Shift-H Key
CtrlShiftI EQUATE(0349H) !Ctrl-Shift-I Key
CtrlShiftJ EQUATE(034AH) !Ctrl-Shift-J Key
CtrlShiftK EQUATE(034BH) !Ctrl-Shift-K Key
CtrlShiftL EQUATE(034CH) !Ctrl-Shift-L Key
CtrlShiftM EQUATE(034DH) !Ctrl-Shift-M Key
CtrlShiftN EQUATE(034EH) !Ctrl-Shift-N Key
CtrlShiftO EQUATE(034FH) !Ctrl-Shift-O Key
CtrlShiftP EQUATE(0350H) !Ctrl-Shift-P Key
CtrlShiftQ EQUATE(0351H) !Ctrl-Shift-Q Key
CtrlShiftR EQUATE(0352H) !Ctrl-Shift-R Key
CtrlShiftS EQUATE(0353H) !Ctrl-Shift-S Key
CtrlShiftT EQUATE(0354H) !Ctrl-Shift-T Key
CtrlShiftU EQUATE(0355H) !Ctrl-Shift-U Key
CtrlShiftV EQUATE(0356H) !Ctrl-Shift-V Key
CtrlShiftW EQUATE(0357H) !Ctrl-Shift-W Key
CtrlShiftX EQUATE(0358H) !Ctrl-Shift-X Key
CtrlShiftY EQUATE(0359H) !Ctrl-Shift-Y Key
CtrlShiftZ EQUATE(035AH) !Ctrl-Shift-Z Key
CtrlShiftF1 EQUATE(0370H) !Ctrl-Shift-F1 Key
CtrlShiftF2 EQUATE(0371H) !Ctrl-Shift-F2 Key
CtrlShiftF3 EQUATE(0372H) !Ctrl-Shift-F3 Key
CtrlShiftF4 EQUATE(0373H) !Ctrl-Shift-F4 Key
CtrlShiftF5 EQUATE(0374H) !Ctrl-Shift-F5 Key
CtrlShiftF6 EQUATE(0375H) !Ctrl-Shift-F6 Key
CtrlShiftF7 EQUATE(0376H) !Ctrl-Shift-F7 Key
CtrlShiftF8 EQUATE(0377H) !Ctrl-Shift-F8 Key
CtrlShiftF9 EQUATE(0378H) !Ctrl-Shift-F9 Key
CtrlShiftF10 EQUATE(0379H) !Ctrl-Shift-F10 Key
CtrlShiftF11 EQUATE(037AH) !Ctrl-Shift-F11 Key
CtrlShiftF12 EQUATE(037BH) !Ctrl-Shift-F12 Key
CtrlShiftAst EQUATE(036AH) !Ctrl-Shift-Asterisk

CtrlShiftBS EQUATE(0308H) !Ctrl-Shift-Backspace
CtrlShiftDecimal EQUATE(036EH) !Ctrl-Shift-Decimal
CtrlShiftDelete EQUATE(032EH) !Ctrl-Shift-Delete
CtrlShiftDivide EQUATE(036FH) !Ctrl-Shift-Divide Key
CtrlShiftDown EQUATE(0328H) !Ctrl-Shift-Cursor Down
CtrlShiftEnd EQUATE(0323H) !Ctrl-Shift-End Key
CtrlShiftEnter EQUATE(030DH) !Ctrl-Shift-Enter Key
CtrlShiftEsc EQUATE(031BH) !Ctrl-Shift-Esc Key
CtrlShiftHome EQUATE(0324H) !Ctrl-Shift-Home Key
CtrlShiftInsert EQUATE(032DH) !Ctrl-Shift-Insert Key
CtrlShiftLeft EQUATE(0325H) !Ctrl-Shift-Cursor Left
CtrlShiftMinus EQUATE(036DH) !Ctrl-Shift-Minus Key
CtrlShiftPause EQUATE(0313H) !Ctrl-Shift-Pause Key
CtrlShiftPgDn EQUATE(0322H) !Ctrl-Shift-PgDn Key
CtrlShiftPgUp EQUATE(0321H) !Ctrl-Shift-PgUp Key
CtrlShiftPlus EQUATE(036BH) !Ctrl-Shift-Plus Key
CtrlShiftPrint EQUATE(032CH) !Ctrl-Shift-PrintScreen
CtrlShiftRight EQUATE(0327H) !Ctrl-Shift-Cursor Right
CtrlShiftSlash EQUATE(036FH) !Ctrl-Shift-Slash Key
CtrlShiftSpace EQUATE(0320H) !Ctrl-Shift-Spacebar
CtrlShiftTab EQUATE(0309H) !Ctrl-Shift-Tab Key
CtrlShiftUp EQUATE(0326H) !Ctrl-Shift-Cursor Up
CtrlShiftPad0 EQUATE(0360H) !Ctrl-Shift-0 on numeric keypad
CtrlShiftPad1 EQUATE(0361H) !Ctrl-Shift-1 on numeric keypad
CtrlShiftPad2 EQUATE(0362H) !Ctrl-Shift-2 on numeric keypad
CtrlShiftPad3 EQUATE(0363H) !Ctrl-Shift-3 on numeric keypad
CtrlShiftPad4 EQUATE(0364H) !Ctrl-Shift-4 on numeric keypad
CtrlShiftPad5 EQUATE(0365H) !Ctrl-Shift-5 on numeric keypad
CtrlShiftPad6 EQUATE(0366H) !Ctrl-Shift-6 on numeric keypad
CtrlShiftPad7 EQUATE(0367H) !Ctrl-Shift-7 on numeric keypad
CtrlShiftPad8 EQUATE(0368H) !Ctrl-Shift-8 on numeric keypad
CtrlShiftPad9 EQUATE(0369H) !Ctrl-Shift-9 on numeric keypad
CtrlShiftMouseLeft EQUATE(0301H) !Ctrl-Shift-Left mouse button
CtrlShiftMouseRight EQUATE(0302H) !Ctrl-Shift-Right mouse button
CtrlShiftMouseCenter EQUATE(0304H) !Ctrl-Shift-Middle mouse button
CtrlAlt0 EQUATE(0630H) !Ctrl-Alt-0 Key
CtrlAlt1 EQUATE(0631H) !Ctrl-Alt-1 Key
CtrlAlt2 EQUATE(0632H) !Ctrl-Alt-2 Key
CtrlAlt3 EQUATE(0633H) !Ctrl-Alt-3 Key
CtrlAlt4 EQUATE(0634H) !Ctrl-Alt-4 Key
CtrlAlt5 EQUATE(0635H) !Ctrl-Alt-5 Key
CtrlAlt6 EQUATE(0636H) !Ctrl-Alt-6 Key
CtrlAlt7 EQUATE(0637H) !Ctrl-Alt-7 Key
CtrlAlt8 EQUATE(0638H) !Ctrl-Alt-8 Key
CtrlAlt9 EQUATE(0639H) !Ctrl-Alt-9 Key
CtrlAltA EQUATE(0641H) !Ctrl-Alt-A Key
CtrlAltB EQUATE(0642H) !Ctrl-Alt-B Key
CtrlAltC EQUATE(0643H) !Ctrl-Alt-C Key
CtrlAltD EQUATE(0644H) !Ctrl-Alt-D Key
CtrlAltE EQUATE(0645H) !Ctrl-Alt-E Key
CtrlAltF EQUATE(0646H) !Ctrl-Alt-F Key
CtrlAltG EQUATE(0647H) !Ctrl-Alt-G Key
CtrlAltH EQUATE(0648H) !Ctrl-Alt-H Key
CtrlAltI EQUATE(0649H) !Ctrl-Alt-I Key
CtrlAltJ EQUATE(064AH) !Ctrl-Alt-J Key
CtrlAltK EQUATE(064BH) !Ctrl-Alt-K Key
CtrlAltL EQUATE(064CH) !Ctrl-Alt-L Key
CtrlAltM EQUATE(064DH) !Ctrl-Alt-M Key
CtrlAltN EQUATE(064EH) !Ctrl-Alt-N Key
CtrlAltO EQUATE(064FH) !Ctrl-Alt-O Key

CtrlAltP EQUATE(0650H) !Ctrl-Alt-P Key
CtrlAltQ EQUATE(0651H) !Ctrl-Alt-Q Key
CtrlAltR EQUATE(0652H) !Ctrl-Alt-R Key
CtrlAltS EQUATE(0653H) !Ctrl-Alt-S Key
CtrlAltT EQUATE(0654H) !Ctrl-Alt-T Key
CtrlAltU EQUATE(0655H) !Ctrl-Alt-U Key
CtrlAltV EQUATE(0656H) !Ctrl-Alt-V Key
CtrlAltW EQUATE(0657H) !Ctrl-Alt-W Key
CtrlAltX EQUATE(0658H) !Ctrl-Alt-X Key
CtrlAltY EQUATE(0659H) !Ctrl-Alt-Y Key
CtrlAltZ EQUATE(065AH) !Ctrl-Alt-Z Key
CtrlAltF1 EQUATE(0670H) !Ctrl-Alt-F1 Key
CtrlAltF2 EQUATE(0671H) !Ctrl-Alt-F2 Key
CtrlAltF3 EQUATE(0672H) !Ctrl-Alt-F3 Key
CtrlAltF4 EQUATE(0673H) !Ctrl-Alt-F4 Key
CtrlAltF5 EQUATE(0674H) !Ctrl-Alt-F5 Key
CtrlAltF6 EQUATE(0675H) !Ctrl-Alt-F6 Key
CtrlAltF7 EQUATE(0676H) !Ctrl-Alt-F7 Key
CtrlAltF8 EQUATE(0677H) !Ctrl-Alt-F8 Key
CtrlAltF9 EQUATE(0678H) !Ctrl-Alt-F9 Key
CtrlAltF10 EQUATE(0679H) !Ctrl-Alt-F10 Key
CtrlAltF11 EQUATE(067AH) !Ctrl-Alt-F11 Key
CtrlAltF12 EQUATE(067BH) !Ctrl-Alt-F12 Key
CtrlAltAst EQUATE(066AH) !Ctrl-Alt-Asterisk Key
CtrlAltBS EQUATE(0608H) !Ctrl-Alt-Backspace Key
CtrlAltDecimal EQUATE(066EH) !Ctrl-Alt-Decimal Key
CtrlAltDelete EQUATE(062EH) !Ctrl-Alt-Delete Key
CtrlAltDivide EQUATE(066FH) !Ctrl-Alt-Divide Key
CtrlAltDown EQUATE(0628H) !Ctrl-Alt-Cursor Down
CtrlAltEnd EQUATE(0623H) !Ctrl-Alt-End Key
CtrlAltEnter EQUATE(060DH) !Ctrl-Alt-Enter Key
CtrlAltEsc EQUATE(061BH) !Ctrl-Alt-Esc Key
CtrlAltHome EQUATE(0624H) !Ctrl-Alt-Home Key
CtrlAltInsert EQUATE(062DH) !Ctrl-Alt-Insert Key
CtrlAltLeft EQUATE(0625H) !Ctrl-Alt-Cursor Left
CtrlAltMinus EQUATE(066DH) !Ctrl-Alt-Minus Key
CtrlAltPause EQUATE(0613H) !Ctrl-Alt-Pause Key
CtrlAltPgDn EQUATE(0622H) !Ctrl-Alt-PgDn Key
CtrlAltPgUp EQUATE(0621H) !Ctrl-Alt-PgUp Key
CtrlAltPlus EQUATE(066BH) !Ctrl-Alt-Plus Key
CtrlAltPrint EQUATE(062CH) !Ctrl-Alt-PrintScreen
CtrlAltRight EQUATE(0627H) !Ctrl-Alt-Cursor Right
CtrlAltSlash EQUATE(066FH) !Ctrl-Alt-Slash Key
CtrlAltSpace EQUATE(0620H) !Ctrl-Alt-Spacebar
CtrlAltTab EQUATE(0609H) !Ctrl-Alt-Tab Key
CtrlAltUp EQUATE(0626H) !Ctrl-Alt-Cursor Up Key
CtrlAltPad0 EQUATE(0660H) !Ctrl-Alt-0 on numeric keypad
CtrlAltPad1 EQUATE(0661H) !Ctrl-Alt-1 on numeric keypad
CtrlAltPad2 EQUATE(0662H) !Ctrl-Alt-2 on numeric keypad
CtrlAltPad3 EQUATE(0663H) !Ctrl-Alt-3 on numeric keypad
CtrlAltPad4 EQUATE(0664H) !Ctrl-Alt-4 on numeric keypad
CtrlAltPad5 EQUATE(0665H) !Ctrl-Alt-5 on numeric keypad
CtrlAltPad6 EQUATE(0666H) !Ctrl-Alt-6 on numeric keypad
CtrlAltPad7 EQUATE(0667H) !Ctrl-Alt-7 on numeric keypad
CtrlAltPad8 EQUATE(0668H) !Ctrl-Alt-8 on numeric keypad
CtrlAltPad9 EQUATE(0669H) !Ctrl-Alt-9 on numeric keypad
CtrlAltMouseLeft EQUATE(0601H) !Ctrl-Alt-Left mouse button
CtrlAltMouseRight EQUATE(0602H) !Ctrl-Alt-Right mouse button
CtrlAltMouseCenter EQUATE(0604H) !Ctrl-Alt-Middle mouse button

Error Codes
! ERRORS.EQU -- ERRORCODE EQUATES
! Return Value Return Value
! From ERRORCODE() From ERROR()
NoError EQUATE(0) ! ''
NoFileErr EQUATE(02) ! 'File Not Found'
NoPathErr EQUATE(03) ! 'Path Not Found'
TooManyErr EQUATE(04) ! 'Too Many Open Files'
NoAccessErr EQUATE(05) ! 'Access Denied'
BadMemErr EQUATE(07) ! 'Memory Corrupted'
NoMemErr EQUATE(08) ! 'Insufficient Memory'
BadDriveErr EQUATE(15) ! 'Invalid Drive'
NoEntryErr EQUATE(30) ! 'Entry Not Found'
IsLockedErr EQUATE(32) ! 'File Is Already Locked'
BadRecErr EQUATE(33) ! 'Record Not Available'
NoRecErr EQUATE(35) ! 'Record Not Found'
BadFileErr EQUATE(36) ! 'Invalid Data File'
NotOpenErr EQUATE(37) ! 'File Not Open'
DupKeyErr EQUATE(40) ! 'Creates Duplicate Key'
IsHeldErr EQUATE(43) ! 'Record Is Already Held'
BadNameErr EQUATE(45) ! 'Invalid Filename'
BadKeyErr EQUATE(46) ! 'Key Files must be Rebuilt'
InvalidFileErr EQUATE(47) ! 'Invalid File Declaration'
BadTranErr EQUATE(48) ! 'Unable to log transaction'
IsOpenErr EQUATE(52) ! 'File Already Open'
NoCreateErr EQUATE(54) ! 'No Create Attribute'
NoShareErr EQUATE(55) ! 'File Must Be Shared'
BadMemoErr EQUATE(57) ! 'Invalid Memo File'
ExclReqErr EQUATE(63) ! 'Exclusive Access Required'
ShareVioErr EQUATE(64) ! 'Sharing Violation'
CantRollErr EQUATE(65) ! 'Unable to rollback transaction'
MemoMissing EQUATE(73) ! 'Memo File is Missing'
TypeDescErr EQUATE(75) ! 'Invalid Field Type Descriptor'
BadIndexErr EQUATE(76) ! 'Invalid Index String'
IndexAccessErr EQUATE(77) ! 'Unable To Access Index'
BadParmErr EQUATE(78) ! 'Invalid Number Of Parameters'
NoDriverSupport EQUATE(80) ! 'Function not supported'

Property Assignments
Data Structure Properties

 Built-in Variables

 Property Expressions

 Attribute Property Equates

 List Box Format String Properties

Other Properties

 List Box Mouse Click Properties

 Undeclared Properties

 Printer Control Properties

 Embedded SQL

Data Structure Properties
The attributes (properties) of many of the APPLICATION, WINDOW, and REPORT data structures, and
their component controls, are designed take constant values (not variables) as their parameters in the
data structure declaration. The same is true of FILE, VIEW, and QUEUE data structures. This may seem
to be a restriction, however, the values of these constant properties may be easily changed or determined
using simple assignment statements containing property expressions.

Property expressions represent the attributes (properties) and the parameters of attributes declared in
APPLICATION, WINDOW, REPORT, FILE, VIEW, and QUEUE structures, and their components. Most
attributes have corresponding property expressions. However, some attributes (such as PRE, OVER, and
THREAD) are actually compiler directives which have no associated property expression. In addition,
there are some property expressions which are not associated with declared attributes (undeclared
properties).

A property expression can be used as the destination of an assignment statement. This changes the
value of the attribute (or attribute parameter) associated with the property. A property expression can also
be used in any string expression to determine the current value of the attribute (or attribute parameter).

Built-in Variables
There are three built-in variables in the Clarion for Windows runtime library: TARGET, PRINTER, and
SYSTEM. These are only used with the property assignment syntax to identify the target of a property
assignment.

TARGET normally references the window that currently has focus. It can also be set to reference a
window in another execution thread or the currently printing REPORT, enabling you to affect the
properties of controls and windows in other execution threads and dynamically change report control
properties while printing. The SETTARGET procedure is used to change the TARGET variable's
reference.

PRINTER references the printer properties used by the next REPORT opened (and all subsequest
reports). This is used only with the Printer Properties.

SYSTEM is a built-in variable that specifies global properties used by the the entire application. There are
several specific undeclared properties that may use the SYSTEM variable to set or query global
application-wide properties.

Property Expressions
[target] [$] [control] { property [,element] }

target The label of an APPLICATION, WINDOW, REPORT, VIEW, or FILE structure, the label
of a BLOB, or one of the built-in variables: TARGET, PRINTER, or SYSTEM. If
omitted, TARGET is assumed.

$ Required separator when both target and control are specified. May be omitted if either
target or control is omitted.

control A field number or field equate label for the control in the target structure
(APPLICATION, WINDOW, or REPORT) to affect. If omitted, the target must be
specified. The control must be omitted if the target is a FILE structure, the label of a
BLOB, or the PRINTER or SYSTEM built-in variables.

property An integer constant, EQUATE, or variable that specifies the property (attribute) to
change. It can also be a string when referencing a .VBX property.

element An integer constant or variable that specifies which element to change (for those
attributes that are arrays with multiple values).

This property expression syntax allows you access to all the attributes (properties) of APPLICATION,
WINDOW, or REPORT structures, or any control within these structures. To specify an attribute of an
APPLICATION, WINDOW, REPORT, VIEW, or FILE structure (not a component control), omit the control
portion of the property expression. To specify a control in the current window, omit the target portion of the
property expression.

REPORT data structures are never the default target. Therefore, either SETTARGET must be used to
change the default target, or the structure's label must be explicitly specified as the target before you can
change any property of the structure, or any control it contains.

Property expressions may be used in Clarion language statements anywhere a string expression is
allowed, or as the destination of a simple assignment statement. Therefore, assigning a new value to a
property is an assignment with the property as the destination and the new value as the source.
Determining the current value of a property is an assignment where the property is the source and the
variable to recieve its value is the destination.

All properties are treated as string data at runtime; the compiler automatically performs any necessary
data type conversion. Any property without parameters is binary. Binary properties are either "present" or
"missing" and returns a '1' if it is present, and '' (null) if it is missing. Changing the value of a binary
property to '' (null), '0' (zero), or any non-numeric string sets it to missing. Changing it to any other value
sets it to "present."

Most properties can be both examined (read) and changed (written). However, some properties are "read-
only" and cannot be changed. Assigning a value to a "read-only" property has no effect at all. Other
properties are "write-only" properties that are meaningless if read.

Some properties are arrays that contain multiple values. The syntax for addresssing a particular property
array element uses a comma (not square brackets) as the delimiter between the property and the element
number.

Example:
MainWin APPLICATION('My Application'),SYSTEM,MAX,ICON('MyIcon.ICO'),STATUS,RESIZE

MENUBAR
MENU('File'),USE(?FileMenu)
ITEM('Open...'),USE(?OpenFile)
ITEM('Close'),USE(?CloseFile),DISABLE
ITEM('E&xit'),USE(?MainExit)

END
MENU('Help'),USE(?HelpMenu)
ITEM('Contents'),USE(?HelpContents),STD(STD:HelpIndex)
ITEM('Search for Help On...'),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM('How to Use Help'),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM('About MyApp...'),USE(?HelpAbout)

END
END
TOOLBAR
BUTTON('Open'),USE(?OpenButton),ICON(ICON:Open)

END
END

CODE
OPEN(MainWin)
MainWin{PROP:text} = 'A New Title' !Change window title
?OpenButton{PROP:icon} = ICON:Asterisk !Change button icon
?OpenButton{PROP:at,1} = 5 !Change button x position
?OpenButton{PROP:at,2} = 5 !Change button y position
IF MainWin$?HelpContents{PROP:std} <> STD:HelpIndex
MainWin$?HelpContents{PROP:std} = STD:HelpIndex

END
MainWin{PROP:maximize} = 1 !Expand to full screen
ACCEPT
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION
RETURN

See Also: SETTARGET

Attribute Property Equates
Equates for all properties are contained in the PROPERTY.CLW file. This file also contains equates for
the standard values used by some of these properties. Some properties are "read-only" and their value
may not be changed, and others are "write-only" properties whose value cannot be determined. These
restrictions are noted for each control affected.

Each of the following properties references an attribute (or one of its parameters) of a window, report, or
control. The referenced attribute is listed in the explanation and you should look up the attribute itself for
further explanation of its effect on the window or control it modifies.

Some property descriptions state: ('' if missing, else present), which means the attribute is either active for
the window,report, or control, or it is not. Querying the property returns a blank string when the attribute is
not active for the window, report, or control. Assigning a blank string ('') to such an attribute turns it off,
and assigning any other value turns it on.

 PROP:Text The text parameter of an APPLICATION(text), WINDOW(text), or control(text). This
could contain any value that is valid as the parameter to a control declaration. For
example, ?Image{PROP:Text} = 'My.BMP' displays a new bitmap in the referenced
IMAGE control.

 PROP:Type Contains the type of control. Values are the CREATE:xxxx equates (listed in
EQUATES.CLW). (READ-ONLY)

AT attribute properties:

 PROP:At AT attribute. An array (4 values).

 PROP:Xpos AT(x) parameter, equivalent to {PROP:At,1}

 PROP:Ypos AT(,y) parameter, equivalent to {PROP:At,2}

 PROP:Width AT(,,width) parameter, equivalent to {PROP:At,3}

 PROP:Height AT(,,,height) parameter, equivalent to {PROP:At,4}

FONT attribute properties:

 PROP:Font FONT attribute. An array (4 values).

 PROP:FontName FONT(fontname) parameter, equivalent to {PROP:Font,1}.

 PROP:FontSize FONT(,fontsize) parameter, equivalent to {PROP:Font,2}.

 PROP:FontColor FONT(,,fontcolor) parameter, equivalent to {PROP:Font,3}.

 PROP:FontStyle FONT(,,,fontstyle) parameter, equivalent to {PROP:Font,4}.

CLASS attribute properties:

 PROP:Class CLASS attribute. An array (2 values).

 PROP:VbxFile CLASS(vbxfile) parameter, equivalent to {PROP:Class,1}.

 PROP:VbxName CLASS(,vbxname) parameter, equivalent to {PROP:Class,2}.

All other attribute properties (in alphabetical order):

 PROP:Absolute ABSOLUTE attribute ('' if missing, else present).

 PROP:Alone ALONE attribute ('' if missing, else present).

 PROP:Alrt ALRT attribute. An array.

 PROP:Auto AUTO attribute ('' if missing, else present).

 PROP:Ave AVE attribute ('' if missing, else present).

 PROP:Boxed ABSOLUTE attribute ('' if missing, else present).

 PROP:Cap ABSOLUTE attribute ('' if missing, else present).

 PROP:Center CENTER attribute ('' if missing, else present).

 PROP:CenterOffset
CENTER(offset) parameter, equivalent to {PROP:Center,2}.

 PROP:Check CHECK attribute, ('' if missing, else present).

 PROP:Cnt CNT attribute ('' if missing, else present).

 PROP:Color COLOR attribute (COLOR:none if none).

 PROP:Column COLUMN attribute (0 = off, else currently highlighted column number).

 PROP:Cursor CURSOR attribute ('' if missing, else present).

 PROP:Decimal DECIMAL attribute ('' if missing, else present).

 PROP:DecimalOffset

 DECIMAL(offset) parameter, equivalent to {PROP:Decimal,2}.

 PROP:Default DEFAULT attribute ('' if missing, else present).

 PROP:Disable DISABLE attribute ('' if missing, else present).

 PROP:Double DOUBLE attribute ('' if missing, else present).

 PROP:Dragid DRAGID attribute. An array.

 PROP:Drop DROP attribute (0 if none). You may not change this to or from zero (0).

 PROP:DropidDROPID attribute. An array.

 PROP:Fill FILL attribute (COLOR:none if none).

 PROP:First FIRST attribute ('' if missing, else present).

 PROP:FormatFORMAT attribute ('' if missing, else present). This property is updated whenever the
user changes the format of the LIST at runtime.

 PROP:From FROM attribute (queue, queue field, or string). (WRITE-ONLY)

 PROP:Full FULL attribute ('' if missing, else present).

 PROP:Gray GRAY attribute ('' if missing, else present).

 PROP:Hide HIDE attribute ('' if missing, else present).

 PROP:Hlp HLP attribute (blank if none).

 PROP:Hscroll HSCROLL attribute ('' if missing, else present).

 PROP:Icon ICON attribute (blank if none).

 PROP:Iconize ICONIZE attribute ('' if missing, else present).

 PROP:Imm IMM attribute ('' if missing, else present).

 PROP:Ins INS attribute ('' if missing, else present).

 PROP:Key KEY attribute (blank if none).

 PROP:Landscape LANDSCAPE attribute, ('' if missing, else present).

 PROP:Last LAST attribute ('' if missing, else present).

 PROP:Left LEFT attribute ('' if missing, else present).

 PROP:LeftOffset LEFT(offset) parameter, equivalent to {PROP:Left,2}.

 PROP:Mark MARK attribute (queue or queue field). (WRITE-ONLY)

 PROP:Mask MASK attribute ('' if missing, else present).

 PROP:Max MAX attribute ('' if missing, else present).

 PROP:Maximize MAXIMIZE attribute ('' if missing, else present).

 PROP:Mdi MDI attribute ('' if missing, else present). (READ-ONLY)

 PROP:Meta META attribute ('' if missing, else present).

 PROP:Min MIN attribute ('' if missing, else present).

 PROP:Mm MM attribute ('' if missing, else present).

 PROP:Modal MODAL attribute ('' if missing, else present). (READ-ONLY)

 PROP:Msg MSG attribute ('' if missing, else present).

 PROP:NoBar NOBAR attribute ('' if missing, else present).

 PROP:NoFrame NOFRAME attribute ('' if missing, else present).

 PROP:NoMerge NOMERGE attribute ('' if missing, else present).

 PROP:Ovr OVR attribute ('' if missing, else present).

 PROP:Page PAGE attribute ('' if missing, else present).

 PROP:PageAfter PAGEAFTER attribute ('' if missing, else present).

 PROP:PageAfterNum
PAGEAFTER(pageafternum) parameter, equivalent to {PROP:PageAfter,2}.

 PROP:PageBefore PAGEBEFORE attribute ('' if missing, else present).

 PROP:PageBeforeNum
PAGEBEFORE(pagebeforenum) parameter, equivalent to {PROP:PageBefore,2}.

 PROP:Pageno PAGENO attribute ('' if missing, else present).

 PROP:Palette PALETTE attribute. Single value.

 PROP:Password PASSWORD attribute ('' if missing, else present).

 PROP:Points POINTS attribute ('' if missing, else present).

 PROP:Preview PREVIEW attribute (queue or queue field). (WRITE-ONLY)

 PROP:Range RANGE attribute. An array (2 values).

 PROP:RangeHigh RANGE(,rangehigh) parameter, equivalent to {PROP:Range,2}.

 PROP:RangeLow RANGE(rangelow) parameter, equivalent to {PROP:Range,1}.

 PROP:ReadOnly READONLY attribute ('' if missing, else present).

 PROP:Req REQ attribute ('' if missing, else present).

 PROP:Reset RESET attribute (0 = off, else breaklevel nesting depth).

 PROP:Resize RESIZE attribute ('' if missing, else present).

 PROP:Right RIGHT attribute ('' if missing, else present).

 PROP:RightOffset RIGHT(offset) parameter, equivalent to {PROP:Right,2}.

 PROP:Round ROUND attribute ('' if missing, else present).

 PROP:Scroll SCROLL attribute ('' if missing, else present).

 PROP:Separate SEPARATE attribute ('' if missing, else present).

 PROP:Skip SKIP attribute ('' if missing, else present).

 PROP:Spread SPREAD attribute ('' if missing, else present).

 PROP:Status STATUS attribute. An array (0 terminates).

 PROP:StatusText STATUS bar text. An array (0 terminates).

 PROP:Std STD attribute ('' if missing, else present).

 PROP:Step STEP attribute ('' if missing, else present).

 PROP:Sum SUM attribute ('' if missing, else present).

 PROP:System SYSTEM attribute ('' if missing, else present).

 PROP:Thous THOUS attribute ('' if missing, else present).

 PROP:Timer TIMER attribute (0 if none).

 PROP:Toolbox TOOLBOX attribute ('' if missing, else present).

 PROP:ToolTip TIP attribute ('' if missing, else present).

 PROP:Trn TRN attribute, ('' if missing, else present).

 PROP:Upr UPR attribute ('' if missing, else present).

 PROP:Use USE attribute (variable name). Writing to it changes the USE variable. Reading it returns
the contents of the USE variable.

 PROP:Value VALUE attribute ('' if missing, else present).

 PROP:Vcr VCR attribute ('' if missing, else present).

 PROP:VcrFeq VCR(vcrfeq) parameter, equivalent to {PROP:Vcr,2}.

 PROP:Vscroll VSCROLL attribute ('' if missing, else present).

 PROP:WithNext WITHNEXT attribute (0 if none).

 PROP:WithPrior WITHPRIOR attribute (0 if none).

 PROP:WizardWIZARD attribute ('' if missing, else present).
Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
IMAGE('SomePic.BMP'),USE(?Image)
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
Screen{PROP:At,1} = 0 !Position window to top left corner
Screen{PROP:At,2} = 0

Screen{PROP:Gray} = 1 !Give window 3D look
Screen{PROP:Status,1} = -1 !Create status bar with two sections
Screen{PROP:Status,2} = 180
Screen{PROP:Status,3} = 0 !Terminate staus bar array
Screen{PROP:StatusText,2} = FORMAT(TODAY(),@D2)

!Put date in status bar section 2
?CtlCode{PROP:Alrt,1} = F10Key !Alert F10 on Ctl:Code entry control
?CtlCode{PROP:Text} = '@N4' !Change entry picture token
?Image{PROP:Text} = 'MyPic.BMP' !Change image control filename
?OkButton{PROP:Default} = '1' !Put DEFAULT attribute on OK button
ACCEPT
END

List Box Format String Properties
The properties of individual fields in a multi-column LIST or COMBO control can also be set using
property equates.Each of these properties relates to one element of the FORMAT attribute's string
parameter. These properties eliminate the need to create a complete FORMAT attribute string just to
change a single property of a single field in the LIST.

These are all property arrays that require an explicit array element number following the property equate
(separated by a comma) to specify which field in the LIST or COMBO is affected.

 PROPLIST:Center
The C that indicates center justification, (blank if missing, 1 if present).

 PROPLIST:CenterOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:Color The * (asterisk) that indicates color information for the field is contained in four
LONG fields that immediately follow the data field in the QUEUE (or FROM attribute
string), (blank if missing, 1 if present).

 PROPLIST:Decimal
The D that indicates decimal justification, (blank if missing, 1 if present).

 PROPLIST:DecimalOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:Fixed The F that specifies the field remains fixed at left edge of the list, (blank if
missing, 1 if present).

 PROPLIST:Header
The ~header~ text for the field or group, (blank if missing, 1 if present).

 PROPLIST:HeaderCenter
The C that indicates center header justification, (blank if missing, 1 if present).

 PROPLIST:HeaderCenterOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:HeaderDecimal
The D that indicates decimal header justification, (blank if missing, 1 if present).

 PROPLIST:HeaderDecimalOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:HeaderLeft
The L that indicates left header justification, (blank if missing, 1 if present).

 PROPLIST:HeaderLeftOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:HeaderRight
The R that indicates right header justification, (blank if missing, 1 if present).

 PROPLIST:HeaderRightOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:Icon The I that indicates an icon number for the field is contained in a LONG field
that immediately follows the data field in the QUEUE (or FROM attribute string), (blank
if missing, 1 if present).

 PROPLIST:LastOnLine
The / (slash) that indicates the next field in the group appears on the next line, (blank if
missing, 1 if present).

 PROPLIST:Left The L that indicates left justification, (blank if missing, 1 if present).

 PROPLIST:LeftOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:Locator
The ? (question mark) that specifies the field for a locator, (blank if missing, 1 if present).

 PROPLIST:Picture
The @picture@ display format for the field, (blank if missing, 1 if present).

 PROPLIST:Resize
The M that allows the user to resize the field or group, (blank if missing, 1 if present).

 PROPLIST:RightBorder
The | (vertical bar) that places a right border on the field or group, (blank if missing, 1 if
present).

 PROPLIST:Right The R that indicates right justification, (blank if missing, 1 if present).

 PROPLIST:RightOffset
An integer that specifes the indent, (blank if missing, 1 if present).

 PROPLIST:Scroll The S(integer) that puts a scroll bar on the field or group. Specifies the integer
portion, (blank if missing, 1 if present).

 PROPLIST:Tree The T that indicates the LIST is a tree control, (blank if missing, 1 if present).

 PROPLIST:TreeLines
The T(L) that indicates the tree control suppresses the conecting lines between levels,
(blank if missing, 1 if present).

 PROPLIST:TreeBoxes
The T(B) that indicates the tree control suppresses the expansion boxes, (blank if
missing, 1 if present).

 PROPLIST:TreeIndent
The T(I) that indicates the tree control suppresses level indentation (which also implicitly
suppresses both lines and boxes), (blank if missing, 1 if present).

 PROPLIST:Underline
The _ (underscore) that underlines the field or group, (blank if missing, 1 if present).

 PROPLIST:Width The integer that specifies the width of the field or group.
Any of these properties can also apply to a field group by adding PROPLIST:Group to the property.

 PROPLIST:Group Add this property to the PROPLIST field property to affect field group
properties.

Example:
?List{PROPLIST:Header,1} = 'First Field' !Change first field's header text
?List{PROPLIST:Header + PROPLIST:Group,1} = 'First Group'

!Change first group's header text

See Also: FORMAT

Other Properties

List Box Mouse Click Properties
The following properties return the mouse position within the LIST or COMBO control when pressed or
released.They can also be written to, which has no effect except to temporarily change the value that the
property returns when next read (within the same ACCEPT loop iteration). This may make coding easier
in some circumstances.

 PROPLIST:MouseDownField
Returns the field number when the mouse is pressed.

 PROPLIST:MouseDownRow
Returns the row number when the mouse is pressed.

 PROPLIST:MouseDownZone
Returns the zone number when the mouse is pressed.

 PROPLIST:MouseMoveField
Returns the field number when the mouse is moved.

 PROPLIST:MouseMoveRow
Returns the row number when the mouse is moved.

 PROPLIST:MouseMoveZone
Returns the zone number when the mouse is moved.

 PROPLIST:MouseUpField
Returns the field number when the mouse is released.

 PROPLIST:MouseUpRow
Returns the row number when the mouse is released.

 PROPLIST:MouseUpZone
Returns the zone number when the mouse is released.

The three "Row" properties all return -1 for header text and -2 if below the last displayed item. Equates for
the following Zones are listed on EQUATES.CLW:

LISTZONE:Field On a field in the LIST
LISTZONE:Right On the field's right border resize zone
LISTZONE:Header On a field or group header
LISTZONE:ExpandBox On an expand box in a Tree
LISTZONE:Tree On the connecting lines of a Tree
LISTZONE:Icon On an icon (Tree or not)
LISTZONE:Nowhere Anywhere else

Example:
Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END
WinView WINDOW('View'),AT(,,340,200),SYSTEM,CENTER,ALRT(MouseLeft)

LIST,AT(20,0,300,200),USE(?List),FROM(Que),IMM,HVSCROLL |
FORMAT('80L~F1~80L~F2~80L~F3~'),IMM

END
CODE
OPEN(WinView)
DO BuildListQue
X# = 0
ACCEPT

CASE EVENT()
OF EVENT:AlertKey
IF ?List{PROPLIST:MouseUpRow} = -1 !Check for click in header
CASE ?List{PROPLIST:MouseDownField} + X# !Check which header
OF 1
SORT(Que,Que:F1)
?List{PROP:Format} = '80L~F1~#1#80L~F2~#2#80L~F3~#3#'
X# = 0

OF 2
SORT(Que,Que:F2)
?List{PROP:Format} = '80L~F2~#2#80L~F3~#3#80L~F1~#1#'
X# = 1

OF 3
SORT(Que,Que:F3)
?List{PROP:Format} = '80L~F3~#3#80L~F1~#1#80L~F2~#2#'
X# = 2

END
DISPLAY

. . .
FREE(Que)

Undeclared Properties
The following properties can only be accessed at runtime, and do not relate directly to data structure and
control field attributes:

PROP:AcceptAll Returns one (1) if AcceptAll mode is active and zero (0) if it is not, and may also
be used to toggle AcceptAll (non-stop) mode. SELECT with no parameters usually
initiates AcceptAll mode. This is a field edit mode in which each control in the window is
processed in TAB key sequence by generating EVENT:Accepted for each. This allows
data entry validation code to execute for all controls, including those that the user has not
touched.

AcceptAll mode immediately terminates when any of the following conditions is met:

SELECT(?)
Window{PROP:AcceptAll} = 0
A REQ control is left blank or zero.

The SELECT(?) statement selects the same control for the user to edit. This code usually
indicates the value it contains is invalid and the user must re-enter data. The
Window{PROP:AcceptAll} = 0 statement toggles AcceptAll mode off. Assigning values
to this property can be used to initiate and terminate AcceptAll mode. When a control
with the REQ attribute is left blank or zero, AcceptAll mode terminates with the control
highlighted for user entry, without processing any more fields in the TAB key sequence.

When all controls have been successfully processed, EVENT:Completed is posted to the
window.

Example:
Screen WINDOW,PRE(Scr)

ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
BUTTON('OK'),USE(?OkButton),KEY(EnterKey)
BUTTON('Cancel'),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
IF EVENT() = EVENT:Completed THEN BREAK. !AcceptAll mode terminated
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP ! alert the user and
SELECT(?) ! make them re-enter the data

END
OF ?OkButton
Screen{PROP:AcceptAll} = 1 !Initiate AcceptAll mode

. . !Terminate ACCEPT and CASE ACCEPTED
PROP:Active Returns 1 if the window is the active window, blank if not. Set to 1 to make the top

window of a thread the active window.
Example:
CODE
OPEN(ThisWindow)
X# = START(AnotherThread) !Start another thread
ACCEPT
CASE EVENT()

OF EVENT:LoseFocus !When this window is losing focus
IF Y# <> X# ! check for the first focus change
ThisWindpw{PROP:Active} = 1 ! and return focus to this thread
Y# = X# ! then flag first focus change completed

. . .

PROP:AppInstance
Returns the instance handle (HInstance) of the .EXE file for use in low-level API calls
which require it. This is only used with the SYSTEM built-in variable. (READ-ONLY)

Example:
PROGRAM

HInstance LONG
CODE
OPEN(AppFrame)
HInstance = SYSTEM{PROP:AppInstance} !Get .EXE instance handle for later use
ACCEPT
END

PROP:ChoiceFeq Returns or sets the field number of the currently selected TAB in a SHEET, or
RADIO in an OPTION structure.

Example:
WinView WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

OPTION('Option 1'),USE(OptVar1),KEY(F10Key),HLP('Option1Help')
RADIO('Radio 1'),AT(0,0,20,20),USE(?R1)
RADIO('Radio 2'),AT(20,0,20,20),USE(?R2)

END
END

CODE
OPEN(WinView)
?OptVar1{PROP:ChoiceFeq} = ?R1 !Select radio one
ACCEPT
END

PROP:ClientHandle
Returns the client window handle (the area of the window that contains the controls) for
use with low-level Windows API calls that require it. (READ-ONLY)

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

END
MessageText CSTRING('You cannot exit the program from this window ')
MessageCaption CSTRING('No EVENT:CloseDown Allowed ')
TextAddr LONG
CaptionAddr LONG
RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddress = ADDRESS(MessageText)
CaptionAddress = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:ClientHandle},TextAddr,CaptionAddr,MB_OK)

!Windows API call using a window handle

CYCLE !Disallow program closedown from this window
END

END

PROP:ClientWndProc
Sets or gets the client window messaging procedure for use with low-level Windows API
calls that require it. Generally used with sub-classing to track all Windows messages.

Example:
PROGRAM
MAP
main
SubClassFunc(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
MODULE('Windows')

!TopSpeed Win31 Library
CallWindowProc(LONG,USHORT,SHORT,SHORT,LONG),LONG,PASCAL

END
END

SavedProc LONG
PT GROUP,PRE(PT)
X SHORT
Y SHORT

END
 CODE
Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1)

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)

END
CODE
OPEN(WinView)
SavedProc = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc)

!Change to subclass procedure
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

END
END

SubClassFunc FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
WM_MOUSEMOVE EQUATE(0200H) ! to track mouse movement in
CODE ! client area of window
CASE wMsg
OF WM_MOUSEMOVE
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc,hWnd,wMsg,wParam,lParam))

!Pass control back to
! saved procedure

PROP:ClipBits Property of an IMAGE control that allows bitmap images to be moved into (but
not out of) the Windows clipboard when set to one (1). Any displayable image type can
be stored as a bitmap (.BMP) image in the Clipboard.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)

END
FileName STRING(64) !Filename variable
CODE
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
?Image{PROP:ClipBits} = 1 !Put image into Clipboard
ENABLE(?LastPic) ! activate Last Picture button

END
END

PROP:DeferMove A property of the SYSTEM built-in variable that defers the resizing and/or
movement of controls until the end of the ACCEPT loop or
SYSTEM{PROP:DeferMove} is reset to zero (0). This disables the immediate effect of
all assignments to position and size properties, and enables the library to perform all the
moves at once (eliminating possible temporarily overlapping controls).

The absolute value of the number assigned to SYSTEM{PROP:DeferMove} defines the
number of deferred moves for which space is pre-allocated (automatically expanded
when necessary, but less efficient and may fail). Assigning a positive number
automatically resets it to zero at the next ACCEPT, while a negative number leaves it set
until explicitly reset to zero (0).

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Close'),AT(80,180,60,20),USE(?Close)

END
FileName STRING(64) !Filename variable
ImageWidth SHORT
ImageHeight SHORT
CODE
OPEN(WinView)
DISABLE(?LastPic)

IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName
SYSTEM{PROP:DeferMove} = 4 !Defer move and resize
ImageWidth = ?Image{PROP:Width}
ImageHeight = ?Image{PROP:Height}
IF ImageWidth > 320
?Image{PROP:Width} = 320
?Image{PROP:XPos} = 0

ELSE
?Image{PROP:XPos} = (320 - ImageWidth) / 2 !Center horizontally

END
IF ImageHeight > 180
?Image{PROP:Height} = 180
?Image{PROP:YPos} = 0

ELSE
?Image{PROP:YPos} = (180 - ImageHeight) / 2 !Center vertically

END
OF ?Close
BREAK

. . !Moves and resizing happen at end of ACCEPT loop

 PROP:Edit Specifies the field equate label of the control to perform edit-in-place for a LIST box
column. This is an array whose element number indicates the column number to edit.
When non-zero, the control is unhidden and moved/resized over the current row in the
column indicated to allow the user to input data. Assign zero to re-hide the data entry
control.

Example:
Q QUEUE
f1 STRING(15)
f2 STRING(15)
 END
Win1 WINDOW('List Edit In Place'),AT(0,1,308,172),SYSTEM

 LIST,AT(6,6,120,90),USE(?List),COLUMN,FORMAT('60L@s15@60L@s15@'),FROM(Q),IMM
 END
?EditEntry EQUATE(100)
CODE
OPEN(Win1)
CREATE(?EditEntry,CREATE:Entry)
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:NewSelection
IF ?List{PROP:edit,?List{PROP:column}}
GET(Q,CHOICE())

END
OF EVENT:Accepted
IF KEYCODE() = MouseLeft2
GET(Q,CHOICE())

?EditEntry{PROP:text} = ?List{PROPLIST:picture,?List{PROP:column}}
CASE ?List{PROP:column}
OF 1
?EditEntry{PROP:use} = F1

OF 2
?EditEntry{PROP:use} = F2

END
?List{PROP:edit,?List{PROP:column}} = ?EditEntry

. .
OF ?EditEntry
CASE EVENT()
OF EVENT:Selected
?EditEntry{PROP:Touched} = 1

OF EVENT:Accepted
PUT(Q)
?List{PROP:edit,?List{PROP:column}} = 0

. . .

PROP:Enabled Returns an empty string if the control is not enabled either because it itself has
been disabled, or because it is a member of a "parent" control (OPTION, GROUP,
MENU, SHEET, or TAB) that has been disabled. (READ-ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)

 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
 ENTRY(@S8),AT(100,140,32,20),USE(E1)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
 ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)

 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
 ENTRY(@S8),AT(100,140,32,20),USE(E3)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
 ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)

 BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
 END

CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
IF ?E3{PROP:Enabled} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode

E3 = UPPER(E3) !Convert the data entered to Upper case
DISPLAY(?E3) ! and display the upper cased data

END
END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

PROP:Filter Sets the FILTER attribute of a VIEW structure.
Example:
BRW1::View:Browse VIEW(Members)

PROJECT(Mem:MemberCode,Mem:LastName,Mem:FirstName)
END

KeyValueSTRING(20)
CODE
KeyValue = 'Smith'
BIND('KeyValue',KeyValue)
BIND('Mem:LastName',Mem:LastName)
Mem:LastName = KeyValue
SET(Mem:LastNameKey,Mem:LastNameKey)
BRW1::View:Browse{PROP:Filter} = 'Mem:LastName = KeyValue'
OPEN(BRW1::View:Browse)

PROP:FlushPreview
Flushes the REPORT structure's PREVIEW attribute metafiles to the printer (0 = off, else
on, always 0 at report open).

Example:
SomeReport PROCEDURE
WMFQue QUEUE !Queue to contain .WMF filenames

STRING(64)
END

NextEntry BYTE(1) !Queue entry counter variable
Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

 END
ViewReport WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL

IMAGE(),AT(0,0,320,180),USE(?ImageField)
BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report

LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:FlushPreview} = 1 !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

END
END
RETURN !Return to caller, automatically

! closing the window and report
! freeing the queue and automatically
! deleting all the temporary .WMF files

PROP:Follows Changes the tab order to specify the position within the parent that the control will
occupy. The control follows the control number you specify in the tab order. This must
specify an existing control within the parent (window, option, group). (WRITE-ONLY)

Example:
WinView WINDOW('View Report'),AT(0,0,320,200),MDI,MAX,HVSCROLL

BUTTON('View Next Page'),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON('Print Report'),AT(80,180,60,20),USE(?PrintReport)
BUTTON('Exit Without Printing'),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(WinView)

!Print Report button normally follows View button
?PrintReport{PROP:Follows} = ?ExitReport

!Now Print Report button follows Exit button in the tab order
ACCEPT
END

 PROP:HandleReturns the window or control handle for use with low-level Windows API calls that
require it.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

END
MessageText CSTRING('You cannot exit the program from this window ')
MessageCaption CSTRING('No EVENT:CloseDown Allowed ')
TextAddress LONG
CaptionAddress LONG

RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddress = ADDRESS(MessageText)
CaptionAddress = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:Handle},TextAddress,CaptionAddress,MB_OK)

!Windows API call using a window handle
CYCLE !Disallow program closedown from this window

END
END

PROP:HscrollPos Returns the position of the horizontal scroll bar's "thumb" (from 0 to 255) on a
window, IMAGE, TEXT, LIST or COMBO with the HSCROLL attribute. Setting this
property causes the control or window's contents to scroll horizontally.

Example:
Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END
WinView WINDOW('View'),AT(,,340,200),SYSTEM,CENTER

LIST,AT(20,0,300,200),USE(?List),FROM(Que),IMM,HVSCROLL |
FORMAT('80L#1#80L#2#80L#3#')

END
CODE
OPEN(WinView)
DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag
CASE ?List{PROP:HscrollPos} % 200) + 1
OF 1
?List{PROP:Format} = '80L#1#80L#2#80L#3#'

OF 2
?List{PROP:Format} = '80L#2#80L#3#80L#1#'

OF 3
?List{PROP:Format} = '80L#3#80L#1#80L#2#'

END
DISPLAY

. . .
FREE(Que)

BuildListQue ROUTINE
LOOP 15 TIMES
Que:F1 = 'F1F1F1F1'
Que:F2 = 'F2F2F2F2'
Que:F3 = 'F3F3F3F3'
ADD(Que)

END

 PROP:IconList An array that sets the icons displayed in a LIST formatted to display icons

(usually a tree control).
Example:

PROGRAM
MAP
RandomAlphaData(*STRING)

END
TreeDemo QUEUE,PRE() !Data list box FROM queue
FName STRING(20)
ColorNFG LONG !Normal Foreground color for FName
ColorNBG LONG !Normal Background color for FName
ColorSFG LONG !Selected Foreground color for FName
ColorSBG LONG !Selected Background color for FName
IconField LONG !Icon number for FName
TreeLeve LONG !Tree Level
LName STRING(20)
Init STRING(4)

END
Win WINDOW('List Boxes'),AT(0,0,366,181),SYSTEM,DOUBLE

LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL, |
FORMAT('80L*IT~First Name~*80L~Last Name~16C~Initials~')

END
CODE
LOOP 20 TIMES
RandomAlphaData(FName)
ColorNFG = COLOR:White !Assign FNAME's colors
ColorNBG = COLOR:Maroon
ColorSFG = COLOR:Yellow
ColorSBG = COLOR:Blue
IconField = ((x#-1) % 4) + 1 !Assign icon number
TreeLevel = ((x#-1) % 4) + 1 !Assign tree level
RandomAlphaData(LName)
RandomAlphaData(Init)
ADD(TD)

END
OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback !Icon 1 = <
?Show{PROP:iconlist,2} = ICON:VCRrewind !Icon 2 = <<
?Show{PROP:iconlist,3} = ICON:VCRplay !Icon 3 = >
?Show{PROP:iconlist,4} = ICON:VCRfastforward !Icon 4 = >>
ACCEPT
END

RandomAlphaData PROCEDURE(Field) !MAP Prototype is: RandomAlphaData(*STRING)
CODE
y# = RANDOM(1,SIZE(Field)) !Random fill size
LOOP x# = 1 to y# !Fill each character with
Field[x#] = CHR(RANDOM(97,122)) ! a random lower case letter

END

PROP:ImageBits Property of an IMAGE control that allows bitmap images displayed in the control
to be moved into and out of memo fields. Any image displayed in the control can be
stored.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Last Picture'),AT(240,180,60,20),USE(?LastPic)

END
SomeFile FILE,DRIVER('Clarion'),PRE(Fil) !A file with a memo field
MyMemo MEMO(65520),BINARY
Rec RECORD
F1 LONG

. .
FileName STRING(64) !Filename variable
CODE
OPEN(SomeFile)
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
Fil:MyMemo = ?Image{PROP:ImageBits} !Put image into memo
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBits} = Fil:MyMemo !Put last saved memo into image

END
END

PROP:ImageBlob Property of an IMAGE control that allows bitmap images displayed in the control
to be moved into and out of BLOB fields. Any image displayed in the control can be
stored.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 IMAGE(),AT(0,0,,),USE(?Image)
BUTTON('Save Picture'),AT(80,180,60,20),USE(?SavePic)
BUTTON('New Picture'),AT(160,180,60,20),USE(?NewPic)
BUTTON('Last Picture'),AT(240,180,60,20),USE(?LastPic)

END
SomeFile FILE,DRIVER('TopSpeed'),PRE(Fil) !A file with a memo field
MyBlob BLOB,BINARY
Rec RECORD
F1 LONG

. .
FileName STRING(64) !Filename variable
CODE
OPEN(SomeFile)

OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG('Choose File to View',FileName,'BitMap|*.BMP|PCX|*.PCX',0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
Fil:MyBlob{PROP:Handle} = ?Image{PROP:ImageBlob} !Put image into BLOB
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBlob} = Fil:MyBlob{PROP:Handle}

!Put last saved BLOB into image
END

END

PROP:Items Returns the number of entries visible in a LIST or COMBO control. (READ-ONLY)
Example:
Que QUEUE

STRING(30)
 END
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM

 LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
SET(SomeFile)
LOOP ?List(PROP:Items} TIMES !Fill display queue to limit of displayable items
NEXT(SomeFile)
Que = Fil:Record
ADD(Que)

END
ACCEPT
END

PROP:LazyDisplay
Disables (when set to 1) or enables (when set to 0, the default) the feature where all
window re-painting is completely done before processing continues with the next
statement following a DISPLAY. Setting PROP:LazyDisplay = 1 creates seemingly faster
video processing, since the re-paints occur at the end of the ACCEPT loop if there are no
other messages pending. This can improve the performance of some applications, but can
also have a negative impact on appearance.

Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END

CODE
OPEN(WinView)
SYSTEM{PROP:LazyDisplay} = 1 !Disable extra paint message display

! throughout entire application
ACCEPT
END

PROP:Line An array whose elements each contain one line of the text in a TEXT control. (READ
ONLY)

PROP:LineCount Returns the number of lines of text in a TEXT control. (READ ONLY)
Example:
LineCount SHORT
MemoLineSTRING(80)
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail1 DETAIL,AT(0,0,6500,6000)

 TEXT,AT(0,0,6500,6000),USE(Fil:MemoField)
 END

Detail2 DETAIL,AT(0,0,6500,125)
 STRING(@s80),AT(0,0,6500,125),USE(MemoLine)

 END
 END

CODE
OPEN(File)
SET(File)
OPEN(CustRpt)
LOOP
NEXT(File)
LIneCount = ?Fil:MemoField{PROP:LineCount}
LOOP X# = 1 TO LIneCount
MemoLine = ?Fil:MemoField{PROP:Line,X#}
PRINT(Detail2)

END
END

PROP:MaxHeight Sets or returns the maximum height of a resizable window.

PROP:MaxWidth Sets or returns the maximum width of a resizable window.

PROP:MinHeight Sets or returns the minimum height of a resizable window.

PROP:MinHeight Sets or returns the minimum width of a resizable window.
Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE

 LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120

ACCEPT
END

PROP:NoTips Disables (when set to 1) or re-enables (when set to 0) tooltip display (TIP attribute) for
the SYSTEM, window, or control.

Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END
CODE
OPEN(WinView)
SYSTEM{PROP:NoTips} = 1 !Disable TIP display throughout entire application
ACCEPT
END

PROP:Progress You can directly update the display of a PROGRESS cointrol by assigning a
value (which must be within the range defined by the RANGE attribute) to the control's
PROP:progress property.

Example:
BackgroundProcess PROCEDURE !Background processing batch process
Win WINDOW('Batch Processing...'),AT(,,400,400),TIMER(1),MDI,CENTER

PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON('Cancel'),AT(190,300,20,20),STD(STD:Close)

END
CODE
OPEN(Win)
OPEN(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} += 1 !Manually update progress bar
!Perform some batch processing code

. . .
CLOSE(File)

PROP:ScreenText Returns the text displayed on screen in the specified ENTRY or entry-like
(SPIN/COMBO) control. Also mention the use in connection with REJECTED events
(perhaps in the example).

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 SPIN(@n3),AT(0,0,320,180),USE(Fil:Field),RANGE(0,255)
END

CODE

OPEN(WinView)
ACCEPT
CASE FIELD()
OF ?Fil:Field
CASE EVENT()
OF EVENT:Rejected
MESSAGE(?Fil:Field{PROP:ScreenText} & ' is not in the range 0-255')
SELECT(?)
CYCLE

END
END

END

PROP:SelStartSets or retrieves the beginning (inclusive) character to mark as a block in an ENTRY or
TEXT control. It positions the data entry cursor left of the character, and sets
PROP:SelEnd to zero (0) to indicate no block is marked.

PROP:SelEnd Sets or retrieves the ending (inclusive) character to mark as a block in an ENTRY or
TEXT control.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field),ALRT(F10Key)
END

CODE
OPEN(WinView)
ACCEPT
CASE ACCEPTED()
OF ?Fil:Field
SETCLIPBOARD(Fil:Field[?Fil:Field{PROP:SelStart}:?Fil:Field{PROP:SelEnd}])

!Place highlighted string slice in Windows' clipboard
END

END

PROP:Size Returns (or sets) the size of a BLOB field.
Example:
Names FILE,DRIVER('TopSpeed')
NbrKey KEY(Names:Number)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)
Number SHORT

. .
BlobSize LONG
BlobBuffer1 STRING(65520),STATIC !Maximum size string
BlobBuffer2 STRING(65520),STATIC !Maximum size string
WinView WINDOW('View BLOB Contents'),AT(0,0,320,200),SYSTEM

 TEXT,AT(0,0,320,180),USE(BlobBuffer1),VSCROLL
 TEXT,AT(0,190,320,180),USE(BlobBuffer2),VSCROLL,HIDE
END

CODE
OPEN(Names)
SET(Names)
NEXT(Names)
OPEN(WinView)

BlobSize = Names:Notes{PROP:Size} !Get size of BLOB contents
IF BlobSize > 65520
BlobBuffer1 = Names:Notes[1:65520]
BlobBuffer2 = Names:Notes[65521:BlobSize]
WinView{PROP:Height} = 400
UNHIDE(?BlobBuffer2)

ELSE
BlobBuffer1 = Names:Notes[1:BlobSize]

END
ACCEPT
END

PROP:Thread Returns the thread number of a window. This is not necessarily the currently executing
thread, if you've used SETTARGET to set the TARGET built-in variable. (READ-ONLY)

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM

END
ToolboxThreadBYTE
CODE
OPEN(WinView)
ToolboxThread = ToolboxWin{PROP:Thread} !Get window thread number
ACCEPT
END

PROP:TipDelay Sets the time delay before tooltip display (TIP attribute) for the SYSTEM (16-bit
only).

PROP:TipDisplay Sets the duration of tooltip display (TIP attribute) for the SYSTEM (16-bit only).
Example:
WinView APPLICATION('MyApp'),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM

END
CODE
OPEN(WinView)
SYSTEM{PROP:TipDelay} = 50 !Delay TIP display for 1/2 second
SYSTEM{PROP:TipDisplay} = 500 !TIP display for 5 seconds
ACCEPT
END

PROP:Touched When non-zero, indicates the data in the ENTRY, TEXT, SPIN, or COMBO
control with input focus has been changed by the user since the last EVENT:Accepted.
Automatically reset to zero each time the control generates an EVENT:Accepted.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field)
END

CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:Selected
?Fil:Field{PROP:Touched} = 1 !Force an EVENT:Accepted to generate

OF EVENT:Accepted
!Process the data, whether entered by the user or in the field at the start

END

END

PROP:TrueValue Sets the value received by the USE variable of a CHECK box when the user
checks it on. This overrides the default assigned value of one (1).

PROP:FalseValue Sets the value received by the USE variable of a CHECK box when the user
checks it off. This overrides the default assigned value of zero (0).

Example:
CheckField STRING(1)
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 CHECK('True or False'),AT(0,0,,),USE(CheckField)
END

CODE
OPEN(WinView)
?CheckField{PROP:TrueValue} = 'T'
?CheckField{PROP:FalseValue} = 'F'
ACCEPT
END

PROP:VBXEvent Returns the name of a VBX event. (READ-ONLY)

PROP:VBXEventArg
VBX event parameters. An array.

Example:
WinView WINDOW('View'),AT(0,0,320,200),MDI,MAX,HVSCROLL

 CUSTOM,USE(?Graph),CLASS('graph.vbx','graph'),'graphstyle'('2')
END

CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:VBXEvent
IF ?Graph{PROP:VBXEvent} = 'FooEvent' !Check event name
ProcessFoo(?Graph{PROP:VBXEventArg,1},?Graph{PROP:VBXEventArg,2})

!Get 1st and 2nd event parameters and pass to process procedure
END

END
END

PROP:Visible Returns an empty string if the control is not visible because either because it has been
hidden, or it is a member of a "parent" control (OPTION, GROUP, MENU, SHEET, or
TAB) that is hidden, or is on a TAB control page that is not currently selected. (READ-
ONLY)

Example:
MDIChild WINDOW('Child One'),AT(0,0,320,200),MDI,MAX,HVSCROLL

SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB('Tab One'),USE(?TabOne)

 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P1)
 ENTRY(@S8),AT(100,140,32,20),USE(E1)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P2)
 ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB('Tab Two'),USE(?TabTwo)

 PROMPT('Enter Data:'),AT(100,100,20,20),USE(?P3)
 ENTRY(@S8),AT(100,140,32,20),USE(E3)
 PROMPT('Enter More Data:'),AT(100,200,20,20),USE(?P4)
 ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON('Ok'),AT(100,180,20,20),USE(?Ok)

 BUTTON('Cancel'),AT(200,180,20,20),USE(?Cancel)
 END

CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
E3 = UPPER(E3) !Convert the data entered to Upper case
IF ?E3{PROP:Visible} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode
DISPLAY(?E3) ! and display the upper cased data

END
END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END

PROP:VscrollPos Returns the position of the vertical scroll bar's "thumb" (from 0 to 255) on a
window, IMAGE, TEXT, LIST, or COMBO control with the VSCROLL attribute. Setting
this property causes the control or window's contents to be scrolled vertically (unless the
IMM attribute is on the LIST or COMBO, then only the "thumb" moves).

Example:
Que QUEUE

STRING(50)
END

WinView WINDOW('View'),AT(0,0,320,200),MDI,SYSTEM
LIST,AT(0,0,320,200),USE(?List),FROM(Que),IMM,VSCROLL

END
CODE
OPEN(WinView)
Fil:KeyField = 'A' ; DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag

EXECUTE INT(?List{PROP:VscrollPos}/10) + 1
Fil:KeyField = 'A'
Fil:KeyField = 'B'
Fil:KeyField = 'C'
Fil:KeyField = 'D'
Fil:KeyField = 'E'
Fil:KeyField = 'F'
Fil:KeyField = 'G'
Fil:KeyField = 'H'
Fil:KeyField = 'I'
Fil:KeyField = 'J'
Fil:KeyField = 'K'
Fil:KeyField = 'L'
Fil:KeyField = 'M'
Fil:KeyField = 'N'
Fil:KeyField = 'O'
Fil:KeyField = 'P'
Fil:KeyField = 'Q'
Fil:KeyField = 'R'
Fil:KeyField = 'S'
Fil:KeyField = 'T'
Fil:KeyField = 'U'
Fil:KeyField = 'V'
Fil:KeyField = 'W'
Fil:KeyField = 'X'
Fil:KeyField = 'Y'
Fil:KeyField = 'Z'

END
DO BuildListQue

. . .
FREE(Que)

BuildListQue ROUTINE
FREE(Queue)
SET(Fil:SomeKey,Fil:SomeKey) !Set to selected key field
LOOP ?List{PROP:Items} TIMES !Process number of records visible in list
NEXT(SomeFile) ; IF ERRORCODE() THEN BREAK. !Break at end of file
Que = Fil:KeyField !Assign field to display to QUEUE
ADD(Que) ! and add it to the QUEUE

END
PROP:WndProc Sets or gets the window (not the client area) messaging procedure for use with

low-level Windows API calls that require it. Generally used with sub-classing to track all
Windows messages. (READ-ONLY)

Example:
PROGRAM
MAP
main
SubClassFunc1(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
SubClassFunc2(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
MODULE('Windows')

!TopSpeed Win31 Library
CallWindowProc(LONG,USHORT,SHORT,SHORT,LONG),LONG,PASCAL

END
END

SavedProc1 LONG
SavedProc2 LONG
WM_MOUSEMOVE EQUATE(0200H)
PT GROUP,PRE(PT)
X SHORT

Y SHORT
END

 CODE
Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1),STATUS

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)

END
CODE
OPEN(WinView)
SavedProc1 = WinView{PROP:WndProc} !Save this procedure
WinView{PROP:WndProc} = ADDRESS(SubClassFunc1) !Change to subclass procedure
SavedProc2 = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc2) !Change to subclass proc
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

. .
SubClassFunc1 FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in
IF wMsg = WM_MOUSEMOVE ! window's status bar (only)
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc1,hWnd,wMsg,wParam,lParam))

SubClassFunc2 FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in
IF wMsg = WM_MOUSEMOVE ! window's client area
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc2,hWnd,wMsg,wParam,lParam))

!Pass control back to
! saved procedure

Printer Control Properties
These properties control report and printer behavior. All of these properties can be used with either the
PRINTER built-in variable or the label of the report as the target, however they may not all make sense
with both.

PROPPRINT:Collate
Specify the printer should collate the output: 0=off, 1=on (not supported by all printers).

PROPPRINT:Color Color or monochrome print flag:1=mono, 2=color (not supported by all printers).

PROPPRINT:Context
Returns the handle to the printer's device context after the first PRINT statement for the
report, or an information context before the first PRINT statement. This may not be set
for the built-in Global PRINTER variable and is normally only read (not set).

PROPPRINT:Copies
The number of copies to print (not supported by all printers).

PROPPRINT:Device
The name of the Printer as it appears in the Windows Printer Dialog. If multiple printer
names start with the same characters, the first encountered is used (not case sensitive).
May be set for the PRINTER built-in variable only before the report is open.

PROPPRINT:DevMode
The entire device mode (devmode) structure as defined in the Windows Software
Development Kit. This provides direct API access to all printer properties. Consult a
Windows API manual before using this.

DevMode GROUP
DeviceName STRING(32) !PROPPRINT:Device
SpecVersion USHORT
DriverVersion USHORT
Size USHORT
DriverExtra USHORT
Fields ULONG
Orientation SHORT
PaperSize SHORT !PROPPRINT:Paper
PaperLength SHORT !PROPPRINT:PaperHeight
PaperWidth SHORT !PROPPRINT:PaperWidth
Scale SHORT !PROPPRINT:Percent
Copies SHORT !PROPPRINT:Copies
DefaultSource SHORT !PROPPRINT:PaperBin
PrintQuality SHORT !PROPPRINT:Resolution
Color SHORT !PROPPRINT:Color
Duplex SHORT !PROPPRINT:Duplex

END
PROPPRINT:Driver The printer driver's filename (without the .DLL extension).

PROPPRINT:Duplex
The duplex printing mode (not supported by all printers). Equates (DUPLEX::xxx) for
the standard choices are listed in the PRNPROP.CLW file.

PROPPRINT:FontMode
The TrueType font mode. Equates (FONTMODE:xxx) for the modes are listed in the
PRNPROP.CLW file.

PROPPRINT:FromMin

When set for the built-in PRINTER variable, this forces the value into the "From:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:FromPage
The page number on which to start printing. Specify -1 to print from the start.

PROPPRINT:Paper Standard paper size. Equates (PAPER:xxx) for the standard sizes are listed in the
PRNPROP.CLW file. This defines the dimensions of the .WMF files that are created by
the Clarion runtime library's "print engine."

PROPPRINT:PaperBin
The paper source. Equates (PAPERBIN:xxx) for the standard locations are listed in the
PRNPROP.CLW file.

PROPPRINT:PaperHeight
The paper height in tenths of millimeters (mm/10). There are 25.4 mm per inch. Used
when setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser
printers).

PROPPRINT:PaperWidth
The paper width in tenths of millimeters (mm/10). There are 25.4 mm per inch. Used
when setting PROPPRINT:Paper to PAPER:Custom (not normally used for laser
printers).

PROPPRINT:Percent
The scaling factor used to enlarge or reduce the printed output, in percent (not supported
by all printers). This defaults to 100 percent. Set this value to print at the desired
percentage (if your printer and driver support scaling). For example, set to 200 to print at
double size, or 50 to print at half size.

PROPPRINT:Port Output port name (LPT1, COM1, etc.).

PROPPRINT:PrintToFile
The Print to File flag: 0=off, 1=on.

PROPPRINT:PrintToName
The output filename when printing to a file.

PROPPRINT:Resolution
The print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx) for the
standard resolutions are listed in the PRNPROP.CLW file.

PROPPRINT:ToMax
When set for the built-in PRINTER variable, this forces the value into the "To:" page
number in the PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:ToPage
The page number on which to end printing. Specify -1 to print to end.

PROPPRINT:Yresolution
Vertical print resolution in Dots Per Inch (DPI). Equates (RESOLUTION:xxx) for the
standard resolutions are listed in the PRNPROP.CLW file.

Example:
SomeReport REPORT

END
CODE
PRINTER{PROPPRINT:Device} = 'Epson' !Pick 1st Epson in the list

PRINTER{PROPPRINT:Port} = 'LPT2:' !Send report to LPT2
SomeReport{PROPPRINT:Paper} = PAPER:User !Custom paper size
SomeReport{PROPPRINT:PAPERHeight} = 6 * 254 !6" form height
SomeReport{PROPPRINT:PAPERWidth} = 3.5 * 254 !3.5" form width
PRINTER{PROPPRINT:Percent} = 250 !page printed 2.5 times normal
PRINTER{PROPPRINT:Copies} = 3 !print 3 copies of each page
PRINTER{PROPPRINT:Collate} = False !print 1,1,1,2,2,2,3,3,3,...
PRINTER{PROPPRINT:Collate} = True !print 1,2,3..., 1,2,3...,
PRINTER{PROPPRINT:PrintToFile} = True !print to a file
PRINTER{PROPPRINT:PrintToName} = 'OUTPUT.RPT' !filename to print to
OPEN(SomeReport) !Open report after setting properties

Embedded SQL
Clarion's property syntax can be used to embed SQL statements in your program code by using
PROP:SQL naming the file as the target. This is only appropriate when using an SQL file driver (such as
the ODBC, AS/400, or Oracle drivers).

You may embed any SQL statements supported by the back-end SQL server. If you issue an SQL
statement that causes a result set to be returned (such as an SQL SELECT statement), you use
NEXT(file) to retrieve the result set (one row at a time) into the file's record buffer. The
FILEERRORCODE() and FILEERROR() functions will return any error code and error string set by the
back-end SQL server.

You may also query the contents of PROP:SQL to get the last SQL SELECT statement issued by the file
driver.

Example:
SQLFile{PROP:SQL} = 'SELECT field1,field2 FROM table1' |

& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2'

!Returns a result set that you
! get one row at a time using
! NEXT(SQLFile)

SQLFile{PROP:SQL} = 'CALL GetRowsBetween(2,8)' !Call a stored procedure
SQLFile{PROP:SQL} = 'CREATE INDEX ON table1 (field1, field2 DESC)"

!No result set
SelectString = SQLFile{PROP:SQL} !Get last SELECT issued by driver

Event Equates
Events
 Field-Independent Events
 Field-Specific Events

Events
In Clarion Windows programs, most of the messages from Windows are automatically handled internally
by the ACCEPT event processor. These are the common events handled by the runtime library (screen
re-draws, etc.). Only those events that actually may require program action are passed on by ACCEPT to
your Clarion code. The net effect of this is to make your programming job easier by removing the low-
level "drudgery" code from your program, allowing you to concentrate on the high-level aspects of
programming, instead. Of course, it is also possible to handle these low-level messages yourself by "sub-
classing" the window, but that is a low-level technique that should only be used if absolutely necessary.
Consult Charles Petzold's book Programming Windows published by Microsoft Press if you need more
information on sub-classing.

There are two types of events passed on to the program by ACCEPT: Field-specific and Field-
independent events. The following lists are the event EQUATEs that are contained in EQUATES.CLW.

Field-Independent Events
A Field-independent event does not relate to any one control but requires some program action (for
example, to close a window, quit the program, or change execution threads). Most of these events cause
the system to become modal for the period during which they are processing, since they require a
response before the program may continue.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key for an ALRT attribute on the window. If a
CYCLE statement is encountered in the code to process this event, the EVENT:AlertKey
is not generated and the action is aborted.

EVENT:AlertKey The user pressed an ALRT attribute hot key for an ALRT attribute on the
window. This is the event on which you perform the action the user has requested by
pressing the alert key.

EVENT:CloseWindow
The window is closing. POSTing this event closes the window. This is the event on which
you perform any window cleanup code.

EVENT:CloseDown
The application is closing. POSTing this event closes the application. This is the event on
which you perform any application cleanup code.

EVENT:OpenWindow
The window is opening. This is the event on which you perform any window
initialization code.

EVENT:LoseFocus The window is losing input focus to another thread. This is the event on which
you save any data that could be at risk of being changed by another thread.

EVENT:GainFocus The window is gaining input focus from another thread. This is the event on
which you restore any data you saved in EVENT:LoseFocus.

EVENT:Suspend The window still has input focus but is giving control to another thread to process
timer events.

EVENT:Resume The window still has input focus and is regaining control from an
EVENT:Suspend.

EVENT:Timer The TIMER attribute has triggered. This is the event on which you perform any timed
actions, such as clock display, or background record processing for reports or batch
processes.

EVENT:Move The user is moving the window. If a CYCLE statement is encountered in the code to
process this event, the EVENT:Moved is not generated and the action is aborted. This is
the event on which you can prevent users from moving a window.

EVENT:Moved The user has moved the window. This is the event on which you readjust anything that is
screen-position-dependent.

EVENT:Size The user is resizing the window. If a CYCLE statement is encountered in the code to
process this event, the EVENT:Sized is not generated and the action is aborted. This is
the event on which you can prevent users from resizing a window.

EVENT:Sized The user has resized the window. This is the event on which you readjust anything that is
screen-size-dependent.

EVENT:Restore The user is restoring the window's previous size. If a CYCLE statement is

encountered in the code to process this event, the EVENT:Restored is not generated and
the action is aborted. This is the event on which you can prevent users from restorng a
window.

EVENT:Restored The user has restored the window's previous size. This is the event on which you
readjust anything that is screen-size-dependent.

EVENT:Maximize The user is maximizing the window. If a CYCLE statement is encountered in the
code to process this event, the EVENT:Maximized is not generated and the action is
aborted. This is the event on which you can prevent users from maximizing a window.

EVENT:Maximized The user has maximized the window. This is the event on which you readjust
anything that is screen-size-dependent.

EVENT:IconizeThe user is minimizing the window. If a CYCLE statement is encountered in the code to
process this event, the EVENT:Iconized is not generated and the action is aborted. This is
the event on which you can prevent users from minimizing a window.

EVENT:Iconized The user has minimized the window. This is the event on which you readjust
anything that is screen-size-dependent.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all the window's controls.
This is the event on which you have executed all data entry validation code for the
controls in the window and can safely write to disk.

EVENT:DDErequest
A client has requested a data item from this Clarion DDE server application. This is the
event on which you execute DDEWRITE to provide the data to the client once.

EVENT:DDEadvise
A client has requested continuous updates of a data item from this Clarion DDE server
application. This is the event on which you execute DDEWRITE to provide the data to
the client every time it changes.

EVENT:DDEexecute
A client has sent a command to this Clarion DDE server application (if the client is
another Clarion application, it has executed a DDEEXECUTE statement). This is the
event on which you determine the action the client has requested and perform it, then
execute a CYCLE statement to signal positive acknowledgement to the client that sent
the command.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE server application. This is
the event on which you determine what the client has sent and where to place it, then
execute a CYCLE statement to signal positive acknowledgement to the client that sent
the data.

EVENT:DDEdata A DDE server has supplied an updated data item to this Clarion client
application.

EVENT:DDEclose A DDE server has terminated the DDE link to this Clarion client application.

Field-Specific Events
A Field-specific event occurs when the user presses a key that may require the program to perform a
specific action related to that control.

EVENT:Selected The control has received input focus. This is the event on which you should
perform any data initialization code.

EVENT:Accepted The user has entered data or made a selection then pressed TAB or CLICKED the
mouse to move on to another control. This is the event on which you should perform any
data input validation code.

EVENT:Rejected The user has entered an invalid value for the entry picture, or an out-of-range
number on a SPIN control. The REJECTCODE function returns the reason the user's
input has been rejected and you can use the PROP:ScreenText property to get the user's
input from the screen. This is the event on which you alert the user to the exact problem
with their input.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key for an ALRT attribute on the control. If a
CYCLE statement is encountered in the code to process this event, the EVENT:AlertKey
is not generated and the action is aborted.

EVENT:AlertKey The user pressed an ALRT attribute hot key for an ALRT attribute on the control.
This is the event on which you perform the action the user has requested by pressing the
alert key.

EVENT:Dragging The user is dragging the mouse from a control with the DRAGID attribute and
the mouse cursor is over a valid potential drop target. This event is posted to the control
from which the user is dragging. This is the event on which you can change the mouse
cursor to indicate a valid drop target.

EVENT:Drag The user released the mouse button over a valid drop target. This event is posted to the
control from which the user is dragging. This is the event on which you set the program
to pass the dragged data to the drop target.

EVENT:Drop The user released the mouse button over a valid drop target. This event is posted to the
drop target control. This is the event on which you receive the dragged data.

EVENT:NewSelection
The current selection in the LIST or COMBO control has changed (the highlight bar has
moved up or down). This is the event on which you perform any "housekeeping" to
synchronize other controls with the currently highlighted record in the list.

EVENT:ScrollUp On a LIST or COMBO control with the IMM attribute, the user has attempted to
move the highlight bar off the top of the LIST. This is the event on which you get a
previous record when "page-loading" the list.

EVENT:ScrollDown
On a LIST or COMBO control with the IMM attribute, the user has attempted to move
the highlight bar off the bottom of the LIST. This is the event on which you get the next
record when "page-loading" the list.

EVENT:PageUp On a LIST or COMBO control with the IMM attribute, the user pressed PGUP.
This is the event on which you get the previous page of records when "page-loading" the
list.

EVENT:PageDown

On a LIST or COMBO control with the IMM attribute, the user pressed PGDN. This is the
event on which you get the next page of records when "page-loading" the list.

EVENT:ScrollTop On a LIST or COMBO control with the IMM attribute, the user pressed
CTRL+PGUP. This is the event on which you get the first page of records when "page-
loading" the list.

EVENT:ScrollBottom
On a LIST or COMBO control with the IMM attribute, the user pressed CTRL+PGDN. This
is the event on which you get the last page of records when "page-loading" the list.

EVENT:Locate On a LIST control with the VCR attribute, the user pressed the locator (?) VCR button.
This is the event on which you can unhide the locator entry control, if it is kept hidden.

EVENT:DroppingDown
On a LIST or COMBO control with the DROP attribute, the user pressed the down arrow
button. This is the event on which you get the records when "demand-loading" the list.

EVENT:DroppedDown
On a LIST or COMBO control with the DROP attribute, the list has dropped. This is the
event on which you can hide other controls that the droplist covers to prevent "screen
clutter" from distracting the user.

EVENT:VBXevent On a CUSTOM control, a VBX-specific event occurred. This is the event on which
you query the PROP:VBXEvent and PROP:VBXEventArg properties to determine what
event occurred and its parameters.

EVENT:Expanding On a LIST control with T in the FORMAT attribute string, the user has clicked on
a tree expansion box. If a CYCLE statement is encountered in the code to process this
event, the EVENT:Expanded is not generated and the expansion is aborted.

EVENT:Expanded On a LIST control with T in the FORMAT attribute string, the user has clicked on
a tree expansion box.

EVENT:Contracting
On a LIST control with T in the FORMAT attribute string, the user has clicked on a tree
contraction box. If a CYCLE statement is encountered in the code to process this event,
the EVENT:Contracted is not generated and the contraction is aborted.

EVENT:Contracted On a LIST control with T in the FORMAT attribute string, the user has clicked on
a tree expansion box.

EVENT:MouseIn On a REGION with the IMM attribute, the mouse cursor has entered the region.

EVENT:MouseOut On a REGION with the IMM attribute, the mouse cursor has left the region.

EVENT:MouseMove
On a REGION with the IMM attribute, the mouse cursor has moved within the region.

EVENT:TabChanging
On a SHEET control, focus is passing to another tab. This is the event on which you
perform any necessary "housekeeping" code.

String Control Properties

Click on a TAB to see its help

The String control allows you to place a string constant in a window or report. It optionally allows you to
substitute a variable.

General

Parameter Specify a string constant by typing it in the Parameter box. If the control is to
display a variable, type a picture token in this box.

Use Type a field equate label to reference the control in executable code, or the name
of a variable. Press the ellipsis button to select of define a variable.

Justification Specify left, center, right, decimal, or default justification. Default justification
matches that specified in the data dictionary, if applicable. If you use decimal
justification, you set the Offset to allow display of digits to the right of the decimal
point.

Offset Specify an indentation value for the list text, in dialog units for a window, or the
default measurement unit for a report.

Variable String Optionally check the Variable String box. This specifies that you want to display
the contents of a variable in the string control. If so, place a picture in the
Parameter box, such as @s24.

Transparent Specify whether you wish the control background to be Transparent. This
instructs Windows to suppress the rectangular region around the text--the
background. Normally, Windows will paint this the same uniform color as the
window below the control.

Total Type This drop down list is available only from the Report Formatter, and only when
the Variable String box is checked. Choose from this drop down list to
implement one of Clarion's built in report totaling functions. Choose from Sum,
Average, Maximum, Minimum, Count, and Page No.

To create page totals or group totals, use the Reset On drop down list in
conjunction with your Total Type selection.

For total strings in a DETAIL, built in totals are calculated each time the DETAIL
containing the string control is PRINTed. For total strings in a Group FOOTER,
the totals are calculated each time any DETAIL within the Group BREAK is
PRINTed. For total strings in a Page FOOTER, the totals are calculated each
time any DETAIL is PRINTed.

As a result of the foregoing, the built in totals are most useful for calculations
made at the lowest level of detail. Calculations on higher levels should be hand
coded. See the Getting Started manual for examples.

Reset On This drop down list is available only from the Report Formatter, and only when
the Variable String box is checked. To create page totals or group totals, use the
Reset On drop down list in conjunction with your Total Type selection. Reset
your totals at the beginning of each Page, or at the beginning of any BREAK
group within the report.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute on
the control when checked.

Extra

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font
Calls the Select Font dialog which allows you to change the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Image Control Properties

Click on a TAB to see its help

The Image control allows you to place bitmapped and vector images in a window or report. The bitmap
file formats supported are .BMP, .PCX, .GIF, .ICO and .JPG. The vector file format supported is .WMF.
Clarion for Windows can support up to 16.7 million color resolution.

You must add the PALETTE attribute to a WINDOW to support custom palettes and color depths beyond
the resolution of the end user's machine at runtime. For example, to support a 16.7 million color palette,
the proper attribute is PALETTE(16777215).

The Image control cannot receive focus, nor can it generate events.

General

File Select a graphics file. Type in a file name, or press the ellipsis (...) button to the
right of the File field to select a graphics file using the standard File Open dialog.

Use Type a field equate label to reference the control in executable code.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Scroll Bars To add a horizontal scroll bar to the control, mark the Horizontal check box.
Scroll bars only appear when the contents of the text box are bigger than the
window. To add a vertical scroll bar, check the Vertical check box. These options
add the HSCROLL, VSCROLL, and HVSCROLL attributes to the control.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions
There are no prompts for the Actions tab for this control.

Region Control Properties

Click on a TAB to see its help

General

Use Type a field equate label to reference the control in executable code.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Fill Allows you to specify the Fill color--the inside color. Check the Fill check box if
you do not wish the region to be transparent. Then press the Fill Color... button.
The standard Color dialog appears. Select a color by clicking on the color
sample square, or add a custom color.

Border Allows you to specify the Border color--the outside line color. Check the Border
check box if you do wish the region to have a border. Then press the Border
Color... button. The standard Color dialog appears. Select a color by clicking on
the color sample square, or add a custom color.

Immediate To generate a message event each time the mouse moves over the region,
check the Immediate box. This adds the IMM attribute to the control. You are
responsible for the code that executes upon notification of the event.

Drag ID To specify the type of Drag operations this control will generate, type up to 16
signatures, separated by commas. The DRAGID attribute specifies the REGION
control can serve as a drag-and-drop host. DRAGID works in conjunction with the
DROPID attribute.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The CURSOR attribute allows you to specify an alternate shape for the cursor
when the user passes the cursor over the control. The drop-down list provides
standard cursor choices such as I-Beam and Crosshair. To select an external
cursor file (whose extension must be .CUR), choose Select File from the drop-
down list, then pick the file using the standard file dialog.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) window
attribute. Filling in the attribute manually is optional--you may set position visually, dragging with the
mouse in the Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions
There are no prompts for the Actions Tab for this control.

Line Control Properties

Click on a TAB to see its help

The line control allows you to place a straight line in your window or report. You specify a color. The line
control cannot receive focus, nor can it generate events.

General

Use Type a field equate label to reference the control in executable code.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Line Color Allows you to specify the Line color. The standard Color dialog appears. Select a
color by clicking on the color sample square, or add a custom color.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions
There are no prompts for the Actions Tab for this control.

Box Control Properties

Click on a TAB to see its help

The box control allows you to place a square or rectangle in your window or report. You may fill it with a
color, specify a border color, and specify that the borders be rounded. The box control cannot receive
focus, nor can it generate events.

General

Use Type a field equate label to reference the control in executable code.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Fill Allows you to specify the Fill color--the inside color. Check the Fill check box,
unless you wish the box to be transparent. Then press the Fill Color... button.
The standard Color dialog appears. Select a color by clicking on the color
sample square, or add a custom color.

Border Allows you to specify the Border color--the outside line color. Check the Border
check box, unless you wish the box to have no border. Then press the Border
Color... button. The standard Color dialog appears. Select a color by clicking on
the color sample square, or add a custom color.

Round Allows you to specify that the box control should have rounded edges.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute. Filling
in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set

the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions
There are no prompts for the Actions Tab for this control.

Ellipse Control Properties

Click on a TAB to see its help

The ellipse control allows you to place a circle or ellipse in your window or report. You may fill the ellipse
with a color, and specify a border color. The ellipse control cannot receive focus, nor can it generate
events.

General

Use Type a field equate label to reference the control in executable code.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Fill Allows you to specify the Fill color--the inside color. Check the Fill check box,
unless you wish the ellipse to be transparent. Then press the Fill Color... button.
The standard Color dialog appears. Select a color by clicking on the color
sample square, or add a custom color.

Border Allows you to specify the Border color--the outside line color. Check the Border
check box, unless you wish the ellipse to have no border. Then press the Border
Color... button. The standard Color dialog appears. Select a color by clicking on
the color sample square, or add a custom color.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions
There are no prompts for the Actions Tab for this control.

Entry Box Control Properties

Click on a TAB to see its help

An entry box allows you to process data input from the user. The data entry control is a specialized form
of Windows edit box. It can help you automatically validate data as the user enters it in a dialog box.

General

Picture The Picture field takes a display picture token that specifies input format. You
may press the ellipsis (...) button next to the field to pick a display picture from
the Edit Picture String dialog.

You may check the user entry against the picture at two points: as the user types
the data in, or when the user closes the dialog box. Checking the data as the
user types it incurs a slight performance penalty. To do so, check the Entry
Patterns box in the Window Properties dialog for the window in which the entry
box resides. This turns the MASK attribute on for all controls in the window.

If the MASK attribute is off, entry checking takes place when the user moves the
focus to another control (for example, by TABBING to another field).

If the user types in data in a format different from the picture, the program will
attempt to determine the format, then convert it to match the picture (if no MASK
was specified). For example, if the user types 'January 1, 1995' and the picture
is @D1, the program formats the input to "1/1/95. If the program cannot
determine the entry format, it will not update the USE variable. The user will
receive an audible prompt (beep), and the focus will return to the entry control,
ready for additional input.

Use Place a variable or field equate label in the Use field. You may specify a variable
which receives the value that the user types. Or, a field equate label which
references the entry box in program statements.

Justification Specify left, center, right, decimal, or default justification. Default justification
matches that specified in the data dictionary, if applicable. If you use decimal
justification, you set the Offset to allow display of digits to the right of the decimal
point.

Offset Specify an indentation value for the text, in dialog units. The indention is in the
opposite direction from the justification.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.

Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Case Specify case attributes for the entry field. The entry box can automatically convert
characters from one case to another. Uppercase automatically converts to all
caps. Capitalize converts to proper case. Default (no attribute) accepts input in
the case the user types it.

Entry Mode Optionally specify an Entry Mode. Choose either Insert , Overwrite or As Is.
The Entry Mode applies only for windows with the MASK attribute set

Options Set the Entry flags. There are three entry flags you may toggle on or off
independently.

Required - (the REQ attribute) specifies that the control may not be left blank or
zero.

Immediate - (the IMM attribute) specifies immediate event generation whenever
the user presses any key. See Also: How to complete an entry field when the last
character is entered.

Read Only - (the READONLY attribute) prevents data entry in this control. Use
this to declare display-only data.

Password - (the PASSWORD attribute) specifies non-display of data entered in
this control. When the user types in data, asterisks are displayed for each
character entered.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry

box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position
Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Actions

The Actions tab prompts are all from the templates, in other words, the prompts you see here vary with
the template used to create the control. Following are the standard action prompts for all entry controls.

The standard Actions prompts are designed to provide data validation support for your entry controls.
The tab is divided into two parallel sections. The When the Control is Selected section provides
validation when the control receives focus (when the user TABS onto, or mouse CLICKS the control). The
When the Control is Accepted section provides data validation when the control loses focus after data
have been entered in it. The control loses focus when the user TABS off the control, mouse CLICKS to a
different control or window, or closes the window without canceling. The two sections are not mutually
exclusive, so you can provide validation at both points.

Lookup Key Type a key label from the lookup file, or press the ellipsis (...) button to select a
key from the Select Key dialog.

A lookup file is a file which contains all the valid values for the entry field, which
are directly accessible through a unique.

For example, a file containing all of the customer numbers for your application
could be a lookup file. The key label could be CUS:KeyCustNumber.

Tip: This lookup validation works best with a single component unique key.

Lookup Field Type the label of a component field of the lookup key, or press the ellipsis (...)
button to select a field from the Select component from key dialog.

This is the field within the key that contains the same value being validated.
Ideally, this field is the only component of a unique key.

Lookup Procedure Type a procedure name, or choose an existing procedure from the drop down list.

This is the procedure that is called when the user enters an invalid value, and the
lookup specified above fails. The usual purpose of this procedure is to allow the
user to choose a valid value from the lookup file.

Select procedures (or Browse procedures) generated by Clarion's Wizards) are
appropriate for this purpose. Alternatively, you may hand-code a procedure.

Advanced Calls the Embedded Source dialog. The only embed point shown is after the
code generated to call the lookup procedure specified above. For more embed
points, and further customization, press the Embeds button.

Perform lookup during non-stop select
Checking this box tells Clarion to perform the validation when the window is
accepted, even if the entry control never received focus. From a practical
viewpoint, checking this box prevents the user from entering blanks by virtue of
having pressed the window's "OK button" without ever TABBING or CLICKING onto
the entry field.

This option is only applicable to the When the Control is Accepted section.

Force Window Refresh when Accepted
Checking this box ensures that everything (including formulas and other entry
fields) on the window is current and up-to-date when the user TABS off this entry
control.

Files Accesses the File Schematic Definition dialog for this procedure.

Embeds Accesses the Embedded Source dialog for points surrounding the event
handling for this control only.

Font
Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Button Control Properties

Click on a TAB to see its help

A push button (BUTTON) is a rectangular area containing text and/or a picture. When the user presses
the button, it should execute a command described by the text or picture.

General

Parameter The text to display on the button. Place an ampersand (&) before the character to
act as the accelerator key for the button--this underlines the character as it
appears on the button.

Tip: Microsoft recommends you do not place an accelerator key on buttons labeled 'OK,' or
'Cancel.'

Use The field equate label references the button in program statements.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Icon In the Icon field, optionally select a standard icon or icon file. This displays a
small bitmap on the button face (clipping or centering the bitmap as necessary).

To select a standard icon, choose one of the named items in the drop-down list.
To select an icon file (whose extension must be .ICO), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Immediate Allows you to create a button control which repeats the executable action
continuously, for as long as the user holds the button down. Normally, buttons
generate an event only after the user presses and releases the mouse. See also:
the IMM attribute.

Required Specifies that when pressed, your program automatically checks that all entry

controls with the REQ attribute are neither blank nor zero. A button with this
attribute is a 'required fields check' button.

Specify this type of button when a window also contains an ENTRY or TEXT
control field with the REQ attribute (or else use the INCOMPLETE() function to
test the ENTRY controls). When the user presses a button with the REQ
attribute and an ENTRY field is blank or zero, the first required control which is
blank or zero receives the focus.

Default Button "Presses" the button when the user presses the ENTER key. A heavy border
appears around the button at runtime, to signal the default button to the user. In
general, place the DEFAULT attribute on a button if it represents the most likely
action the user will wish to carry out. Place only one default button in a window.

STD ID Executes a standard action when the end user presses the button. See also:
STD .

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the mouse over the button. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the
button has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
Use the Actions tab to provide functionality to your button. Filling in these prompts causes the button to
execute an action when the user presses the button.

When Pressed From the drop down list, choose Call a Procedure, Run a Program, or No
Special Action.

The procedure or program you specify executes when the user pushes the
button. The choices are:

Call a Procedure You must specify the Procedure Name, and whether the procedure will Initiate a
Thread.

Procedure Name From the Procedure Name drop down list, choose an existing procedure name,
or type a new procedure name. A new procedure appears as a "ToDo" item in
your Application Tree.

Initiate a Thread Optionally check the Initiate a Thread box. If the procedure initiates a thread,
specify the Thread Stack size. Clarion uses the START function to initiate a new
execution thread. If the procedure initiates a thread, you cannot specify
Parameters or Requested File Action. If the procedure does not initiate a
thread, you can specify Parameters, Requested File Action, or both.

Tip: A BUTTON on an application frame toolbar that calls an MDI child procedure must initiate a
thread.

Thread Stack Accept the default value in the Thread Stack spin box unless you have
extraordinary program requirements. To change the value, type in a new value or

click on the spin box arrows.

Parameters In the Parameters field, optionally type a list of variables or data structures
passed to the procedure.

Requested File Action
From the drop down list, optionally select None, Insert, Change, Delete, or
Select. The default selection is None. The Global Request variable gets the
selected value. The called procedure can then check the value of the Global
Request variable and perform the requested file action.

Run a Program You must specify the Program Name, and optionally, any parameters.

Program Name Type the program name. The program must reside in a .DLL or .LIB defined in
your application's project (.PRJ) file.

Parameters Optionally type a list of values that are passed to the program.

No Special Action Choose this option if you are providing your button's functionality with another
method, such as embedded source, or an STD ID (see Extra Tab above).

Note: You may combine a procedure or program call with embedded source, but not with an STD
ID.

Files Accesses the File Schematic Definition dialog for this procedure.

Embeds Allows you to embed source code at points surrounding the event handling for
this button only.

Prompt Control Properties

Click on a TAB to see its help

The Prompt control allows you to place a specialized string object on screen which automatically provides
an accelerator or mnemonic access key to the next active control following the prompt.

General

Parameter Specify a string constant by typing it in the Parameter box. If the control is to
display a variable, type a picture token in this box.

Use Type a field equate label to reference the control in executable code, or the name
of a variable

Justification Specify left, center, right, or default justification. Default justification matches that
specified in the data dictionary, if applicable.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the mouse over the PROMPT. The drop-
down list provides standard cursor choices such as I-Beam and Crosshair. To
select an external cursor file (whose extension must be .CUR), choose Select
File from the drop-down list, then pick the file using the standard file dialog.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Option Control Properties

Click on a TAB to see its help

The OPTION control declares a group of RADIO controls that offer the user a list of mutually exclusive
choices. The multiple RADIO controls in the OPTION structure define the choices offered to the user.

General

Parameter Specify a string constant by typing it in the Parameter box. If the control is to
display a variable, type a picture token in this box.

Use Type a field equate label to reference the control in executable code, or the name
of a variable

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Boxed The BOXED attribute specifies a single-track border around the OPTION
structure. The parameter text of the OPTION control appears in a gap at the top
of the border box. If BOXED is omitted, the text parameter is not displayed on
screen

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose

options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Check Box Control Properties

Click on a TAB to see its help

The check box provides an attractive way to display a yes/no choice for a record field--the alternative
might be an entire column that repeats "one," "yes," or even ".T." for each record.

General

Parameter Specify a string constant to display by typing it in the Parameter box.

Use Specify a numeric variable. The check box places a value of 1 in the numeric
variable if the end user turns on the check box, zero if off.

Justification Sets alignment for the label which appears next to the control. Choose Left or
Right. If you select an icon, no label appears at run time.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Icon In the Icon field, optionally select a standard icon or icon file. This displays a
small bitmap next to the check box (clipping or centering the bitmap as
necessary).

To select a standard icon, choose one of the named items in the drop-down list.
To select an icon file (whose extension must be .ICO), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
The Check Box Actions tab leads to other dialogs allowing you to name variables and change their
values when the end user checks or unchecks the box. Additionally, you can HIDE or UNHIDE other
controls in the window.

Two group boxes with two pairs of buttons appear on the Actions tab. These buttons set the behavior for
When the Check Box is Checked, and When the Check Box is Unchecked.

Assign Values Opens the Assign Values dialog where you can assign values to variables
based on the checked or unchecked state of the check box.

Hide/Unhide Controls Opens the Hide/Unhide Controls dialog where you can specify window controls
to hide or unhide based on the checked or unchecked state of the check box.

Files Accesses the File Schematic Definition dialog for this procedure.

Embeds Allows you to embed source code at points surrounding the event handling for
this check box only.

Assign Values Dialog
Allows you to assign values to variables based on the checked or unchecked state of a check box. You
may specify multiple assignments. Press the Insert button to add a new assignment.

Variable to Assign In the entry box, type a variable name, or press the ellipsis (...) button to choose
or create a data dictionary field or a memory variable with the Select Field
dialog.

Value to Assign In the entry box, type the value to assign to the variable. You can then add code
to your program to take appropriate action based on the run time value of the
variable(s).

Hide/Unhide Controls Dialog
Allows you to specify window controls to hide or unhide based on the checked or unchecked state of a
check box. You may specify multiple controls to hide/unhide. Press the Insert button to add a new
hide/unhide action to the list.

Control to hide/unhide From the drop down list, choose the control to HIDE or UNHIDE.

Hide or unhide control From the drop down list, choose Hide or Unhide.

Group Control Properties

Click on a TAB to see its help

A Group control places a box around two or more controls. It visually associates the controls for the user,
and allows you to address all the controls as one entity -- making it easy, for example, to disable all at
once.

General

Parameter Specify a string constant by typing it in the Parameter box.

Use Type a field equate label to reference the control in executable code, or the name
of a variable

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Boxed Specifies whether to draw a visible box, containing the caption, around the
grouped controls. When not checked, the Group box, including its caption, is
invisible.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down

list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

List Control Properties

Click on a TAB to see its help

The List box is useful for presenting a great number of choices for the user. It can convey a large amount
of data in a small area, which has led to its use as an all purpose data control. Using Clarion for Windows,
you can create list boxes which look like spreadsheet grids, perform drag-and-drop tasks, and more.

This section only discusses placing the list box. After you place a list box, you must format it. See the List
Box Formatter dialog for more information on formatting and adding additional functionality to your list
boxes.

See also:

How to Create a List Box

General

Use Place a variable or field equate label in the Use field. You may specify the
variable which will receive the value that the user selects. Or, a field equate label
to reference the list box in program statements.

From Fill the From field with the origin of the list data. Generally, this is the label of a
QUEUE structure.

Drop Specifies whether this should be a regular or drop-down list box. Place a zero in
the Drop field for a normal list box. To create a drop-down list box, type the
number of drop-down elements you wish to be visible.

Justification Specify left, center, right, decimal, or default justification. Default justification
matches that specified in the data dictionary, if applicable. If you use decimal
justification, you set the Offset to allow display of digits to the right of the decimal
point.

Offset Specify an indentation value for the list box item text, in dialog units.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Mark Optionally enables multiple item selection. Type in the name of a QUEUE, field or
array in the Mark field if you wish to allow the user to select more than one item
from the list. The QUEUE field will flag the selected items.

VCR Optionally provide VCR controls. Check the VCR check box to provide VCR style
controls for the list box. Optionally type the field equate label of an entry field to
the right of the check box. When the user presses the Locator (?) button, the
focus shifts to that field. The user may type in data, then press TAB to scroll the
list box to the closest matching entry.

Immediate To generate a message event each time the end user moves or resizes the
selection bar, check the Immediate box. This adds the IMM attribute to the
window. You are responsible for the code that executes upon notification of the
event.

Select Columns Check this box if you wish to allow the user to highlight a multi-column list box
field by field (rather than one row at a time). This provides for spreadsheet grid
style movement of the highlight bar. See also: the COLUMN attribute.

Hide Selection Specifies the selection bar appears only when the list box has focus. See also:
the NOBAR attribute.

Scroll Bars To add a horizontal scroll bar to your list box, mark the Horizontal check box.
Scroll bars only appear when the list of items in the list is bigger than the window.
To add a vertical scroll bar, check the Vertical check box. These options add the
HSCROLL, VSCROLL, and HVSCROLL attributes to the control.

Drag ID To specify the type of Drag operations this control will generate, type up to 16
signatures, separated by commas. The DRAGID attribute specifies the LIST
control can serve as a drag-and-drop host. DRAGID works in conjunction with the
DROPID attribute.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Combo Box Control Properties

Click on a TAB to see its help

The Combo Box combines an entry box with a list box. It is useful for when you expect string data which
usually should be a member of the list, but which also might not be. The Window Formatter allows you
to create either a normal combo box, or a drop-down combo box.

This section only discusses placing the combo box. After you place it, you must format it. See the List
Box Formatter dialog for more information on formatting and adding additional functionality to your
combo boxes.

See also:

How to Use a Combo Box

FileDropCombo Control template

General

Picture Specify the picture token for the control. The picture token you specify appears in
the format string, for example, "@S10@." Pressing the ellipsis button allows you
to select the picture token from the Edit Picture String Dialog .

Use Place a variable or field equate label in the Use field. You may specify the
variable which will receive the value that the user selects. Or, a field equate label
to reference the combo box in program statements.

From Fill the From field with the origin of the list data. Generally, this is the label of a
QUEUE structure.

Drop Specifies whether this should be a regular or drop-down combo box. Place a zero
in the Drop field for a normal combo box. To create a drop-down combo box,
type the number of drop-down elements you wish to be visible. You must resize
the combo box after specifying the drop number.

Justification Specify left, center, right, decimal, or default justification. Default justification
matches that specified in the data dictionary, if applicable. If you use decimal
justification, you set the Offset to allow display of digits to the right of the decimal
point.

Offset Specify an indentation value for the list box item text, in dialog units.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls

the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Mark Optionally enables multiple item selection. Type in the name of a QUEUE, field or
array in the Mark field if you wish to allow the user to select more than one item
from the list. The QUEUE field will flag the selected items.

VCR Optionally provide VCR controls. Check the VCR check box to provide VCR style
controls for the list box. Optionally type the name of an entry field to the right of
the check box. When the user presses the Locator (?) button, the focus shifts to
that field. The user may type in data, then press TAB to scroll the list box to the
closest matching entry.

Case Specify case attributes for the entry field portion of the combo box. The entry box
can automatically convert characters from one case to another. Uppercase
automatically converts to all caps. Capitalize converts to proper case. Default
(no attribute) accepts input in the case the user types it.

Entry Mode Optionally specify an Entry Mode for the entry field portion of the combo box..
Choose either Insert , Overwrite or As Is. The Entry Mode applies only for
windows with the MASK attribute set

Immediate To generate a message event each time the end user moves or resizes the
selection bar, check the Immediate box. This adds the IMM attribute to the
window. You are responsible for the code that executes upon notification of the
event.

Select Columns Check this box if you wish to allow the user to highlight the list component of a
multi-column combo box field by field (rather than one row at a time). This
provides for spreadsheet grid style movement of the highlight bar. See also: the
COLUMN attribute.

Required - (the REQ attribute) specifies that the control may not be left blank or zero.

Hide Selection Specifies the selection bar appears only when the list box has focus. See also:
the NOBAR attribute.

Read Only - (the READONLY attribute) prevents data entry in this control. Use this to declare
display-only data.

Scroll Bars To add a horizontal scroll bar to your list box, mark the Horizontal check box.
Scroll bars only appear when the list of items in the list is bigger than the window.
To add a vertical scroll bar, check the Vertical check box. These options add the
HSCROLL, VSCROLL, and HVSCROLL attributes to the control.

Drag ID To specify the type of Drag operations this control will generate, type up to 16
signatures, separated by commas. The DRAGID attribute specifies the REGION
control can serve as a drag-and-drop host. DRAGID works in conjunction with the
DROPID attribute.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Spin Box Control Properties

Click on a TAB to see its help

Spin Boxes are specialized entry boxes that only accept values in a predefined range. They also provide
the user with "increase" and "decrease" buttons, which many people like because they can use the
mouse to change the value. The user can also type a value directly into the control.

General

Picture The Picture field takes a display picture token that specifies input format. You
may press the ellipsis (...) button next to the field to pick a display picture from
the Edit Picture String dialog.

You may check the user entry against the picture at two points: as the user types
the data in, or when the user closes the dialog box. Checking the data as the
user types it incurs a slight performance penalty. To do so, check the Entry
Patterns box in the Window Properties dialog for the window in which the entry
box resides. This turns the MASK attribute on for all controls in the window.

If the MASK attribute is off, entry checking takes place when the user moves the
focus to another control (for example, by TABBING to another field).

If the user types in data in a format different from the picture, the program will
attempt to determine the format, then convert it to match the picture (if no MASK
was specified). For example, if the user types 'January 1, 1995' and the picture
is @D1, the program formats the input to "1/1/95. If the program cannot
determine the entry format, it will not update the USE variable. The user will
receive an audible prompt (beep), and the focus will return to the entry control,
ready for additional input.

Use Place a variable or field equate label in the Use field. You may specify a variable
which receives the value that the user selects. Or, a field equate label which
references the spin box in program statements.

From The FROM attribute is optional, but is useful for values that progress in an
irregular increment. You may also wish to provide the user with strings formatted
as Spin Box choices when the choices are a natural progression such as the
days of the week or the months of the year. Specify a QUEUE in the From field.
This and Range are mutually exclusive.

Justification Specify left, center, right, decimal, or default justification. Default justification
matches that specified in the data dictionary, if applicable. If you use decimal
justification, you set the Offset to allow display of digits to the right of the decimal
point.

Offset Specify an indentation value for the list box item text, in dialog units.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Range Specify the upper and lower Range limits, and the Step value. Place the highest
value which the control should return in the Range Upper field. The value should
match the Picture field. Place the lowest acceptable value in the Lower field.
Place the Step value--the amount by which each press of the increase or
decrease buttons should change the spin box value--in the Step field.

Case Specify case attributes for the entry field. The entry box can automatically convert
characters from one case to another. Uppercase automatically converts to all
caps. Capitalize converts to proper case. Normal (no attribute) accepts input in
the case the user types it.

Entry Mode Optionally specify an Entry Mode for the entry field portion of the combo box..
Choose either Insert , Overwrite or As Is. The Entry Mode applies only for
windows with the MASK attribute set

Options Set the Entry flags. There are three entry flags you may toggle on or off
independently.

Required - (the REQ attribute) specifies that the control may not be left blank or
zero.

Read Only - (the READONLY attribute) prevents data entry in this control. Use
this to declare display-only data.

Immediate - (the IMM attribute) specifies immediate event generation whenever
the user presses any key..

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape

for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Text Box Control Properties

Click on a TAB to see its help

The Text control provides a multi-line data entry field. This control is especially suitable for holding a long
string.

General

Use Place a variable or field equate label in the Use field. You may specify a variable
which receives the value that the user types. When using multi-line controls, be
sure the variable is large enough to hold the amount of data you expect your
users to enter in the control. Or, type a field equate label which references the
entry box in program statements.

Justification Specify left, center, right, or default justification. Default justification matches that
specified in the data dictionary, if applicable.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Case Specify case attributes for the entry field. The entry box can automatically convert
characters from one case to another. Uppercase automatically converts to all
caps. Normal (no attribute) accepts input in the case the user types it.

Options Set the Entry flags. There are two entry flags you may toggle on or off
independently.

Required - (the REQ attribute) specifies that the control may not be left blank or
zero.

Read Only - (the READONLY attribute) prevents data entry in this control. Use

this to declare display-only data.

Scroll Bars To add a horizontal scroll bar to the control, mark the Horizontal check box.
Scroll bars only appear when the contents of the text box are bigger than the
window. To add a vertical scroll bar, check the Vertical check box. These options
add the HSCROLL, VSCROLL, and HVSCROLL attributes to the control.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.

Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Radio Button Control Properties

Click on a TAB to see its help

A Radio button, also called an option button, provides the user one of a set of mutually exclusive
choices. By default, a filled-in circle represents the current selection.

A group box--an OPTION structure--must always surround the radio button choices. The Window
Formatter automatically prompts you to create this if you try to place a radio button outside an option
box. When the user selects a choice, the control fills the USE variable with the Radio text, minus the
ampersand indicating the accelerator key.

When you place a radio button in a blank dialog window, it forces the creation of the OPTION
STRUCTURE. After activating the Radio Button tool, or choosing Radio Button from the Control menu,
CLICK in the window. An option box and one radio button appear. Select the radio button and press the
Properties button, or RIGHT-CLICK and select Properties to open the Radio Button Properties dialog.

General

Parameter Specify a string constant to display. Place an ampersand (&) before the single
character to set the accelerator key or mnemonic access character for the radio
button--this underlines the label that appears next to the radio button.

Use The field equate label references the radio button in program statements.

Justification Specify left, center, right, or default justification. Default justification matches that
specified in the data dictionary, if applicable.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Extra

Icon In the Icon field (ICON), optionally select a standard icon or icon file. This
displays a small bitmap on the button face (clipping or centering the bitmap as

necessary).

To select a standard icon, choose one of the named items in the drop-down list.
To select an icon file (whose extension must be .ICO), choose Select File from
the drop-down list, then pick the file using the standard file dialog. At run time, the
radio button appears as a "latched" 3D push button.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control

automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Progress Control Properties

Click on a TAB to see its help

The PROGRESS control declares a control that displays a progress bar. This usually displays the current
percentage of completion of a batch process.

If a variable is named as the USE attribute, the progress bar is automatically updated whenever the value
in that variable changes. If the USE attribute is a field equate label, you must directly update the display
by assigning a value (within the range defined by the RANGE attribute) to the control's PROP:progress
property

General

Use The field equate label references the control in program statements.

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Range Specifies the range of values the progress bar displays. If omitted, the default
range is zero (0) to one hundred (100).

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Sheet Control Properties

Click on a TAB to see its help

The SHEET control declares a group of TAB controls that offer the user multiple "pages" of controls for
the window. The multiple TAB controls in the SHEET structure define the "pages" displayed to the user.

General

Use Type a field equate label to reference the control in executable code, or the name
of a variable

Mode

Hide Makes the control invisible at the time Windows would initially display it. Windows
actually creates the control--it just doesn't display it on screen. The Window
Formatter places the HIDE attribute on the control. Use the UNHIDE statement
to display the control.

Disable Disables or 'grays-out' the control when your program initially displays it. The
Window Formatter places the DISABLE attribute on the control. Use the
ENABLE statement to allow the user access to the control.

Skip Instructs the Window Formatter to omit the control from the Tab Order. When
the user TABS from field to field in the dialog box, Windows will not give the
control focus. This is useful for seldom-used data fields. The Window Formatter
will place the SKIP attribute on the control.

Scroll Specifies whether the control should move with the window when the user scrolls
the window. By default, (unchecked), the control does not move with the window.
Leave the Scroll box unchecked to create a control that stays fixed when the
user scrolls the window. The Window Formatter places the SCROLL attribute
on the control when checked.

Extra

Wizard Hides the "tab" portion of the TAB controls.

Hiding the tabs aids in creating a wizard. A wizard is a window with a "tabless"
SHEET control containing one or more TABS. You'll need to write the code to
handle the "turning of the pages". See How to Create a Wizard. Also see the CW\
EXAMPLES\APPS\WIZDEMO\WIZ.APP application.

Tip: Do not check this box until you are finished designing the window!

Spread Resizes the tabs on the TABs to fill all the available space on the SHEET.

The resizing algorithm considers the length of the text displayed on each tab, the
number of tabs, and the available space on the property sheet.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag

and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Tab Control Properties

Click on a TAB to see its help

The TAB structure declares a group of controls that constitute one of the multiple "pages" of controls
contained within a SHEET structure. The multiple TAB controls in the SHEET structure define the "pages"
displayed to the user. The SHEET structure's USE attribute receives the text of the TAB control selected
by the user.

General

Parameter Specify a string constant by typing it in the Parameter box. If the control is to
display a variable, type a picture token in this box.

Use Type a field equate label to reference the control in executable code, or the name
of a variable

Extra

Required Specifies that when selected, your program automatically checks that all entry
controls with the REQ attribute are neither blank nor zero.

Specify this type of tab when a window also contains an ENTRY or TEXT control
field with the REQ attribute (or else use the INCOMPLETE() function to test the
ENTRY controls). When the user clicks on a tab with the REQ attribute and an
ENTRY field is blank or zero, the first required control which is blank or zero
receives the focus. See also: How to Create a Multi-Page Form .

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Tip The TIP attribute on a control specifies the text to display in a "balloon help" box
when the mouse cursor pauses over the control. Although there is no specific
limit on the number of characters, the string should not be longer than can be
displayed on the screen.

Actions
There are no prompts for the Actions Tab for this control.

Toolbar Properties

Click on a TAB to see its help

Allows you to edit settings for your TOOLBAR.

See also:

How to Add a Tool Bar

Extra

No Merge Specifies not to merge an MDI tool bar into an application frame tool bar at run
time.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your toolbar, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control
or window, and its Height.

Default Default size for a toolbar is approximately twice the height of the caption bar, and
the full width of the window.

If you want to merge toolbars, both should use the Default size.

Fixed To set a specific position and size, mark the Fixed choices. To set the upper left
corner of the toolbar, type values in the X and Y boxes.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the window proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Application Properties Dialog

Click on a TAB to see its help

This dialog allows you to specify the appearance and functionality of your application frame window.

See also:

How to Customize Your Window

General

Title To specify caption bar text, type a string constant in the Title field. The caption
bar holds the name of the window.

Label To specify the label for the application structure, type it in the Label field. This
names the specific APPLICATION in the source code. The label may contain
upper or lower case letters, numerals, the underscore character or a colon.
Space characters are forbidden. The first character must be a letter or the
underscore character. Clarion reserved words may not serve as labels.

Frame Type To choose the frame for your window, pick a selection from the Frame Type
drop-down list. The frame defines the borders of the window. The normal frame
type for an application frame is the resizeable type. Choose from:

Single - a single pixel frame which the user cannot resize.

Double - a thick frame, which the user cannot resize. This adds the DOUBLE
attribute to the window.

Resizeable - a thick frame, which the user can resize. This adds the RESIZE
attribute to the window.

Initial Size Sets the initial state of your window. Choose from:

Normal - displays the window at the default size which either you specifically set,
or Windows sets if you don't.

Maximized - the window fills the desktop, if an application window, or the window
frame, if an MDI child window. This adds the MAXIMIZE attribute to the window.

Iconized - the window appears in iconized state--as a 32 by 32 pixel window at
the bottom of the desktop. This adds the ICONIZE attribute to the window.

Extra

Icon To associate an icon with the window, specify an icon in this field. You may type
in a file name or an EQUATE. You may also press the ellipsis button (...), then
select an icon file name using the standard Open File dialog. The file name or
equate you specify becomes the parameter for the ICON attribute.

You should always specify an icon for an application window. Specifying an icon
name automatically places a minimize button on the caption bar of your
application or MDI child window.

Timer To specify the window receive Timer Event messages from Windows, fill in the
Timer field. Specify the timer interval in hundredths of seconds. The file name or
equate you specify becomes the parameter for the TIMER attribute.

For example, if you specify 100 in the field, the window will automatically receive
an EVENT:Timer once every second (100/100's seconds). This might be
appropriate for adding a clock to a status bar.

Immediate To generate a message event each time the end user moves or resizes the
window, check the Immediate box. This adds the IMM attribute to the window.
You are responsible for the code that executes upon notification of the event.

Status Bar To provide a message bar at the bottom of your window, mark the Status Bar
check box. This adds the STATUS attribute to the window.

Tip: A status bar in an application window is an excellent way to increase user feedback in
your application. Clarion for Windows makes it simple to post messages on the status bar
advising the user of what your application is doing as it does it. Increasing user feedback
makes the user feel more in control. This allows the user to feel more confident and be
more efficient when using your application.

System Menu To add a system menu to your window, mark the System Menu check box. Most
windows should have a system menu. For users on a system without a mouse,
the system menu provides the only means of minimizing, maximizing or re-sizing
the window. This adds the SYSTEM attribute to the window.

Tip: Even if you plan that the window should NOT have a system menu when the application is
complete, it's good practice to place a system menu on your application while it's under
development. By DOUBLE-CLICKING the system menu, or choosing Close, you can close your
application should your normal exit procedure fail.

Auto Display To add the AUTO attribute to your window, mark the Auto Display check box.
This automatically updates the contents of all controls on screen through each
pass of the ACCEPT loop.

Maximize Box To place a maximize button in your window, mark the Maximize Box check box.
In general, you should place a maximize button only on application windows and
MDI child document windows. This adds the MAX attribute to the window.

Scroll Bars To add a horizontal scroll bar to your window, mark the Horizontal check box.
Scroll bars only appear when something inside the window--a control--is bigger
than the window. To add a vertical scroll bar to your window, check the Vertical
check box. These options add the HSCROLL, VSCROLL, and HVSCROLL
attributes to the window.

Assuming your application frame will display MDI child windows, you normally
check both Horizontal and Vertical.

Status Widths To set the width of the status bar zone(s), type a value or list of values in the
Status Widths field. You must also check the Status Bar box in the top part of
the dialog to display a status bar. The values you enter in this field fill the
STATUS attribute parameters.

The zones are the areas within the status bar marked off by the 3D shaded

boxes. The first zone on the left, by default, displays MSG attribute text. This is
useful for specifying short help instructions or other information to the user. If
your application has only one zone for the status bar, you may omit this field. For
more than one zone, enter a series of comma separated values. The default
measurement unit is dialog units.

You may set a minimum value for a zone width by typing a negative number. This
creates a zone with a minimum width, but is expandable by resizing the window.
Use the runtime property assignment syntax to place text in any zone. To place a
string in the second zone, for example:

{PROP:StatusText} = ?array
Tip: A multi-zone status bar can give your application a professional look. You may display

help text in zone one, and when editing a record, the current record number in zone two,
for example.

Position

Allows you to set the location and size of a control.

The Position dialog allows you to specify the AT (set control position and size in window) attribute.
Filling in the attribute manually is optional--you may set position visually, dragging with the mouse in the
Window Formatter.
To set a precise screen location or size for your control, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control,
and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size for a control depends on the size of the system font.

Full Sizes a control to expand to the full width or height of the window. The control
automatically expands or contracts as the end user resizes the window.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the control proportionally
at different screen resolutions.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Window Properties

Click on a TAB to see its help

This dialog allows you to specify the appearance and functionality of your window.

See also:

How to Customize Your Window

General

Title To specify caption bar text, type a string constant in the Title field. The caption
bar holds the name of the window.

Label This names the specific WINDOW in the source code. The label may contain
upper or lower case letters, numerals, the underscore character or a colon.
Space characters are forbidden. The first character must be a letter or the
underscore character. Clarion reserved words may not serve as labels.

Frame Type To choose the frame for your window, pick a selection from the Frame Type
drop-down list. The frame defines the borders of the window. Choose from:

Single - a single pixel frame which the user cannot resize. Most suitable for
dialog boxes.

Double - a thick frame, which the user cannot resize. Use this type frame for a
system modal window with no caption bar, or for a modal dialog box with a
caption bar. This adds the DOUBLE attribute to the window.

Resizeable - a thick frame, which the user can resize. Choose this for application
and MDI child windows. This adds the RESIZE attribute to the window.

Initial Size Sets the initial state of your window. Choose from:

Normal: - displays the window at the default size which either you specifically set,
or Windows sets if you don't.

Maximized: - the window fills the desktop, if an application window, or the window
frame, if an MDI child window. This adds the MAXIMIZE attribute to the window.

Iconized: - the window appears in iconized state--as a 32 by 32 pixel window at
the bottom of the desktop, for an application window, or at the inside bottom of
the application frame, for an MDI child window. This adds the ICONIZE attribute
to the window.

Extra

Icon To associate an icon with the window, specify an icon in this field. You may type
in a file name or an EQUATE. You may also press the ellipsis button (...), then
select an icon file name using the standard Open File dialog. The file name or
equate you specify becomes the parameter for the ICON attribute.

You should always specify an icon for an application window, and for an MDI
child window. Specifying an icon name automatically places a minimize button on

the caption bar of your application or MDI child window.

Palette Use the PALETTE attribute on your window to ensure ample color support for
your images. The PALETTE attribute specifies how many colors you want this
window to use when it is the foreground window. This is applicable in hardware
modes where a palette is in use and spare colors are available. The number you
specify becomes the parameter for the PALETTE attribute. Leave this field blank
to specify the default for the end user's system.

Timer To specify the window receive Timer Event messages from Windows, fill in the
Timer field. Specify the timer interval in hundredths of seconds. The file name or
equate you specify becomes the parameter for the TIMER attribute.

For example, if you specify 100 in the field, the window will automatically receive
an EVENT:Timer once every second (100/100's seconds). This might be
appropriate for adding a clock to a status bar.

Immediate To generate a message event each time the end user moves or resizes the
window, check the Immediate box. This adds the IMM attribute to the window.
You are responsible for the code that executes upon notification of the event.

Status Bar To provide a message bar at the bottom of your window, check the Status Bar
box. This adds the STATUS attribute to the window.

Tip: A status bar in an application window is an excellent way to increase user feedback in
your application. Clarion for Windows makes it simple to post messages on the status bar
advising the user of what your application is doing as it does it. Increasing user feedback
makes the user feel more in control. This allows the user to feel more confident and be
more efficient when using your application.

Modal Window To specify a system modal window, check the Modal Window box. A system
modal window prevents all other tasks--even in applications other than your
own--from executing until the window is closed. This adds the MODAL attribute to
the window.

Entry Patterns To enable support for an entry mask for controls in the window, check the Entry
Patterns box. This allows you to specify key-in entry patterns for the fields you
choose. This adds the MASK attribute to the window.

System Menu To place a system menu in your window, check the System Menu box. Most
windows should have a system menu. For users on a system without a mouse,
the system menu provides the only means of minimizing, maximizing or re-sizing
the window. This adds the SYSTEM attribute to the window.

Tip: Even if you plan that the window should NOT have a system menu when the application is
complete, it's good practice to place a system menu on your application while it's under
development. By DOUBLE-CLICKING the system menu, or choosing Close, you can close your
application should your normal exit procedure fail.

Auto Display To add the AUTO attribute to your window, check the Auto Display box. This
automatically updates the contents of all controls on screen through each pass of
the ACCEPT loop.

MDI Child To add the MDI attribute to your window, check the MDI Child box. An MDI child
window cannot move outside the main application window. A typical use of an
MDI window might be to present a different arrangement of the data in your

application's database.

Maximize Box To place a maximize button in your window, check the Maximize Box box. In
general, you should place a maximize button only on application windows and
MDI child document windows. This adds the MAX attribute to the window.

3D Look To provide the gray window background, chiseled control look for your
application, check the 3D Look box. This is clearly a style consideration, but will
go a long way in giving your application a professional look. This adds the GRAY
attribute to the window.

The gray background is not visible when you design your window with the
Window Formatter. It is, however, visible in test mode, and when your
application runs.

Toolbox To add the TOOLBOX attribute to your window, check the Toolbox box. This
makes your window always stay on top.

Scroll Bars To add a horizontal scroll bar to your window, check the Horizontal box. Scroll
bars only appear when something inside the window--a control--is bigger than the
window. To add a vertical scroll bar to your window, check the Vertical box.
These options add the HSCROLL, VSCROLL, and HVSCROLL attributes to the
window.

Status Widths To set the width of the status bar zone(s), type a value or list of values in the
Status Widths field. You must also check the Status Bar box in the top part of
the dialog to display a status bar. The values you enter in this field fill the
STATUS attribute parameters.

The zones are the areas within the status bar marked off by the 3D shaded
boxes. The first zone on the left, by default, displays MSG attribute text. This is
useful for specifying short help instructions or other information to the user. If
your application has only one zone for the status bar, you may omit this field. For
more than one zone, enter a series of comma separated values. The default
measurement unit is dialog units.

You may set a minimum value for a zone width by typing a negative number. This
creates a zone with a minimum width, but is expandable by resizing the window.
Use the runtime property assignment syntax to place text in any zone. To place a
string constant in the second zone, for example:
{PROP:StatusText,2} = 'Record will be Added'

Tip: A multi-zone status bar can give your application a professional look. You may display
help text in zone one, and when editing a record, the current record number in zone two,
for example.

Drop ID To specify the type of Drag operations this control will accept, type up to 16
signatures, separated by commas. The Window Formatter adds the DROPID
attribute to the control, which indicates the control is a valid target for the drag
and drop operations identified by the signatures.

Help

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an

external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the entry
box has focus, when the user presses F1, the help file opens to the referenced
topic. If more than one topic matches a keyword, the search dialog appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Position
Allows you to set the location and size of a window.

The Position dialog allows you to specify the AT (set window position and size) attribute. Filling in the
attribute manually is optional--you may set position visually, dragging with the mouse in the Window
Formatter.
To set a precise screen location or size for your window, specify fixed coordinates via this dialog. To set
the location and size, choose from the following options for the Top Left Corner, the Width of the control
or window, and its Height.

Default This instructs Windows to set a value which depends on the end user's system.
Default size and location for a window depends on where the last one opened.
Windows places the top left corner of a new window below and to the left of the
last window, by approximately the size of the system menu box.

Tip: To give your application the "standard" look of other Windows applications, where
possible specify the Default setting for any windows with resizeable frames.

Center Places a window in the middle of the desktop. You may choose horizontal or
vertical centering, or both.

Full Sizes a window to expand to the full width or height of the desktop.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are dialog units. These provide a relative
screen measure. Dialog units are a relative measure based on the default system
font character size. Windows automatically repositions the window proportionally
at different screen resolutions.

Tip: Sizing all windows and controls in dialog units enable you to design a screen at one
resolution, and expect it to look similar at another--in theory. In practice, there can be
differences, especially when you display bitmaps in Image controls. Therefore, test your
applications in the popular Windows resolutions. The most popular are 640 x 480, 800 x

600, and 1024 x 768 pixels.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for the selected control or window. As you choose
options, the dialog box displays a sample of the selected font.

Actions
There are no prompts for the Actions Tab for this control.

Report Properties

Click on a TAB to see its help

This dialog allows you to set up the basic report options, including its page orientation, measurement
units, margins, and paper size.

General

Job Name Names the print job, as listed in the Windows Print Manager application.

Label Type a valid Clarion label to name the REPORT data structure.

Prefix Specifies the label prefix for the REPORT structure.

Units Specifies the default measurement for all controls placed in the report. Choose
Dialog Units, thousandths of Inches, Millimeters or Points.

Extra

Preview Specifies the name of a QUEUE which stores the filename(s) (*.WMF) for the
metafile(s) generated for page preview. See the PREVIEW attribute. If you are
using the Report Template, it is handled automatically if you check the Print
Preview box and you should leave this entry blank.

Position

Allows you to set the location and size of the report detail print area, by filling in the AT (set detail print
area) . The measurement units for these boxes are specified on the General tab.

To set a precise starting point for your print detail area relative to the top left corner of the paper, specify
Top Left Corner coordinates with this dialog. In effect, this establishes the left margin for your report.
The top margin is usually determined by the Page Header position. These settings may also be
accomplished visually by dragging report sections and borders in the Report Formatters Page Layout
View.

To set the size of the print detail area, choose from the following options for the Width and Height. When
changing a report from portrait to landscape, or vice versa, you must change the width and/or height in
the Position tab.

Default Sets a value based on the Paper Size.

Fixed To set a specific size, mark the Fixed choices.

See Also: Printing Labels.

Paper Size

Paper Size Choose from over 40 standard sizes, or choose Other to specify a custom size.

Width Specifies a custom paper width in units specified on the General tab.

Height Specifies a custom paper height in units specified on the General tab.

Landscape Specifies landscape paper orientation. New reports default to portrait mode.

Landscape means the report text is aligned parallel with the longest paper edges.

Font
To set the default font for all controls appearing in the report, press the Font button, then choose the font
and style in the Select Font dialog. You may override the default by setting a different font in the
Properties dialog for any specific control. The options you choose in the dialog become the parameters
for the FONT attribute. As you choose options, the dialog box displays a sample of the formatting.

See also:

How to Use the Report Formatter -- An Overview

Actions
There are no prompts for the Actions Tab for this control.

Page Header Properties

Click on a TAB to see its help

This dialog allows you to edit the properties of the page HEADER. To specify an element to compose at
the start of each report page, place it in the page HEADER.

Though they print on the page at the same time, the print engine composes the page HEADER before the
page DETAIL, or FOOTER. The page HEADER is a good place for company logos, print dates, etc.

General

Use Type a field equate label to reference the page HEADER in executable code.

Extra

Alone Specifies that the HEADER section always prints alone on a page, without
FORM, DETAIL, FOOTER, etc.

Absolute Specifies that the HEADER section always prints at the same fixed position on
the page. This adds the ABSOLUTE attribute to the HEADER structure.

Position
Allows you to set the location and size of the page header. The position is relative to the top left corner of
the paper.

The Position dialog allows you to specify the AT (set print structure position and size) attribute. Filling in
the attribute manually is optional--you may set the position visually, by dragging with the mouse in the
Report Formatter's Page Layout View.

To set a location or size for your report section, specify fixed coordinates with this dialog. Choose from the
following options for the Top Left Corner, the Width, and the Height.

Default Sets a value based on the Paper Size.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How to Control Page Breaks

Using the Report Formatter - An Overview

Actions
There are no prompts for the Actions Tab for this control.

Page Footer Properties

Click on a TAB to see its help

This dialog allows you to edit the properties of the page FOOTER. To specify an element to compose at
the end of each report page, place it in the page FOOTER.

Though they print on the page at the same time, the print engine composes the page HEADER before the
page DETAIL, or FOOTER. The page FOOTER is a good place for page numbers, page totals, etc.

General

Use Type a field equate label to reference the page FOOTER in executable code.

Extra

Alone Specifies that the FOOTER section always prints alone on a page, without
FORM, DETAIL, HEADER, etc.

Absolute Specifies that the FOOTER section always prints at the same fixed position on
the page. This adds the ABSOLUTE attribute to the FOOTER structure.

Position
Allows you to set the location and size of the page footer. The position is relative to the top left corner of
the paper.

The Position dialog allows you to specify the AT (set print structure position and size) attribute. Filling in
the attribute manually is optional--you may set the position visually, by dragging with the mouse in the
Report Formatter's Page Layout View.

To set a location or size for your report section, specify fixed coordinates with this dialog. Choose from the
following options for the Top Left Corner, the Width, and the Height.

Default Sets a value based on the Paper Size.

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How to Control Page Breaks

Using the Report Formatter - An Overview

Actions
There are no prompts for the Actions Tab for this control.

Break Properties

This dialog allows you to add or edit the properties of a group break.

General

Label Type a valid Clarion label, naming the BREAK structure.

Variable Type a variable name, to generate a break when the value changes as you
sequentially process the file.

Group breaks provide a means of breaking the data into sections and optionally providing subtotals. Each
group gathers a set of data file records, all sharing the same value in the BREAK field. Within a report,
you may visually separate these rows, and add a subtotal or summary information, usually below the
group. Group breaks are also called group bands by some popular end user database applications.

The group break may contain the same elements as the report: a group HEADER, group DETAIL, and
group FOOTER. These structures all print inside the DETAIL print area, each following the other by any
offset specified in their AT attributes.

Though they print on the page at the same time, the application composes the group HEADER before the
group DETAIL. The group HEADER is a good place to identify the group.

The group FOOTER, is composed after the group DETAIL. You can place a string saying "Total:" followed
by a string variable which contains the field to be summed, with the SUM attribute.

To create a group break:

1. Be sure the DETAIL band is visible; if not, press the restore button.
2. Choose Bands Surrounding Break.
3. When the cursor changes to a crosshair, CLICK in the DETAIL.
This inserts the group BREAK.
4. In the Break Properties dialog, type the name of a variable or field, including the prefix, to break
on.
5. Type a valid Clarion label to name the break.
6. Press the OK button.
When the report prints, it groups all records with the same value for the BREAK field, as well as the group
HEADER and FOOTER.

Tip: If the break variable is a global or local variable, you must be sure that the executable code
updates its value, so that it can generate a group BREAK.

See also:

How to Set Report Group Breaks

Actions
There are no prompts for the Actions Tab for this control.

Break Group Header Properties

Click on a TAB to see its help

This dialog allows you to edit the properties of the group HEADER. To specify an element to compose at
the start of each group, place it in the group HEADER.

Though they print on the page at the same time, the application composes the group HEADER before the
group DETAIL. The group HEADER is a good place to identify the group, for example, with a label saying
"Customer:" followed by a variable string for the customer name field.

General

Use Type a field equate label to reference the HEADER in executable code.

Page Before To print the HEADER structure on a new page, type a value in the Page Before
box in the Detail Properties dialog. This sets the PAGEBEFORE attribute. The
print engine generates a page break before printing at the top of the next page.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page Before field.

Page After To print the HEADER, then force a new page, type a value in the Page after box.
This sets the PAGEAFTER attribute. This prints the HEADER, then begins a new
page.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page after field.

With Prior To prevent 'orphan' elements in a printout, type a value in the With Prior field.
This sets the WITHPRIOR attribute. An 'orphaned' print element is one which
prints on a following page, separated from its related items.

The value specifies the number of preceding elements to print--a value of "1," for
example, specifies that the previous element must print on the same page.

With Next To prevent 'widow' elements in a printout, type a value in the Keep Next. This
sets the WITHNEXT attribute. A 'widowed' print element is one which prints, but
then is separated from the succeeding elements by a page break.

The value specifies the number of succeeding elements to print--a value of '1,' for
examples, specifies that the next element must print on the same page, else
page overflow puts them on the next.

Extra

Alone Specifies that the HEADER section always prints alone on a page.

Absolute Specifies that the HEADER section always prints at the same fixed position on
the page. This adds the ABSOLUTE attribute to the DETAIL structure.

Position
Allows you to set the location and size of the group header. The location is relative to the top left corner of
the detail print area.

The Position dialog allows you to specify the AT (set print structure position and size) attribute. Filling in
the attribute manually is optional--you may set position visually, dragging with the mouse in the Report
Formatter's Page Layout View.

To set the location and size, choose from the following options for the Top Left Corner, the Width of the
section, and its Height.

Default Sets a value based on the Paper Size and Print Detail position (see also Report
Properties dialog).

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How to Set Report Group Breaks

Actions
There are no prompts for the Actions Tab for this control.

Break Group Footer Properties

Click on a TAB to see its help

This dialog allows you to edit the properties of the group FOOTER.

The group FOOTER is composed immediately after the group DETAIL, and provides the logical place for
adding subtotals to your report.

General

Use Type a field equate label to reference the FOOTER in executable code.

Page Before To print the FOOTER structure on a new page, type a value in the Page Before
box. This sets the PAGEBEFORE attribute. The print engine generates a page
break before printing at the top of the next page.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page Before field.

Page After To print the FOOTER, then force a new page, type a value in the Page after box.
This sets the PAGEAFTER attribute. This prints the FOOTER, then begins a new
page.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page after field.

With Prior To prevent 'orphan' elements in a printout, type a value in the With Prior field.
This sets the WITHPRIOR attribute. An 'orphaned' print element is one which
prints on a following page, separated from its related items.

The value specifies the number of preceding elements to print--a value of "1," for
example, specifies that the previous element must print on the same page.

With Next To prevent 'widow' elements in a printout, type a value in the Keep Next. This
sets the WITHNEXT attribute. A 'widowed' print element is one which prints, but
then is separated from the succeeding elements by a page break.

The value specifies the number of succeeding elements to print--a value of '1,' for
examples, specifies that the next element must print on the same page, else
page overflow puts them on the next.

Extra

Alone Specifies that the FOOTER section always prints alone on a page.

Absolute Specifies that the FOOTER section always prints at the same fixed position on
the page. This adds the ABSOLUTE attribute to the FOOTER structure.

Position
Allows you to set the location and size of the group footer. The location is relative to the top left corner of
the detail print area.

The Position dialog allows you to specify the AT (set print structure position and size) attribute. Filling in
the attribute manually is optional--you may set position visually, dragging with the mouse in the Report

Formatter's Page Layout View.

To set the location and size, choose from the following options for the Top Left Corner, the Width of the
section, and its Height.

Default Sets a value based on the Paper Size and Print Detail position (see also Report
Properties dialog).

Fixed To set a specific position and size, mark the Fixed choices.

The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How to Set Report Group Breaks

Actions
There are no prompts for the Actions Tab for this control.

Page Form Properties

Click on a TAB to see its help

To specify a static page element which prints on every page, place it in the FORM. This is a free-floating
section which can overlap the other sections.

Use the FORM as a layer, to 'hold' graphic frames or preprinted forms into which the data from the other
sections 'fit.' Another use for the FORM is to hold a 'watermark,' which prints underneath the report.

The FORM size defaults to the same size as the page, less the margins.

The print engine composes the FORM at the beginning of the print job; and does not update it thereafter.
Therefore, the FORM is not suitable for holding variable data fields, or even a page number. You can,
however, print fields from a control file, if you wish to print the same field contents on every page of the
report.

Tip: For best results when using a drawing tool to create a 'watermark,' on, for example, a 300
DPI printer, set the fill for the watermark element to 10% gray, or light gray. At higher
printing resolutions, try 20% gray.

The FORM should guide the user to the data. You might use lines and boxes, for example, to divide the
DETAIL into 'compartments,' grouping data and columns for the user. You may even create a 'greenbar
paper' effect by alternating gray or light green color blocks.

General

Use Type a field equate label to reference the FORM in executable code.

Position

Allows you to set the location and size of the page form, by filling in the AT (set print structure position
and size) attribute. The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

To set a precise starting point for your page form relative to the top left corner of the paper, specify Top
Left Corner coordinates with this dialog. In effect, this establishes the margins for your form. These
settings may also be accomplished visually by dragging the form and it's borders in the Report
Formatter's Page Layout View.

To set the size of the page form, choose from the following options for the Width and Height. When
changing a report from portrait to landscape, or vice versa, you must change the width and/or height in
the Position tab.

Default Sets a value based on the Paper Size.

Fixed To set a specific size, mark the Fixed choices.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How the Print Engine Processes Report Sections at Runtime

Actions
There are no prompts for the Actions Tab for this control.

Detail Band Properties

Click on a TAB to see its help

This dialog allows you to edit the properties of the report detail.

General

Label Type a valid Clarion label, naming the DETAIL structure.

Use Type a field equate label to reference the Detail in executable code.

Page Before To print the DETAIL structure on a new page, type a value in the Page Before
box in the Detail Properties dialog. This sets the PAGEBEFORE attribute. The
report prints the full DETAIL starting at the top of the next page. The report
FOOTER, however, prints on the first page.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page Before field.

Page After To print the DETAIL, then force a new page, type a value in the Page after box in
the Detail Properties dialog. This sets the PAGEAFTER attribute. This prints the
DETAIL, then prints the page FOOTER, then begins a new page.

Tip: To print a separate page for each record, place the variable strings and/or controls you
wish in the DETAIL, and specify the PAGEAFTER attribute in the Detail Properties dialog.

The page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Page after field in the Detail
Properties dialog.

With Prior To prevent 'orphan' elements in a printout, type a value in the With Prior field.
This sets the WITHPRIOR attribute. An 'orphaned' print element is one which
prints on a following page, separated from its related items.

The value specifies the number of preceding elements to print--a value of "1," for
example, specifies that the previous element must print on the same page.

Tip: When placing subtotals or totals in a DETAIL, use the WITHPRIOR attribute to insure they
print with at least one member of the column above it when a page break occurs.

With Next To prevent 'widow' elements in a printout, type a value in the Keep Next. This
sets the WITHNEXT attribute. A 'widowed' print element is one which prints, but
then is separated from the succeeding elements by a page break.

The value specifies the number of succeeding elements to print--a value of '1,' for
examples, specifies that the next element must print on the same page, else
page overflow puts them on the next.

Extra

Alone Specifies the print engine should print only the DETAIL section, without FORM,
HEADER, and FOOTER sections. This setting is most useful for report title and
grand totals pages. This adds the ALONE attribute to the DETAIL structure.

Absolute Specifies that the DETAIL section always print at the same fixed position on the
page. This adds the ABSOLUTE attribute to the DETAIL structure. Otherwise, the
DETAIL prints at a position relative to the last section printed in the detail print
area.

Position

Allows you to set the location and size of the print detail, by filling in the AT (set print structure position
and size) attribute. The measurement units for these boxes are specified on the General tab of the
Report Properties dialog.

To set a precise starting point for your detail relative to the last detail printed, specify Top Left Corner
coordinates with this dialog. These settings may also be accomplished visually by dragging the report
section and it's borders in the Report Formatter's Page Layout View.

To set the size of the detail, choose from the following options for the Width and Height.

Default Sets a value based on the Paper Size.

Fixed To set a specific size, mark the Fixed choices.

Font

Calls the Select Font dialog which allows you to select the font (typeface), size, style (such as bold or
italic), color, and font effects (underline and strikeout) for all the controls in the report section. You may
override the section font by setting a different font in the Properties dialog for any specific control. As you
choose options, the dialog box displays a sample of the selected font.

See also:

How the Print Engine Processes Report Sections at Runtime

Actions
There are no prompts for the Actions Tab for this control.

New Project dialog
This dialog allows you to specify the method you will use to create a new project.

Quick Start Specifies that the Quick Start will be used to create your Data Dictionary and
Application.

Application Generator Specifies that the Application Generator will be used to create your Application.

Hand Coded Project Specifies that the Application will be hand coded and a Project file will be created.

Working Directory Type in the full path for the directory or pick the directory using the standard file
dialog.

Select Custom Control Dialog
This allows you to choose a .VBX Custom Control, from your VBX Registry, which you can then place in
your window or report. When placing a .VBX control in a report, an image of the control prints on the
page. To specify properties for the .VBX control that you place, see the Custom Control Properties
dialog.

Control Name Choose a .VBX from a list of registered controls.

Sample Displays a scaled down image of the .VBX control in the dialog.

Registry Opens the .VBX Custom Control Registry dialog, which allows you to register a
new control, or update a previously registered control.

Reminder: You must have the proper license (.LIC) file to work with the control in the Window and Report
Formatters. See also .VBX Custom Control Support.

VBX Custom Control Support
Custom controls are "add-in" control components sold by many third party vendors. These perform a very
wide variety of tasks, from sliders and gauge controls to TWAIN image capture add-ins. The Window
Formatter allows you to directly place these controls in a window once you "register" the external
libraries. To register a .VBX control, it must be in a directory in your path. See also: VBX Registry Dialog.

The specific custom control library Clarion supports is the Microsoft Visual Basic control format, normally
given the .VBX extension. There is one important limitation:

Clarion supports ."level one" type controls. Custom controls which require VB 2.0 or higher (Level
two or three type controls) are incompatible.

This is in line with other non-Visual Basic platforms, such as the Microsoft Foundation Classes v.
2.0. The biggest difference between level one and level two or higher .VBX's is that the latter contain calls
to internal functions of the VB runtime .DLL which ships with Visual Basic 2.x and higher.

Tip: If the vendor description of a .VBX doesn't specifically state its level, you can immediately
identify a level two or higher control if they identify it as a "data bound" control.

Custom control libraries usually require a license file (*.LIC) before you can add the control to your
applications. The library vendor provides the file when you buy the library. When you distribute the
application to your end users, you distribute the .VBX file only, not the license file.

Additionally, when you ship the .VBX file to your end users, follow the library vendor's instructions as to
where to place the .VBX control file(s).

Custom Control Properties Dialog
Custom controls are "add-in" controls sold by many third party vendors. These perform a very wide
variety of tasks, from sliders and gauge controls to TWAIN image capture add-ins. The Window
Formatter allows you to directly place these controls once you "register" the external libraries. See also:
VBX Custom Control Support ; Select Custom Control Dialog.

Before you can place a custom control in a window, you must register the .VBX file which contains it. See
also: VBX Registry Dialog.

The Custom Control Properties dialog contains the following options.

Custom Properties It displays the Visual Basic Control properties and their default values. If you
enter a startup value in the dialog, the Window Formatter automatically adds it
to the Clarion language statement that places the control in the window.

When you highlight a Visual Basic Control property in the list, either an edit box.
or a drop-down list appears at the lower left corner of the dialog. Type a value or
variable in the edit box, or choose from the drop-down.

The documentation from the .VBX library vendor will describe the Visual Basic
Control properties you may set. See Setting and Retrieving VB Control
Properties to find out how to change them in executable code, or how to retrieve
user-entry from the custom control.

Text Optionally type a label for the control in the Text field. If the control supports a
label, it will appear as part of the control. In practice, most controls will require
you to specify a title label as a Visual Basic Control property, explained below.

Use Type a field equate label to reference the control in executable code.

Sample Displays a scaled down image of the .VBX control in the dialog.

Cursor The Cursor field (the CURSOR attribute) allows you to specify an alternate shape
for the cursor when the user passes the cursor over the control. The drop-down
list provides standard cursor choices such as I-Beam and Crosshair. To select an
external cursor file (whose extension must be .CUR), choose Select File from
the drop-down list, then pick the file using the standard file dialog.

Help ID The Help ID field (the HLP attribute) takes a string constant specifying the key for
accessing a specific topic in the Help document. This may be either a Help
keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may search for it in
the Help Search dialog. When you fill in the HLP attribute for a button, if the
group box has focus, when the user presses F1, the help file opens to the
referenced topic. If more than one topic matches a keyword, the search dialog
appears.

When referencing a context string in the Help ID field, you must identify it with a
leading tilde (~).

Message The Message field (the MSG attribute) allows you to specify text to display in the
first zone of the status bar when the control has focus.

Meta When adding a .VBX control to a report, specifies that the print engine generates

a metafile to represent the control.

Key Press to select a hot key to give immediate focus to the control.

Alert To specify a hot key active when the control has focus, press the Alert... button.
The Select Alert Keys dialog appears. When the ALRT attribute is set, the
control generates an EVENT:AlertKey if the user presses the Alert key while the
control has the focus.

Position Press the Position button to display the Position dialog. That dialog allows you
to set the location and size of the control.

Setting and Retrieving VB Control Properties
The .VBX file acts as a mostly self-contained external library. When the application loads it into memory,
you can exchange information between the application and the custom control via the properties. The
Visual Basic Control properties are a message map.

The .VBX properties are the most common means by which a non-VB application utilizes a VBX's
functionality. Think of a property as a variable which both the app and the VBX can access (this is a very
loose comparison).

If both the app and the VBX monitor the property, they can use it to signal each other. When the value of
the property changes, it's a signal that something may need to be done. Each VBX has its own properties.
You find out what properties are available by reading the VBX Vendor's documentation.

For example, a VBX has a property called 'CellColor,' which indicates the background color of a grid cell.
If the app wants to know what the current color is, it retrieves the value in the property called 'CellColor.'
Usually, it works the other way, too. If the app changes the value of 'CellColor' from blue to red, then the
VBX updates the window control and changes the color.

Tip: The Visual Basic Control properties are usually documented with a leading dot. Drop the
dot when accessing it from the Clarion application.

See the Custom Control Properties Dialog topic for notes on how to set the startup properties for a
control with the Window Formatter. At other times you'll want to alter the properties in executable code,
and of course, retrieve a value from a property after user entry.

To alter properties in executable code, use the property expression syntax. Access the custom
control's Visual Basic Control properties by referring to the specific property in quotes:

?vbxVariable { 'VBProperty' } = value
To retrieve the current value of a Visual Basic Control property, use the property expression

syntax again:
value = ?vbxVariable { 'VBProperty' }

VBX controls also generate an event. See also: Monitoring .VBX Events.

Monitoring .VBX Events
Besides properties, the other "channel" by which the .VBX "talks" to your application is via events. A .VBX
might trigger an event, for example, if the end user double clicks on a particular part of it. When the event
occurs, the .VBX generates a string (up to 255 characters) naming the event. The .VBX vendor's
documentation lists the possible events the control may generate.

Your application can examine the event, and take appropriate action. When working with the Application
Generator, you place code like the example below at the embed point labeled "After Opening the
Window." For example, the following can take place in the ACCEPT loop of a dialog box containing
a .VBX control.
CASE EVENT()
 OF EVENT:vbxevent
 SomeString = ?vbxVariable{PROP:VBXevent}
 IF SomeString = 'UserWantsToDoX'
 SomeProcedure
See also: Setting and Retrieving VB Control Properties.

VBX Custom Control Registry
Before you can place a custom control in a window, you must register the .VBX file which contains it. To
do so:

1. Choose Setup VBX Custom Control Registry.
2. Press the Add button in the VBX Custom Control Registry dialog box.
3. Select the .VBX file within the VBX Custom Control Open File dialog, and press OK.
Some .VBX vendors install their .VBX's to the \Windows\System directory, while others prefer private
directories. To register a .VBX, it must be in a directory in your PATH. When you install a .VBX library to
your hard drive, make a note of where you put it, so that you can locate it with the Open File dialog.

4. Press OK to close the VBX Custom Control Registry dialog.
The VBX Custom Control Registry dialog contains these additional buttons:

Remove Deletes the selected control from the registry. This does not delete the .VBX file
from your drive.

Update Updates the registry information for the selected control.

Database Driver Registry Dialog
The Clarion for Windows database drivers are pre-registered for you. Should you remove one and need
to reinstall it, or if you obtain a new driver, you must use this dialog box to register the new driver. To do
so:

1. Choose Setup Database Driver Registry.
2. Press the Add button in the Database Driver Registry dialog box.

3. Select the file driver, which normally has a DLL file extension, from the Add Database Driver
Open File dialog, and press OK.

The database drivers belong in the \CW15\BIN subdirectory.

4. Press OK to close the Database Driver Registry dialog.

The dialog contains these additional buttons:

Remove Deletes the selected driver from the registry. This does not delete the .DLL file
from your drive.

Update Updates the registry information for the selected driver.

Reminder: when distributing your application, you must ship the database driver library files used by your
application. The file names are listed within this dialog.

See also:

Supported File Systems

Edit Picture String Dialog
This dialog allows you to quickly choose and customize a picture token.

Picture tokens provide a masking format for displaying and editing variables. Picture tokens may be used
as parameters of STRING, ENTRY, or STRING OPTION declarations in SCREEN structures; as a
parameter of STRING statements in a REPORT structure; as a parameter of some Clarion procedures
and functions; or, the parameter of STRING, CSTRING and PSTRING variable declarations. There are
seven types of picture tokens:

Numeric and Currency Pictures

Scientific Notation Pictures

Date Pictures

Time Pictures

Pattern Pictures

Key-in Template Pictures

String Pictures

Picture Type Choose one of the picture token types from the drop down list.

Picture The actual picture string under construction.

You can directly edit the string, or edit it by specifying options in the dynamic
controls that appear in the lower part of the dialog box for individual picture token
types.

The options are self explanatory, such as Number of Characters, Length, and
Decimal Places.

List Box Formatter Dialog
The List Box Formatter dialog shows how the list box under construction looks. It fills this sample list box
with placeholder characters representing the contents of each field. If any field contains a header, a
header row appears over the column.

You format the fields one by one in the List Field Properties. The sample list box always displays a
horizontal scroll bar, whether you specify one in the List Properties dialog or not.

The formatter does not display a vertical scroll bar. If the queue contains more items than rows in the list,
and if you add the VSCROLL attribute by checking the box in the List Properties dialog, the vertical
scroll bar appears at run time.

The dialog contains the following buttons:

Properties Opens the List Field Properties dialog for the selected field. The List Field
Properties dialog allows you to specify the width of the column, a picture token,
heading text, plus other options such as a horizontal scroll bar for the single field.
Additionally, it allows you to "group" fields, which places an extra header on top
of the grouped columns, to visually indicate the fields are linked.

Insert/Populate To add a field to the list box, press the Populate or Insert buttons.

When opening the List Box Formatter from within the Application Generator,
using a procedure template which supports it, the Populate button displays the
Select Field dialog. From here, you can indicate any database field or memory
variable for use as a list box column. The generated code puts the contents of
the database records into the queue for use in the list box. Once you indicate the
field you want, the List Field Properties dialog allows you to format its
appearance in the list box.

When opening the List Box Formatter from a hand coded source file, the Insert
button replaces the Populate. You must build your own queue to fill the list box.

Delete Removes the currently selected field from the list box.

(Arrow Left) Moves the currently selected field one position to its left. If the selected field is
the leftmost in a group, the field moves out of the group, without changing
position. If the selected field is immediately to the right of a group, the field moves
into the group, without changing position.

(Arrow Right) Moves the currently selected field one position to its right. If the selected field is
the rightmost in a group, the field moves out of the group, without changing
position. If the selected field is immediately to the left of a group, the field moves
into the group, without changing position.

See the following topics for more information about adding list box functionality:

How to Trap a Double Click on a List Box

How to add Drag and Drop to a List Box

List Field Properties Dialog

Click on a TAB to see its help

Format list box fields or columns in the List Field Properties dialog. Each choice you make in the dialog
places the appropriate component in the format string (the parameter of the FORMAT attribute) which
becomes part of the LIST statement.

The dialog allows you to set the following formatting options.

General

Width Specify the width in dialog units for the column. By default, the Formatter sets the
value to four times the number of characters specified in the field picture in the
data dictionary. For variables, the default is four times the number of characters
in the picture token defined for it.

Tip: As a rough guide, allow four dialog units for an average character. For example, if you
want a column 10 characters wide, type 40 in the Data Width field.

After you've placed one field, the List Box Formatter dialog also allows you to
drag the column separators to resize a column. The cursor changes when you
place it on top of the separator, to indicate you can resize it.

The data width you set appears within the format string for the field, preceding
the Justification code, as in "40L."

Picture Specify the picture token for the data. The List Box Formatter represents the
contents according to the picture you specify. For example, a string picture token
displays dollar signs in the sample list box.

The picture token you specify appears in the format string, for example,
"@S10@."

Justification Choose from the drop down list to specify left, right, center or decimal. If you use
decimal justification, you set the Offset to allow display of digits to the right of the decimal point.

The justification appears within the format string for the field following the data
width, as in "40R."

Indent Optionally specify an indent, in dialog units, for the list box data. The indent
operates in the opposite direction of the justification.

The indent appears within the format string surrounded by parentheses and
preceded by a letter indicating the justification, as in "L(8)."

Special

Color Cells Check this box to enable colorization of list box cells.

Icons Check this box to enable the use of Icons in the list box.

Tree Check this box to display the list box in Tree format. See Relation Tree control
template.

Show Level For data in Tree format, each subordinate level is indented from its parent level.

Show Lines For data in Tree format, connecting lines are drawn between related items.

Show Boxes For data in Tree format, "expand" (+) and "contract" (-) boxes are drawn for each
item. The plus (+) indicates the control is contracted and may be expanded by
CLICKING on the plus (+). The minus (-) indicates the control is expanded and may
be contracted by CLICKING on the minus (-).

Field

Heading Text Optionally specify header text for the column. The header appears as a gray row
above the list box data items. To specify no header, leave this field blank. If any
field included in the list box has a header, a header appears over each field in the
list box; those fields with no header text will have a blank header.

The heading appears within the format string enclosed in tilde (~) characters, as
in "~My Header~."

Justification Choose from the drop down list to specify left, right, center or decimal. If you use
decimal justification, you set the Offset to allow display of digits to the right of the decimal point.

This appears within the format string following the header, as in "~My Header~L."

Indent Optionally specify an indent, in dialog units, for the heading text. The indent
operates in the direction opposite to the justification.

This appears within the format string following the header, as in "~My
Header~L(8)."

Scroll Bar Check the Scroll Bar box to specify a horizontal scroll bar for this column only. If
the overall list box already has a scroll bar, the column scroll bar appears above
the list box scroll bar.

Size Specify the range of the scroll bar. That is, the size of the scrollable area not
currently displayed.

The scroll bar and size appear in the format string together, as in "S(4)."

Underline Check the Underline box to add the underline style to the list box text.

The format string includes the underscore character, immediately preceding the
header text, as in "_~My Header~."

Right Border Check the Right Border box to specify column separators between fields in the
list box at run time. The format string includes the pipe symbol (|), immediately
preceding the header text, as in "|~MyHeader~."

Resizeable Check the Resizable box to specify that user can resize the width of the columns
at run time.

The format string includes the "M" character, immediately preceding the header
text as in "M~MyHeader~." See How to Restore User Resized List Box Column
Widths...

Fixed Check the Fixed box to specify that the column cannot be scrolled. The format
string includes the "F" character, immediately preceding the header text as in
"F~MyHeader~."

Last on Line This specifies that the next field in the group will appear immediately below the

current field. In effect, it stacks two or more fields, causing a single record to
occupy two or more rows in the list box.

The format string includes the "/" character, immediately preceding the header
text as in "/~MyHeader~."

Locator To enable a column to work with a locator entry control, check the Locator box.
When the user types a character in the locator entry control, then moves the
focus, the list box scrolls to the first entry in the locator enabled column that
matches the user's locator entry.

The format string includes the "?" character, immediately preceding the header
text as in "?~MyHeader~."

Group

Heading Text Optionally specify header text for the column group. The header appears as a
gray row above the list box data items. To specify no header, leave this field
blank. If any field included in the list box has a header, a header appears over
each field in the list box; those fields with no header text will have a blank header.

The heading appears within the format string, after the column group (the column
group is enclosed in braces []), enclosed in tilde (~) characters, as in "~My
Header~."

Justification Choose from the drop down list to specify left, right, center or decimal. If you use
decimal justification, you set the Offset to allow display of digits to the right of the decimal point.

This appears within the format string, after the column group (the column group is
enclosed in braces []), following the header, as in "~My Header~L."

Indent Optionally specify an indent, in dialog units, for the heading text. The indent
operates in the direction opposite to the justification.

This appears within the format string, after the column group (the column group is
enclosed in braces []), following the header, as in "~My Header~L(8)."

Scroll Bar Check the Scroll Bar box to specify a horizontal scroll bar for this column group.
If the overall list box already has a scroll bar, the column group scroll bar appears
above the list box scroll bar, and overrides any individual column scroll bars
within the group.

Size Specify the range of the scroll bar. That is, the size of the scrollable area not
currently displayed.

The scroll bar and size appear in the format string, after the column group (the
column group is enclosed in braces []), together, as in "S(4)."

Underline Check the Underline box to add the underline style to the list box text.

The format string includes the underscore character, after the column group (the
column group is enclosed in braces []), immediately preceding the group header
text, as in "_~My Header~."

Right Border Check the Right Border box to specify column separators between fields in the
list box. The format string includes the pipe symbol (|), after the column group
(the column group is enclosed in braces []), immediately preceding the header
text, as in "|~MyHeader~."

Resizeable Check the Resizable box to specify that user can resize the width of the columns
at run time.

The format string includes the "M" character, after the column group (the column
group is enclosed in braces []), immediately preceding the header text as in
"M~MyHeader~." See How to Restore User Resized List Box Column Widths .

Fixed Check the Fixed box to specify that the column cannot be scrolled. The format
string includes the "F" character, after the column group (the column group is
enclosed in braces []), immediately preceding the header text as in
"F~MyHeader~."

See also:

How to Create a List Box

How to Create Column Groups Using the List Box Formatter

How to Make a Record Occupy Two or More Rows in a List Box.

Alert Keys Dialog
This dialog allows you to add the ALRT attribute to a window or control. When the attribute is set, the
window generates an EVENT:AlertKey if the user presses the key(s) you specify in this dialog, while the
window has the focus.

To specify the first Alert key:

Add Press the Add button. Specify the key or key combination with the Input Key
dialog. The key combination appears in the List. Repeat for any additional Alert
keys.

Remove To delete a key combination, highlight the key combination in the List, then press
the Remove button.

It's up to you to add code to "do something" upon detecting the EVENT:AlertKey.

Input Key Dialog
Use this dialog to specify a key, or key combination, for a hot key (KEY attribute) or an alert key (ALRT
attribute):

Key Press the desired key or key combination (for example, CTRL+H). The keys you
pressed will appear in the Key field, and will be supplied as parameters to the
KEY or ALRT attribute for this control.

The ESC, ENTER, and TAB keys cannot be specified by pressing them. For these
keys, press the ellipsis (...) button and type "esc," "enter," or "tab."

Modifiers Optionally, add additional keys to your key sequence by checking the Ctrl, Alt, or
Shift boxes, or any combination of the three.

Mouse Mouse clicks may be used within the key sequence; however, mouse clicks
cannot be specified by clicking the mouse. For mouse clicks, check the
corresponding check box(es). For example, to act on a double-click, check the
Left Button box and the Double Click box.

Select Font Dialog
Allows you to change the font, style (such as bold and italic), font size, color, and font effects (underline
and strikeout) for the selected control or window. As you choose options, the dialog box displays a sample
of the formatting.

Choose from the following:

Font Type or select a font (typeface) name. The dialog lists the fonts available with the
current printer driver and additional fonts installed in your system.

Font Style Select a style. To use the default type style for a given font, select Regular.
Depending on the fonts installed, you can choose bold, italic, or bold italic.

Size Type or select a size. The sizes available depend on the printer and the selected
font.

Effects Select the formatting options you want. Choose:

Underline - underlines all characters, including the spaces between words, with
a single line.

Strikeout - draws a line through selected text.

Color Type or select one of the sixteen predefined colors. To display color, you must
have a color monitor; to print color, you must have a color printer.

Standard Windows File Dialog

This dialog allows you to specify a filename and directory for a file which you wish to Create, Open, Save
to, or Select. The Title Bar indicates the function for which it is intended.

The Pick List
The Pick dialog lists all the most recently used files in a list box categorized by Application, Dictionary,
Project, Database, Clarion Source, and All. Each of these tabs displays a pick list of up to twenty of the
most recently used files of that type:

The Pick dialog provides the following buttons:

Select Opens the currently selected file.

Remove Removes the currently selected file from the Pick list.

New Allows you to create a new file.

Open Allows you to open a file not on the Pick list.

Menu Editor

The Menu Editor dialog visually represents a Clarion MENUBAR data structure. The menu tree (on the
left hand side of the dialog) appears as simplified Clarion language syntax, containing these Clarion
keywords:

A MENUBAR keyword at the top.

A MENU statement or statements followed by a menu name, and a corresponding END
statement.

An ITEM statement or statements followed by an item name.

Menu Editor command buttons allow you to add and delete MENUs and ITEMs. You may also move
MENUs and ITEMs within the MENUBAR structure with the and ¯ buttons.

The right hand side of the dialog allows you to specify the text of your MENUs and ITEMs, the equate
labels used to reference the MENUs and ITEMs in executable code, and the actions that occur when the
user selects an ITEM.

Tip: When using the Application Generator, each ITEM you place on a MENU or MENUBAR
automatically adds an embed point to the control event handling tree in the Embedded
Source dialog. This allows you to easily attach functionality to your ITEMs.

Menu Editor Buttons

Menu This button adds a new MENU statement, its Menu Text, and its corresponding
END statement. The MENU is added after the highlighted line. MENUs may be
nested within other menus. MENUs may contain MENUs or ITEMs.

Item This button inserts an ITEM after the highlighted line. Note that ITEMs are used
to execute commands or procedures, whereas MENUs are used to display a
selection of other MENUs or ITEMs.

Separator To add a separator bar after the currently highlighted MENU or ITEM, press the
Separator button.

Tip: Separator bars can provide the user with a visual cue that a group of ITEMs on the menu
perform related functions.

Delete Button To delete the currently highlighted MENU, ITEM, or SEPARATOR, press the
Delete button. If you delete a MENU statement, all ITEMs and MENUs within it,
and its associated END statement are also deleted.

 and ¯ Buttons To move the currently highlighted MENU, ITEM, or SEPARATOR up or down in
the menu list, press the or ¯ button. When moving a MENU, all ITEMs and
MENUs within it, and its associated END statement move also.

General

Menu Text Type the text you want displayed for this MENU or ITEM. For example, type
&FILE, so the end user sees File. The ampersand within the Menu Text field
signifies the character following the ampersand is the accelerator key. That is, the

character is underlined, and, when the user presses the accelerator key, the
action associated with the ITEM is executed.

Note: A MENU accelerator key requires THE ALT key to take effect, whereas an ITEM accelerator key
does not require the ALT key, but does require that the ITEM be currently displayed. See
Hot Key below for another method of accessing your MENUs and ITEMs.

Use Variable Type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you should make it
descriptive. For example ?File shows this menu is to manipulate a file. You can
refer to the MENU within executable code by its Field Equate Label.

Message Type the MSG attribute contents.

This message text displays in the status bar (if enabled) when the user highlights
this MENU or ITEM.

Help ID Type either a help keyword or a context string present in a .HLP file.

If you fill in the Help ID for a MENU or an ITEM, when the user highlights the
MENU or ITEM and presses F1, the help file opens to the referenced topic.

The Help ID field (HLP attribute) takes a string constant specifying the key for
accessing a specific topic in a Windows Help file. This may be either a Help
keyword or a context string. When referencing a context string in the Help ID
field, you must identify it with a leading tilde (~).

STD ID To specify a standard windows action for your menu ITEM, enter one of the
equates listed below in the Std ID field. Clarion will automatically implement the
command using standard windows behavior; you do not need any other support
for it in your code. The standard equate labels and their associated actions are
also contained in the C:\CW\LIBSRC\EQUATES.CLW file.

STD:PrintSetup Printer Options Dialog.
STD:Close Closes active window.
STD:Undo Reverses the last editing action.
STD:Cut Deletes selection, copies to clipboard.
STD:Copy Copies selection to clipboard.
STD:Paste Pastes clipboard contents at the insertion

point.
STD:Clear Deletes selection.
STD:TileWindow Arranges child windows edge to edge.
STD:TileHorizontalArranges child windows edge to edge.
STD:TileVertical Arranges child windows edge to edge.
STD:CascadeWindow Arranges child windows so all title bars

are visible.
STD:ArrangeIcons Arranges iconized child windows.
STD:WindowList Adds child window names to menu.
STD:Help Opens .HLP file to the contents page.
STD:HelpIndex Opens .HLP file to the index.
STD:HelpOnHelp Opens Microsofts .HLP file for the

Windows Help system.
STD:HelpSearch Opens Microsofts Help Search utility for

the .HLP file.
Position Allows you to specify MENU and ITEM order priority when Clarion merges

menus. The choices are:

To allow normal ordering when merging menus, choose Normal from the
Position drop down list. In normal merging, Global selections precede Local
selections. See Merging Menus in the Users Guide.

To force the selected MENU or ITEM to the first position when merging menus,
choose First from the Position drop down list. This adds the FIRST attribute to
the MENU or ITEM statement.

To force the menu or item to the last position when merging menus, choose Last
from the Position drop down list. This adds the LAST attribute to the MENU or
ITEM statement. See the Language Reference for more information.

Hot Key Press this button to open the Input Key dialog. Use this dialog to add the KEY
attribute to your MENU or ITEM. The KEY attribute specifies a hot key or key
combination.

 A hot key is very similar to an accelerator key. A hot key or hot key combination allows the end user to
immediately display a MENU, or execute the action associated with an ITEM, without mouse clicking, and
without displaying the menu that contains the ITEM. Customarily, hot keys take the form of CTRL +
character, or CTRL + SHIFT + character.

Tip: You may want to add the hot key combination to the menu text to signal its availability to
the user. See the Windows Design appendix in the Users Guide for a list of common hot
keys associated with standard windows commands.

Disable Item To disable a MENU or ITEM (dim the text and make it unavailable to the user),
check the Disable Item box. This adds the DISABLE attribute to the MENU or
ITEM statement.

Tip: The Disable box is handy when you incorporate modality into a programthat is, when one
type of child window does not support the same commands another type does. For the
type that doesnt support the command, disable the ITEM rather than omitting it. This will
avoid confusing the user with menu ITEMs that disappear and reappear depending on
which window is active.

Toggle (on/off) Item To create an on/off toggle for a selected ITEM, check the Toggle (on/off) Item
box. The ITEM should have a numeric variable in the Use Variable field. The
variable should be declared using one of the data dialogs, or in embedded
source. The Menu Editor adds the CHECK attribute to this ITEM.

With the CHECK attribute, when the user selects the ITEM for the first time, the
ITEM is on, the Use Variables value is one (1), and a check mark appears beside
the ITEM. When the user selects the ITEM a second time, the ITEM is off, the
Use Variables value is zero (0) and no check mark is displayed. You should add
source code to control the applications behavior depending on the state of the
Use Variable.

Right Justify To right justify the selected MENU on the action bar, check the Right Justify
box. This is available only for MENUs on the action bar. Nested MENUs
(subMENUs) cannot be right justified. Checking this box displays the selected
MENU, and all MENUs after the selected MENU, at the far right of the action bar.

Do Not Merge To tell Clarion never to merge this MENUBAR with other MENUBARs, check the
Do Not Merge box. This is available only for the MENUBAR, not for MENUs or
ITEMs. See the Language Reference for more information on the NOMERGE
attribute.

Actions
Use the Actions tab to add functionality to your menu item. Filling in these prompts causes the menu item
to execute an action when the user selectss the menu item.

When Pressed From the drop down list, choose Call a Procedure, Run a Program, or No
Special Action.

The procedure or program you specify executes when the user selects the menu
item. The choices are:

Call a Procedure You must specify the Procedure Name, and whether the procedure will Initiate a
Thread.

Procedure Name From the Procedure Name drop down list, choose an existing procedure name,
or type a new procedure name. A new procedure appears as a "ToDo" item in
your Application Tree.

Initiate a Thread Optionally check the Initiate a Thread box. If the procedure initiates a thread,
specify the Thread Stack size. Clarion uses the START function to initiate a new
execution thread. If the procedure initiates a thread, you cannot specify
Parameters or Requested File Action. If the procedure does not initiate a
thread, you can specify Parameters, Requested File Action, or both.

Tip: A MENU ITEM on an application frame toolbar that calls an MDI child procedure must
initiate a thread.

Thread Stack Accept the default value in the Thread Stack spin box unless you have
extraordinary program requirements. To change the value, type in a new value or
click on the spin box arrows.

Parameters In the Parameters field, optionally type a list of variables or data structures
passed to the procedure.

Requested File Action
From the drop down list, optionally select None, Insert, Change, Delete, or
Select. The default selection is None. The Global Request variable gets the
selected value. The called procedure can then check the value of the Global
Request variable and perform the requested file action.

Run a Program You must specify the Program Name, and optionally, any parameters.

Program Name Type the program name.

Parameters Optionally type a list of values that are passed to the program.

No Special Action Choose this option if you are providing your menu item's functionality with
another method, such as embedded source, or an STD ID.

Note: You may combine a procedure or program call with embedded source, but not with an STD
ID.

Files Accesses the File Schematic Definition dialog for this procedure.

Embeds Allows you to embed source code at points surrounding the event handling for
this menu item only.

Order Controls Dialog
The Order Controls dialog displays all controls on the window in a hierarchical list. Reorder the controls,
and their tab key order by selecting a control and pressing the and ¯ buttons to move the control up or
down within the list.

Tip: This dialog is useful for moving controls among overlapping TAB controls on a SHEET or
moving a control off a TAB and onto the WINDOW.

Dictionary Properties Dialog

Click on a TAB to see its help

Displays information about the current data dictionary, including creation, modification dates, and a text
description. Push the Password button to password protect your dictionary from modification by other
users.

Properties

Created The original file creation date.

Last Modified The most recent modification date. See also: Version Checkpoint; Version

 Revert .

Comments

Allows you to enter a text description describing the dictionary. The description is
solely for your convenience, and has no effect on the application. It is useful for
situations in which other programmers may pick up your code later, or for when
you expect to return to the project after a long period of time since you last
looked at it.

Password

Calls the Password Validation dialog which enables password protection for your dictionary

See also: How to Create a Data Dictionary

New/Edit File Properties Dialog

Click on a TAB to see its help

This dialog allows you to add a new data file to the list and choose its file driver.

Once the file appears on the list, you may declare fields, keys, set relationships, and other properties for
the data file. Using the data from this dialog, the Application Generator will write the FILE structure
declaration.

To modify the file properties at a later time, highlight the file name on the Dictionary dialog list, then either
DOUBLE-CLICK or press the Properties button.

General

Name Type a data file name, as you wish to refer to it in your code. This serves as the
label for the Clarion FILE structure. Specify a valid Clarion label--Clarion will
automatically truncate the name if necessary. You may also specify a completely
different name for the DOS file--see Full Pathname, below.

Description Enter a string description for the file. Clarion automatically displays the
descriptions in certain dialogs, allowing you to quickly recognize the file contents.

Prefix As you enter the data file Name, Clarion automatically extracts the first three
letters to use as a label prefix when referring to the file. Optionally specify up to
14 characters of your choice in this field.

The prefix allows your application to distinguish between similar variable names
occurring in different data structures. A field called Invoice may exist in one data
file called Orders and another called Sales. By establishing a unique prefix for
Orders (ORD) and Sales (SAL), the application may refer to fields as
ORD:INVOICE and SAL:INVOICE.

File Driver Specify the data file type. When using the Application Generator, Clarion for
Windows automatically links in the correct database file driver library. See
Database Drivers for a discussion of the relative advantages of each driver. You
can specify the default driver by choosing Setup Dictionary Options.

Remember that individual file drivers may vary in their support of some of the attributes which you
add to the FILE structure in this dialog box.
Driver Options Optionally type a string for an additional driver attribute. This conveys additional
instructions to the file driver and corresponds to the second parameter for the DRIVER attribute, also
known as a "driver string." Database Drivers contains additional information.

Owner Name Optionally type a string containing the password for access to the file. This is
dependent on the file system. This adds the OWNER attribute to the FILE
statement. You must also check the Encrypt box (below).

Encrypting the file means that only your application will be able to read the file. It
does not mean that it automatically prompts the end user for a password. The
end user, however, may not access the data with any other file viewer.

When using the ODBC driver, type the data source name, user ID, and
password, separated by commas, in this field. See How to Create a File
Definition for an ODBC Data Source for further information.

Full Pathname Type either the path, or a fully qualified file name for the data file. If you leave the
file name out, Clarion automatically uses the first eight letters of the name
entered in the Name field. You may also omit the file extension--Clarion will
supply the correct extension depending on the file driver chosen. This supplies
the parameter for the NAME attribute.

When using the TopSpeed driver, if you wish to store multiple tables in a single
physical file, separate the file and table names with "\!," as in TUTORIAL\!ORDERS.
This refers to the ORDERS table in the TUTORIAL.TPS file.

See TopSpeed:Storing multiple Tables (data files) in a single DOS file. for further
information.

When using an ODBC driver to define a FILE such as Microsoft Access, which
can store multiple tables in a single file, place the table name in this field.
Typically, the name of the physical file which includes the table is listed in the
ODBC.INI file; the ODBC driver manager provides this information to the driver.

Tip: To specify a variable name for the actual file name, place it in this field, and prefix the
variable name with an exclamation point (!).

Enable File Creation Optionally specify that the application should create the data file if it does not
exist at runtime. This adds the CREATE attribute to the FILE statement.

Reclaim Deleted Records
This option is dependent upon the file driver. It specifies that the application
reuse file space formerly taken up by deleted records. Otherwise, the application
adds new records to the end of the file. This adds the RECLAIM attribute to the
FILE statement.

Encrypt Data Records Optionally turn on file encryption. You must also specify an Owner Name (see
above). This adds the ENCRYPT attribute to the FILE statement.

Open in Current Thread Optionally specify that each execution thread in your application that uses this file
allocates memory for its own separate record buffer. This is typically for use in
multiple document applications, and improves file handling. The Clarion default
templates automatically add the THREAD attribute on each FILE structure.

Use OEM Collation Specifies string data is converted from OEM ASCII to ANSI when read from disk
and ANSI to OEM ASCII before writing to disk. This adds the OEM attribute to the
file definition.

Enable Field Binding Optionally specify that all variables in the RECORD structure are available for
use in dynamic expressions at runtime. The compiler will allocate memory to hold
the full Prefix:Name for each variable, instead of using its own internal reference
for each variable. Therefore the BINDABLE attribute increases the amount of
memory necessary for the application.

See also:

How to Design Your Dictionary and Database

 How to Create a Data Dictionary

Comments

Allows you to enter a text description describing the dictionary. The description is
solely for your convenience, and has no effect on the application. It is useful for
situations in which other programmers may pick up your code later, or for when
you expect to return to the project after a long period of time since you last
looked at it.

Options

Do Not Auto-Populate This File
Directs the wizards to skip this file when creating primary Browse procedures or
Report procedures.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

New File Alias Dialog

Click on a TAB to see its help

An alias creates a second reference for a file without duplicating the file on disk. You can add an alias for
a file only if it is already on the Dictionary list.

General

Name Type a data file "name", as you wish to refer to it in your code. The name must be
a valid Clarion label.

Description Enter a string description for the alias. Clarion displays the descriptions in dialogs
such as the Dictionary dialog.

Press the >> button to type a separate description (up to 1000 characters) in a
larger text box. See also: Edit File Description dialog.

Prefix By default, Clarion will use the first three letters of the Name for the prefix.
Optionally specify up to 14 characters to use as a Prefix.

Alias File Choose a file from the drop down list. This is the original file that the alias
"references." The drop down list shows only the files previously defined using the
Add File command in the Dictionary Properties dialog.

Comments

Allows you to enter a text description describing the dictionary. The description is
solely for your convenience, and has no effect on the application. It is useful for
situations in which other programmers may pick up your code later, or for when
you expect to return to the project after a long period of time since you last
looked at it.

Options

Do Not Auto-Populate This Aliased File
Directs the wizards to skip the Aliased File when creating primary Browse
procedures or Report procedures.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

A file alias provides several advantages, at the cost of some system overhead:

It allows you to set multiple relationships between files.
Strict relational database theoreticians state a file may only have a single relational link to another

file at a time. Aliases allow you to "legally" work around this limitation. See also: How to Design Your
Dictionary and Database

It allows a second file buffer for the same file.
You could use this for a second file browse, as well as entry forms and other items for each. This

is particularly useful for an MDI application.

On the negative side, the second file buffer takes up additional memory and resources.
Any file driver utilizing external key files requires additional file handles for each alias. For

example, a file with three external keys and three aliases requires sixteen file handles: one each for the
"first" data file and its three keys, and an additional four for each of the aliases. When using aliases, we
recommend choosing a file driver that stores keys internally, such as TopSpeed or Btrieve.

When using aliases, you must open the file in Share mode.
To modify the alias properties at a later time, highlight the file name on the Dictionary dialog list, then
either double-click or press the Properties button.

You can edit the fields and keys for the Alias by pressing the Fields/Keys button. The Field/Key
Definition dialog lists the fields and keys for the original file; any changes you make will update the
originals.

New/Edit Field Properties Dialog

Click on a TAB
to see its help

The New Field Properties dialog allows you to define fields and variables, and to set field or variable
related options and attributes.

All the Clarion language attributes that you can place on a field also apply to memory variables. There are
only a few additional attributes that can only be placed on global or local memory variables. These are
disabled when defining a field.

The Dictionary Editor allows you to add the fields one after another, quickly. Each time you complete and
close the New Field Properties dialog for one field, another blank New Field Properties dialog appears,
ready for the next field. Press Cancel when the blank dialog appears after completing the last field, to
return to the Field/Key Definition dialog.

General

Field Name To name the field, type a valid Clarion label in the Name field. Valid field names
may vary slightly according to the file driver.

Description To add a text description, type it in the Description field. The description appears
next to the field name in various dialogs. You can optionally assign the
description to the MSG attribute by choosing Setup Dictionary Options and
checking the appropriate box..

Press the >> button to type a separate description (up to 1000 characters) in a larger text box.
See also Edit Field Description dialog.
Data Type To assign a field type, choose one from the Type drop down list. Clarion supports the
following field types, which specify how the data will be stored on disk by the file driver, and accessed in
memory by the application. These correspond to the Clarion variable types, plus memo and picture fields.
The types available vary according to the selected file driver. See also: Variable Declaration Statements
for a complete list of data types available.

Tip: The Decimal type generally provides the best all around performance for mathematical
calculations. The compiler optimizes the operation by multiplying values by powers of ten
before processing; this greatly speeds up performance on systems without math
coprocessors, at no cost in mathematical precision. See also: BCD Operations and
Functions.

Binary To specify that a MEMO field may hold binary data, check the Binary box. This is
dependent on the file driver. This adds the BINARY attribute.

Characters To assign a field length, specify a number in the Chars field.

Places To assign a set number of decimal places for a real number, specify a number in
the Places field.

Dimensions To declare the variable as an array, and to specify the array dimensions, type
them in the Dimensions fields. You can specify up to four dimension sizes. This
adds the DIM attribute.

Record Picture To specify the picture for a picture field, type it in the Record Picture field.

Reference To create a reference variable, check the Reference box. A reference variable

stores the memory address of another variable. This box is enabled only when
defining memory variables

Record Picture To specify the picture for a picture field, type it in the Record Picture field.

Screen Picture To specify a screen picture, type it in the Screen Picture field.

"Lock" icon To lock the screen picture, which specifies that it may not be changed if the field
type is changed, press the "Lock" icon next to the Screen Picture field.

Default Prompt To specify the default prompt string, type it in the Default Prompt field. The
Application Generator utilizes this for controls which display an on screen prompt.

Column Heading To specify the default column title, type it in the Column Heading field. The
Application Generator utilizes this for reports.

Attributes

Case To specify the case attribute for controls referencing the field, choose from the
Normal, Capitals or Uppercase radio buttons, in the Case group box. The
Application Generator adds the CAP or UPR attributes.

Typing Mode To specify the default typing mode attribute for controls referencing the field,
choose from the Insert, Overwrite or As Is radio buttons in the Typing Mode
group box. The Application Generator adds the INS or OVR attributes.

Flags

Immediate To specify immediate event notification for controls referencing the field, check
the Immediate box. The Application Generator adds the IMM attribute.

Password To specify the data non-display attribute for controls referencing the field, check
the Password box. The Application Generator adds the PASSWORD attribute.
When an end user types in an entry control referencing this field, the characters
typed do not appear on screen.

Read only To specify the display only attribute for controls referencing the field, check the
Read only box. The Application Generator adds the READONLY attribute.

Justification To specify justification for controls referencing the field, select from the
Alignment drop down list. The Application Generator adds the LEFT, RIGHT,
CENTER or DECIMAL attribute.

Offset To specify an indentation amount for controls referencing the field, specify a
number in the Indent field. The Application Generator uses this setting as the
parameter for the LEFT or RIGHT attribute. The measurement unit depends on
the default measurement unit for the window in which a control referencing the
field resides.

Initial Value To specify a default value for the field, type it in the Initial Value field. Note: you
must enclose strings in single-quote marks.

Tip: You can type a function in the Initial Value field for fields in Data Files. If the field, for
example, is a date field, you can add the TODAY() function to specify the initial value
defaults to today's date. You can also type in a variable name, by prefacing it with an
exclamation point. For Global, Local, or Module variables the initial value can only be a

constant value. To assign the value from a function, use a formula or embedded source
code.

External Name To specify an external name for the field, type it in the External Name field. This
covers cases where the field label within the program is different than the name
of the field in the data file; for example, you may be accessing a field through an
ODBC connection to a database which allows field names longer than the
maximum for a Clarion label. Place the name of the field as it exists in the data
file here. See also: How to Test Your ODBC Application

Place Over To declare the field as an overlay, select another field name from the drop down
list. This allows the current field to redefine the other field's location in memory.
The Application Generator adds the OVER attribute.

Allocation The Allocation drop down list is enabled only when defining memory
variables(global, module, or local). They set the EXTERNAL, STATIC, and AUTO
attributes for memory variables.

Comments

Allows you to enter a text description describing the dictionary. The description is
solely for your convenience, and has no effect on the application. It is useful for
situations in which other programmers may pick up your code later, or for when
you expect to return to the project after a long period of time since you last
looked at it.

Options

Do Not Auto-Populate This Field
Directs the wizards to skip this field when creating Form, Browse or Report
procedures.

Population Order Specifies the order in which the wizards populate fields. Choose Normal, First,
or Last from the drop down list. Wizards populate in this order: all Fields
specified as First, then all Fields specified as Normal, and finally all Fields
specified as Last.

Form Tab Specifies the TAB onto which the wizards populate the field. Type the Caption for
the TAB or select one you have previously created from the drop down list. This
allows you to direct the wizard to group fields in the manner you want.

Add Extra Vertical Space Before Field Controls on Form Procedures
Check this box to direct the wizards to add vertical space between this field's
control and the one populated above it.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Help

HLP To specify a help ID for controls referencing the field, specify a help topic in the
HLP field. The Application Generator adds the HLP attribute.

MSG To specify a status bar message for controls referencing the field, type the
message in the MSG field. The Application Generator adds the MSG attribute.
When the control referencing the field has focus, the text appears on the status
bar, provided the window in which the control appears has one.

Validity Checks
Choose a validation option in this dialog. The Application Generator uses the information when creating
and maintaining controls. When the user completes the field and shifts focus to another control, the
application will sound a warning beep and set focus back to the control if the data is not valid..

Tip: When setting a validity check, provide the user with a helpful status bar message. For
example, if you specify that a numeric field must hold a value between 1 and 50, place a
message such as "Type a number between 1 and 50" in the MSG field.

No Checks To disable validity checking, choose No Checks.

Cannot be Zero or Blank
To require a user entry without specifying any other criteria, choose Cannot be
Zero or Blank. The Application Generator adds the REQ attribute.

Must be in Numeric Range
To specify the entry fall between two numeric values, choose Must be in
Numeric Range. Then enter the two values in the Lowest and Highest fields.

By entering only a lower, or only a higher value, you can specify an open ended
range.

Must be True or False To specify a Yes/No entry, choose Must be True or False.

Must be in File To specify the value match a field in an external file, choose Must be in File.
Choices will appear in the drop down list only if you previously related another file
or files.

Must be in List To specify the value match an entry in a list, choose Must be in List. Then type
the choices in the Choices field, in the format "Choice1| Choice2|Choice3."
Separate the choices with a pipe character (|).

Tip: If you plan to allow the end user to choose a limited number of choices from a list box,
drop down list, combo, drop down combo, or radio buttons, type the choices and separate
them with a pipe symbol, or vertical bar character (|).

Window
To pre-format a window control referencing the current field, select the Screen Controls tab, then specify
the options in this dialog.

Tip: By choosing the properties for a control at this time, you can save time later. Every
application you generate from the dictionary, and every procedure in the application will
automatically format the control the way you want it. If you don't format it here, and if the
control requires custom formatting, you will have to custom format it for each procedure
and application later.

Select either the prompt or entry field from the Screen Controls list, then press the Properties button.
The prompt is the label which appears next to the control. The entry field is the actual control which
accepts user input.

Window Controls In most cases, this list box will show an ENTRY and PROMPT control for the
field. Select the control to preformat.

Properties Allows you to customize the control selected in the Screen Controls list by
displaying its Properties dialog.

Reset Controls Allows you to return the control type to its default, if you changed it by selecting
another from the Control Type list.

Control Type Allows you to select a different control type consistent with the field type and
Validity Checks selected. For example, if you chose the Must be in List option
in that dialog, one of the choices will be a list box.

Depending on whether the control can receive focus, (or in the case of a check
box, which places the mnemonic in the label), the PROMPT in the Screen
Controls list is deleted.

An IMAGE control cannot receive focus, and also has no PROMPT.

Report
To pre-format a report control referencing the current field, select the Report Controls tab, then specify
the options.

Tip: By choosing the properties for a control at this time, you can save time later. Every
application you generate from the dictionary, and every procedure in the application will
automatically format the control the way you want it. If you don't format it here, and if the
control requires custom formatting, you will have to custom format it for each procedure
and application later.

Select the string field from the Report Controls list, then press the Properties button.

Report Controls The STRING control for the field.

Properties Allows you to customize the control selected in the Report Controls list by
displaying its Properties dialog.

Reset Controls Allows you to return the control type to its default, if you changed it by selecting
another from the Control Type list.

Control Type Allows you to select a different control type consistent with the field type and
Validity Checks selected. For example, if you chose the Must be in List option
in that dialog, one of the choices will be a list box.

Depending on whether the type of control, the first string control in the Report
Controls list is deleted.

See also:

How to Design Your Dictionary and Database

How to Create a Data Dictionary

New/Edit Key Properties Dialog

Click on a TAB to see its help

This dialog allows you to define a key for the currently selected file. See also: How to Create a Key

The Dictionary Editor allows you to add keys and their components one after another, quickly. Each time
you complete and close the Properties dialogs for one key, another blank dialog appears, ready for the
next. Press Cancel when a blank dialog appears after completing the last key, to return to the Field/Key
Definition dialog.

General

Key Name To specify a Clarion label for the key, type a valid Clarion label in this field.

Tip: Remember that you cannot give a key the same name as one of the fields within the
RECORD. One common convention is to use the field name plus the word "key," as in
LastNameKey.

Description To place a text description for the key in the Data Dictionary, type it in this field.
The description appears in dialogs such as the File Definition dialog. If you
anticipate using many keys for your application, we recommend filling in this field.

Type To specify a record key, static index file, or dynamic index file, choose an option
button in the Type group. The Static Index and Dynamic Index options are
disabled when the Unique checkbox is marked, because indexes allow
duplicates.

Attributes

External Name To specify a DOS filename for an external key, type a valid DOS filename in this
field.

Require Unique Value To disallow multiple records with duplicate values in their keys, check this box.
This option is valid only for keys, and is disabled for indexes.

Primary Key To establish the current key as the Primary key, mark this checkbox. The
Application Generator adds the PRIMARY attribute. This may be required for
certain file drivers.

The primary key must be unique and exclude nulls.

Auto Number To specify the Application Generator should create code to manage record
sequence numbers, check this box.

Case Sensitive To sort according to case, check this box. When creating or updating the key, all
capital letters will precede the lower case letters, as per their positions in the
ASCII table.

Exclude Empty Keys To exclude records with a null or zero value from the key, check this box.

Comments
Allows you to enter a text description describing the dictionary. The description is solely for your
convenience, and has no effect on the application. It is useful for situations in which other programmers
may pick up your code later, or for when you expect to return to the project after a long period of time

since you last looked at it.

Options

Do Not Auto-Populate This Key
Directs the wizards to skip this Key when creating primary Browse procedures or
Report procedures.

Population Order Specifies the order in which the wizards populate keys. Choose Normal, First, or
Last from the drop down list. Wizards populate in this order: all Keys specified as
First, then all Keys specified as Normal, and finally all Keys specified as Last.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Fields

Specify the components of keys (the field or fields)-using the Fields tab. You may specify more than one
field for a key. Each field is appended to the Keys list in the Field/Keys Definition dialog.

The Fields tab features a list displaying the components.

Sort Order Choose either the Ascending or Descending radio buttons to specify the order
for the highlighted component.

Note: Not all file drivers support mixing ascending and descending
components in the same key.

Insert Calls the Insert Key Component dialog listing the available fields. DOUBLE-CLICK
on the name of a field in the list, to place it in the key.

Insert Removes the highlighted component from the key.

Move up/Move Down buttons
Moves the highlighted component up or down in the list.

See also: How to Create a Key

New/Edit Relationship Properties Dialog

Click on a TAB to see its help

Set relationships between files in this dialog. The relationships appear in the Related Files list on the
Dictionary dialog, for the currently selected file. When completing this dialog, work from the top down.
Start with the Relationship for selected file group box:

General

Type Set the relationship type by choosing 1:Many or Many:1 from the drop down list.

Key Depending on the relationship type selected, choose a primary or foreign key
from the drop down list. The choices in the drop down are the keys previously
defined for the currently selected file.

Depending the relationship type you choose for the selected file, the next group box will be labeled either:
Child, Parent or Link (respective to 1:Many or Many:1):

Related File Choose another file from the dictionary to relate to the selected file.

Key Depending the relationship type you choose for the selected file, the label for this
drop down box will be either Primary or Foreign. Select a previously defined key
for the related file from the drop down box.

Field Mapping This group box displays two lists, each showing a key, and the field in the related
file which "maps" to it. If the key field names of each file match each other, then
just press the Map by Name button (below), and Dictionary Editor will
automatically link the fields. If they do not, double click on each item in the list
boxes, then select a field from the related file that links to the key, in the Select
a Field dialog.

Map By Name Automatically defines links based on similarly named fields in each data file.

Map By Order Automatically defines links based on the order in which fields are defined in each
data file.

After choosing all other options, set the options in the Referential Integrity Constraints group box. The
Application Generator automatically generates the code that enforces your selections.

Referential Integrity requires that a foreign key cannot contain any value which has no match in the
primary key. This raises potential problems when the end user wishes to change or delete the primary key
record.

The On Update and On Delete drop down boxes each offer the following choices:

No Action Instructs the Application Generator not to generate any code to maintain
referential integrity.

Restrict Instructs the Application Generator to disallow the user from deleting an entry, if
the value is used in a foreign key. For example, if the user attempts to change a
primary key value, the generated code attempts to check for a related record with
the new value, changes it back if necessary, then loops back to the entry dialog
so that the user can enter another value.

Cascade Instructs the Application Generator to update or delete the foreign key record. For
example, if the user changes a primary key value, the generated code changes
the values in the foreign key that referenced the primary key. If the user deletes a
primary key value, the code deletes the foreign key value, too.

Clear Instructs the Application Generator to change the value in the foreign key to blank
or zero.

Comments

Allows you to enter a text description describing the dictionary. The description is
solely for your convenience, and has no effect on the application. It is useful for
situations in which other programmers may pick up your code later, or for when
you expect to return to the project after a long period of time since you last
looked at it.

Options

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

See also:

How to Define File Relationships and Referential Integrity

How to Design Your Dictionary and Database

Select a Field Dialog
Allows you to select a field (from the related file) to link in the Field Mapping lists in the New
Relationship Properties dialogs. Open the dialog by DOUBLE-CLICKING an item in either list.

Fields list DOUBLE-CLICK or select a field from the related file, and press the Select button.

No Link Allows you to indicate that a field is not part of the relationship.

New View Dialog
A VIEW is a virtual file constructed from selected fields in multiple files. The New View allows you to
select the files and fields to include in the view. As you add files and fields, they are listed in the View list
in the dialog.

Name Type a view "name," as you wish to refer to it in your code. The name must be a
valid Clarion label.

Description Type a string description for the view. Clarion displays the descriptions in dialogs
such as the Dictionary dialog.

Press the >> button to type a separate description (up to 1000 characters) in a
larger text box. See also: Edit View Description dialog.

Filter Type an expression (such as PRE:Field1 > 1) to limit the contents of the view to
only those records matching the filter expression. The filter is independent of any
keys defined for the files referenced by the VIEW structure. In a Client/Server
environment the filter may not adversely affect performance; in any other
environment, it may slow down file operations.

Add File Allows you to add a file to the View. See also: Select Primary File and Add File
(View) dialog.

Add Field Allows you to add a field from the currently selected file to the view. See also:
Add File (View) dialog.

Remove Removed the currently selected file or field from the view.

To add files and fields to the VIEW structure:
1. Press the Add File button.

2. In the Select Primary File dialog, choose a file and press the OK button.

The file appears in the view list.

3. Back in the New View dialog, press the Add Field button.

4. In the Add Field dialog, click on the fields you wish to include in the view, then press the OK
button.

The fields appear directly below the file.

5. Repeat steps 1 through 4 for any additional files and fields you wish to add to the view.

Only files already related to the current file may be added to the file list below it.

6. Press the OK button to close the New View dialog.
Creating a view provides a major advantage in a Client-Server environment because the Server has the
ability to do much of the work. The Server processes the overhead of the relational "Join" and "Project"
operations which would otherwise tie up the local machine. Only the data elements specified in the
VIEW--not the entire RECORD structures from the files contained in the view--are updated. This means
accessing a field in the RECORD structure which is not also defined in the VIEW structure returns an
undefined value. Therefore, when working with a views, be sure to include all the fields you need to work
with in the VIEW, and don't try to access any fields not in the VIEW.

The VIEW structure has no prefix. Access its fields by using the prefixes for the original RECORD
structures defining the fields. This is transparent when you use the Application Generator. The File
Schematic Definition automatically adds the proper prefix so that the generated code is correct.

To modify the view properties at a later time, highlight the file name on the Dictionary dialog list, then
either DOUBLE-CLICK or press the Properties button.

Select Primary File/ Add File--View Dialog
Allows you to select the primary file for the view. Select a file from the list and press the OK button to add
it to the view.

The primary file is the only file in the view which you can update. PUT or DELETE affects records only in
the primary file. Joined files are never written to.

If you DELETE the view record, it deletes the record in the primary file, but not the records in the other
files in the view. If you PUT the view record, it updates the fields in the primary file, but not the other files.

Edit File Description
Allows you to enter string descriptions for the file. Clarion for Windows automatically displays the short
description in certain dialogs, allowing you to quickly recognize the file contents. The long text description
only appears in this dialog box, and holds up to 1000 characters.

The descriptions are solely for your convenience, and have no effect on the application. They're useful for
situations in which other programmers may pick up your code later, or for when you expect to return to the
project after a long period of time since you last looked at it.

Dictionary Options Dialog

Click on a TAB to see its help

You can customize the default dictionary settings in this dialog. To access the dialog, choose Setup
Dictionary Options.

File Options

Default Driver To select the default database driver for new files in a dictionary, choose from the
Driver drop down list.

For detailed descriptions of the drivers available, see Database Drivers.

Sort Dictionary Files Alphabetically Check this box to display files in alphabetical order. If not
checked, files display in the order in which they were created.

THREAD To specify new file definitions default to adding the THREAD attribute (setting
aside a separate RECORD buffer for each procedure), check the THREAD
Attribute on Files checkbox.

Display File Description Check this box to display the file description in the Files list.

Display File Driver Check this box to display the file driver in the Files list.

Field Options

Assign Description to Message
Check this box to specify that the field descriptions you specify when defining a
field should automatically serve as the text for the MSG field (setting a status bar
message when controls referencing the field have the focus).

Display Field Description
Check this box to display the field description in the Fields list.

Display Field Type Check this box to display the field's data type in the Fields list.

Display Field Picture Check this box to display the field's display picture in the Fields list.

Key Options

Display Key Description
Check this box to display the Key description in the Keys list.

Display Key Type
Check this box to display the Key Type in the Keys list.

Display Unique Flag
Check this box to display Unique if the Key is flagged as unique.

Display Primary Key Status
Check this box to display Primary if the Key is flagged as the Primary Key.

Display Other Key Attributes

Check this box to display the other attributes of the Key in the Keys list.

See also: How to Create a Data Dictionary

Dictionary Dialog
Allows you to manage the data files, aliases, views and relations for your dictionary.

Files List The list of data files, aliases and views in the dictionary.

Add File Allows you to add a file to the list. See also: New File Properties dialog.

Add Alias Allows you to add an alias to the list. See also: New File Alias dialog.

Add View Allows you to add a view to the list. See also: New View dialog.

Properties Allows you to change the options for the selected file, view or alias. See also:
Edit Properties dialog.

Fields/Keys Allows you to define fields and keys for the selected file, view or alias. See also:
Field/Keys Definition dialog.

Delete Allows you to delete the selected file, view or alias.

Related Files List Shows relations for the currently selected file or alias.

Add Relation Allows you to add a relation to the selected file or alias. See also: New
Relationship Properties dialog.

Properties Allows you edit the selected relation. See also: Edit Relationship Properties
dialog.

Delete Allows you to delete the selected relation.

Dictionary Properties Allows you to add or edit information about the current data dictionary, including
creation, modification dates, and a text description. See also: Dictionary
Properties dialog.

See also: How to Create a Data Dictionary

Field/Key Definition Dialog
Click on a TAB to see its help

The Field/Key Definition dialog contains two tabs--listing Fields and Keys. At the bottom of the dialog,
the Edit Fields or Edit Keys group box appears, depending on which tab is selected.

To add a new field, press ALT + L if the Fields list does not currently have focus, then press the
Insert button in the Edit Fields group box. The New Field Properties dialog appears.

To add a new key, press ALT + K if the Keys list does not currently have focus, then press the
Insert button in the Edit Keys group box. The New Key Properties dialog appears.

Fields
To modify an existing field, select it and press the Edit button in the Edit Fields group box. The

Edit Field Properties dialog appears.
To delete an existing field, select the field name and press the Delete button in the Edit Fields

group box.
To move the selected field within the Fields list, press the and ¯ buttons in the Edit Fields group

box. This reorders the field labels within the FILE structure.

Keys
To modify an existing key or key component, select it and press the Properties button. The Edit

Key Properties dialog appears.
To delete an existing key, select it and press the Delete button.
To move the selected key within the Keys list, press the and ¯ buttons in the Edit Keys group

box.
Keys and indexes specify sort orders for a single file. A key may reside within the file, or as an external
file, depending on the file system. Keys are automatically updated whenever records are added, changed,
or deleted. See Database Drivers for further information regarding how each file driver supports keys or
indexes.

Indexes usually exist as external files. Remember that a separate DOS file handle is necessary for each
external key or index file. Index files do not update automatically. The BUILD statement updates an index.

A dynamic index allows you to declare an index file without specifying the field(s) in the Data Dictionary.
The application must define the field(s) at runtime, as the second parameter of the BUILD statement. The
application may rebuild the same index file at a later time, specifying a different field for the index key.

See also:

How to Design Your Dictionary and Database

How to Create a Data Dictionary

Dictionary Version Control

Version CheckPoint
Increases the internal version number in the data dictionary.

The Dictionary Editor automatically places an internal version number in your dictionary file. A new
dictionary begins with version 1.0. You can see the version number/revision number on the caption bar of
the Dictionary dialog. The Dictionary Properties dialog also displays the original creation data and
time, and the last modified date and time.

You should increase the version number, manually, whenever you make significant changes to a
dictionary; for example, when you're working on version #2 of your application, choose Version
Checkpoint. The revision number (r. #) on the caption bar increases by one.

To roll back to a previous version, choose Version Revert . Choose the revision to revert to by
selecting it with the spin control in the Previous Revision dialog.

Revert Dictionary Version

Version Revert
Rolls back changes in the data dictionary to the last checkpoint.

The Dictionary Editor automatically places an internal version number in your dictionary file. A new
dictionary begins with version 1.0. You can see the version number/revision number on the caption bar of
the Dictionary dialog. The Dictionary Properties dialog also displays the original creation data and
time, and the last modified date and time.

You should increase the version number, manually, whenever you make significant changes to a
dictionary; for example, when you're working on version #2 of your application, choose Version
Checkpoint. The revision number (r. #) on the caption bar increases by one.

To roll back to a previous version, choose Version Revert. Choose the revision to revert to by
selecting it with the spin control in the Previous Revision dialog.

Global Data/Local Data/Module Data Dialogs
This dialog allows you to define or edit memory variables. It provides a list of variables for the procedure
(Local), module, or the global variable list.

When you want to add a variable, you press the Insert button, then define the variable in the New Field
Properties dialog.

Properties Select a variable from the list, then press this button to edit it in the Edit Field
Properties dialog.

Insert Press this button to define a new variable.

Delete Press this button to delete the currently selected variable.

Up Press this button to move the currently selected variable up one position in the
list. When the Application Generator generates the code defining the data, it will
do so in the order they appear in this list.

Down Press this button to move the currently selected variable down one position in the
list.

File Schematic Definition Dialog
You define the files, fields, and variables a procedure--or a control inserted by a control template--can
access with the File Schematic Definition dialog. The available data files and keys are the ones you
define in the data dictionary.

You can "attach" a file to an item in the Files list. These represent the current procedure, module, global
data, or other files. When you place a control template in a window, you can "attach" the file to the "To Do"
item which appears after you place the control template.

The dialog contains the following buttons:

Insert Allows you to pick a file, previously defined in the data dictionary, from the Insert
File dialog.

Delete Deletes the currently selected file from the list (not from the data dictionary, or
from disk).

Key Allows you to select a key previously defined in the data dictionary, from the
Insert Key dialog. Normally, the file schematic will automatically pick the first key
listed in the data dictionary for any data file you add by pressing the Insert
button. This button allows you to pick another key.

New Allows you to call the Dictionary Editor.

Select Field Dimension Dialog
This dialog allows you to specify the component of a dimensioned variable which you wish to "attach" to a
control, via the File Schematic Definition dialog.

The number of dimensions you specified in the Field Properties dialog when you defined the variable
determines how many spin boxes are enabled. Choose the specific element by setting the spin boxes.

For example, to refer to the variable DimVariable[4][5], set the first spin box to 4, and the second to 5.

Revert to Previous Revision
This window allows you to rollback a dictionary to a previous version.

Current Displays the current version.

New Revision Allows you to select the version to which the dictionary will revert.

Import File Dialog
The Dictionary Editor allows you to quickly add a data file to the dictionary by creating a data definition
based on an existing data file.

With the Dictionary dialog active, select File ä Import File. Specify a data file and additional options in the
Import File dialog.

Filename Type a file name or press the ellipsis (...) button to select a name from the
Import File Definition dialog.

When importing a definition via an ODBC data source, do not specify a directory
name; Clarion for Windows will read it from ODBC.INI.

File Driver Choose a database driver from the drop down list.

Owner Fill in an optional OWNER attribute. If importing from an ODBC data source, type
in the datasource name, (optional) UserID, and (optional) Password.

Options Fill in any optional driver strings.

After reminding you that the import process cannot import memo fields (you can add them manually), the
data file is added to the dictionary, along with its field and key definitions. When importing from an ODBC
data source, no key definitions will be imported.

See also:

ODBC

Password Validation Dialog
Allows you to password protect your dictionary, to prevent other developers from modifying it.

To add a password to the data dictionary:

1. Press the Password button.

2. When the Password Validation dialog appears, type a password in the space provided.

3. Press the OK button.
See the Multi-Developer Development appendix in the User's Guide for more information.

Data Sources dialog
Select the data source from which the file will be imported, then press the Next button to select the table
to import. Select the table, then press the Finish button to import the file.

If the Data Source has not been defined in ODBC.INI, press the New button to define the data Source.
This calls the ODBC Administrator, an applet which maintains file definitions in ODBC.INI.

Common Questions

Data Dictionary
How to Create a Data Dictionary

How to Design Your Dictionary and Database

How to Create a Dictionary (.DCT) File

How to Add Files to a Dictionary

How to Add Fields to Data Dictionary Files

How to Create a Key

How to Define File Relationships and Referential Integrity

Using Wizard Options

How to Import a File Definition From an Existing Data File

Application Generator
How to Create a New Application File

How to Add and Customize a Procedure

How to Add Embedded Source Code

Adding Procedure Extensions

Formula Editor
Defining Procedure Formulas

How to Create a Simple Assignment Expression

How to Create a Complex Assignment Expression

Window Formatter
How to Customize Your Window

Using the Window Formatter - Sample Window

Using the Window Formatter - Controls Toolbox

Using the Window Formatter - Fields Toolbox

Using the Window Formatter - Property Toolbox

Using the Window Formatter - Align Toolbox

How to Add a Toolbar

How to Minimize a Window

How to Create a New Menu

How to Implement Standard Windows Behavior

How to Create an MDI Menu

How to Use a Combo Box

How to Create a List Box

How to Create Column Groups Using the List Box Formatter

How to Assign an Image to Display at Runtime

How to Store and Display a Graphic Image with a Memo or Blob Data Type

How to Make a Record Occupy Two or More Rows in a List Box.

How to Restore User Resized List Box Column Widths

How to Trap a Double Click on a List Box

How to add Drag and Drop to a List Box

How to Display the Sort Field First on a Multi-Key Browse

How to Create a Wizard

What is a Dialog Unit

How to complete an entry field when the last character is entered

How to Use Spin Controls for Date or Time Fields

How to Create a Multi-Page Form

How to use Pattern Pictures on a form

How to Implement a Splash Screen

Report Formatter
How the Print Engine Processes Report Sections at Runtime

How to Use the Report Formatter - An Overview

How to Set Report Group Breaks

How to Sort Reports

How to Control Page Breaks

Using the Report Formatter - Sample Reports

Using the Report Formatter - Controls Toolbox

Using the Report Formatter - Fields Toolbox

Using the Report Formatter - Property Toolbox

Using the Report Formatter - Align Toolbox

Using Preview!

How to Print to a File

How to change the printer device without calling PRINTERDIALOG

How to Print Labels

How to Clip and Concatenate Name Fields

Project System
How to Link External Resources

How to Manage Threads

Using Windows DLLs NOT Created in Clarion for Windows

Creating a .DLL (Sub-Application)

Redirection File

Distributing Your Applications

ODBC
How to Import an ODBC File Definition

How to Create a File Definition for an ODBC Data Source

How to Choose When to Use ODBC vs. a Native Clarion Driver

How to Work With the ODBC.INI File

How to Test Your ODBC Application

Using an ODBC Connect String

Dynamic Data Exchange
How to Start a DDE Conversation

How to Send DDE Commands and Data to a DDE Server

Templates
How to Customize Procedure Templates

How to Modify Templates

How to Register a Template Set

Data File Conversion
How do I handle an Error 47

How to Convert a File--Generate Source

How to Convert a File (without generating source)

How to Make a Field Assignment

Tips for Clarion 1.0 users
Clarion Language Enhancements 1.0 to 1.5

BrowseBox Control: The Inside Story

How to Create a Data Dictionary
This section provides an overview of the general process of creating a data dictionary. This involves the

following steps:

1. Design Your Dictionary and Database .

Planning and organizing your application's database design up front can result in a more efficient
application, as well as much shorter development times.

2. Create the Dictionary (.DCT) File.

3. Add Files to the Dictionary .

Add File Aliases and Views as well. These pseudo-files provide support for conventional relational
database functionality, that is "Join" and "Project."

4. Add Fields to the Files.

5. Define Keys for the Files.

6. Define File Relationships.

Including custom referential integrity constraints for related files.

How to Design Your Dictionary and Database
This topic provides a quick review of relational database theory. Planning and organizing your
application's database design up front can result in a more efficient application for the end user, not to
mention saving hours of redesign later.

The relational model concerns itself with three aspects of data management: structure, integrity, and
manipulation. For our purposes, we will discuss the three practical requirements of these aspects: data
normalization, keys, and relational operations.

Normalization

At its simplest, data normalization means that a data item should be stored at only one location. To avoid
duplication within the database, a good design splits data into separate files.

For instance, assume a very simple order-entry system storing the following data:
Customer Number
Customer Name
Customer Address
ShipTo Address
Order Number
Order Date
Product Number
Quantity Ordered
Unit Price

You could store all the data in each record of one file, but that would be inefficient (unless the business
has no repeat customers). A second order from a customer would repeat all the Customer data, for
example. To eliminate duplication, you could split the data into three files:

Customer File: Order File: Item File:

Customer Number Order Number Product Number
Customer Name ShipTo Address Quantity Ordered
Customer Address Order Date Unit Price

This organizes the data in a logical scheme and eliminates duplication. The process of relating each
record to another record in another file requires adding additional fields to at least two of the files, so that
the files can share common values.

Strict relational theory specifies that:

The database consists of one or more tables, which, to vastly oversimplify for a moment,
correspond to the files.

The table consists of column headings (which at the file level we refer to as fields) and zero or
more rows (records).

Each record contains exactly one value for each field.

Keys

In the simple order-entry system above, to relate the records in the customer, order and item files to one
another, we could add one field each to two of the files as follows:

Customer File: Order File: Item File:

Customer Number Order Number Order Number
Customer Name Customer Number Product Number
Customer Address ShipTo Address Quantity Ordered

Order Date Unit Price

Relational database theory states:

A primary key should exist for each table. A primary key is a unique field or unique combination of
fields. The primary key must not accept a null or blank value, this would prevent it from being unique.

A foreign key can match the primary key in another table. If table "A" includes a foreign key that
matches table "B's" primary key, then every value in the key in table "B" must either be equal to a value in
the primary key in a record in "A," or be null.

In the example above, the Customer Number is the primary key (there could be two "John Smith's," but
not two customer #1001's). The Customer Number field is added to the order file, as a foreign key.

You can define two types of relationships between files:

One-to-Many. One record in a file relates to many in another. In the example above, a single
customer number may relate to many records in the Order file. In business database applications, this is
the most common relationship. It is also referred to as a Parent-Child relationship.

Many-to-Many. Multiple records in a file relate to multiple records in another. To apply it to the
example, assume the Order-Entry system were made to fit a manufacturing concern which buys parts and
makes products. If a part could be used in many different products, and a product could use many parts,
two additional files might look like:

Parts File: Product File:

Part Number Product Number

Part Description Product Description

Relational Operations

Relational database theory provides a set of operators for manipulating data. The three operations that
theoreticians specify for relational database systems are Select, Project, and Join. A system does not
have to explicitly support the statements as long as it supports their functionality. For theoretical
purposes, a table simply consists of a set of column headings (or fields), plus zero or more rows (records)
of data values.

A Select extracts a row subset of a given table--in other words, a subset of records which satisfy
a given condition.

A Project extracts a column subset of a given table--in other words, a subset of specified fields,
which then eliminates extraneous records (example below).

A relational Join takes two tables and joins them together to form a new, wider table.

In the example, extracting a record or records (spanning all files) that meet the condition "Customer
Number = 100" is an example of a relational select.

Project extracts unique values by field. In the example above, assuming that the Item file has many
duplicates, to Project the file "Item" over the field "Product Number" yields a new table of all the products
sold (not necessarily all products made). There would be only one instance of each product.

Join: Going back to the example, to work with all the combinations of parts and products possible, there
must be a special relationship between these two files. The solution is to define a third file, called a "Join"
file. This file creates two One-to-Many relationships. The relationships between the three files would be
defined:

Parts File:

Part Number (Primary key)
Part Description

Parts2Prod File:

Part Number (1st Primary key component and Foreign key)
Product Number (2nd Primary key component and Foreign key)
Quantity Used

Product File:

Product Number (Primary key)
Product Description

The Parts2Prod file has a multiple component Primary key and two foreign keys. The relationship
between Parts and Parts2Prod is One-to-Many. The relationship between Product and Parts2Prod is also
One-to-Many. This makes the Join file the "middleman" between two files with a Many-to-Many
relationship.

Usually a Join file contains additional information. In this example, the Quantity Used logically belongs in
the Parts2Prod file.

The Clarion Data Dictionary Editor

The Clarion language supports the three aspects of data management that relational database theory
concerns itself with. The Dictionary Editor is a tool for planning the structure and integrity of the database.
The Dictionary Editor also allows you to "preconstruct" some of the relational operations specified by
database theorists; Clarion language statements handle the remaining operations.

The Dictionary Editor allows you to easily set up the proper database structure by defining files,
fields, and relations.

The Dictionary Editor allows you to easily plan both primary and foreign keys for your database,
as per the relational model's integrity rules.

Additionally, the Dictionary Editor supports preconstruction of "Views." The View creates a
"virtual" file, automatically handling any necessary "Joins" and "Projects."

How to Create a Dictionary (.DCT) File
You generally create a data dictionary as the first step in creating an application. Therefore, you will
access it first from the development environment''s main menu.

To open the Dictionary Editor to create a new dictionary file:

1. Choose File New from the development environment menu, then select the Dictionary tab.
2. Specify the path (Folders) and File Name for your dictionary file, then press the Create button.
The Dictionary dialog appears.

3. Press the Dictionary Properties button at the bottom of the dialog.

4. On the Comments tab, type the description in the space provided.

The description is solely for your convenience, and has no effect on the application. It is useful when
other programmers take over your project, or for when you return to the project after a long absence.

Your data dictionary file is created. At this point the dictionary is an empty shell. Use the Dictionary dialog
to add files, fields, keys, and file relationships.

How to Add Files to a Dictionary
1. Press the Add File button, then, when asked if you want to use Quick Load, press the No button.

The New File Properties dialog appears.

2. On the General tab, type the Name, the Prefix, and choose the File Driver for your data file.

3. Press OK to close the dialog.

Your file is added to the dictionary. You may, of course, specify additional file properties if you want. You
may add more files by repeating the above steps.

How to Add a File Alias to the Dictionary

An alias creates a second reference for a file without duplicating the file on disk. You can add an alias for
a file only if it's already on the Dictionary list. In the Dictionary dialog, press the Add Alias button and fill
in the New File Alias dialog.

A file alias provides several advantages, at the cost of some system overhead:

It allows you to set multiple relationships between files.

Strict relational database theoreticians state a file may only have a single relational link to another file at a
time. Aliases allow you to "legally" work around this limitation.

It allows a second file buffer for the same file.

You could use this for a second file browse, as well as entry forms and other items for each. This is
particularly useful for a Multiple Document Interface (MDI) application.

On the negative side, the second file buffer takes up additional memory and resources.

Any file driver that uses external key files requires additional file handles for each alias. For example, a
file with three external keys and three aliases requires sixteen file handles: one each for the "first" data file
and its three keys, and an additional four for each of the aliases. When using aliases, we recommend
choosing a file driver that stores keys internally, such as TopSpeed or Btrieve.

Tip: When using aliases, you must open the file in Share mode.

You can edit the fields and keys for the Alias by pressing the Fields/Keys button. The Field/Key
Definition dialog lists the fields and keys for the original file; any changes you make will update the
originals.

How to Add a View to the Dictionary

A VIEW is a virtual file constructed from selected fields in multiple files.

Creating a view provides a (potentially) major advantage in a Client-Server environment because the
Server has the ability to do much of the work. The Server processes the overhead of the relational "Join"
and "Project" operations which would otherwise tie up the local machine.

When working with views, be sure to include all the fields you need to work with in the VIEW, and don't try
to access any fields not in the VIEW. This is necessary because only the data elements specified in the
VIEWnot the RECORD structures from the component filesare updated. This means accessing a field in
the RECORD structure which is not also defined in the VIEW structure returns an undefined value.

The VIEW structure has no prefix. Access its fields by using the prefixes for the original RECORD
structures defining the fields. This is transparent when you use the Application Generator. The File
Schematic Definition automatically adds the proper prefix so that the generated code is correct.

To add a view to the files list, choose Edit Add View. Fill in the New View dialog.

Name Type a view name, as you wish to refer to it in your code. The name must be a
valid Clarion label.

Description Type a string description for the view. Clarion displays the descriptions in dialogs
such as the Dictionary dialog.

Press the >> button to type a separate description (up to 1000 characters) in a
larger text box.

Filter Type an expression (such as PRE:Field1 > 1) to limit the contents of the view to
only those records matching the filter expression. The filter is independent of any
keys defined for the files referenced by the VIEW structure. In a Client/Server
environment the filter may not adversely affect performance; in any other
environment, it may slow down file operations.

Add File Allows you to add a file to the View.

1. Press the Add File button.

2. In the Select Primary File dialog, choose a file and press the OK button.

Only files already related to the primary file may be added to the file list below it.

Add Field Allows you to add a field from the currently selected file to the view.

1. Press the Add Field button.

2. In the Add Field dialog, CLICK on the fields you wish to include in the view, then press the OK
button.

To modify the view properties at a later time, highlight the file name on the Dictionary dialog list, then
either DOUBLE-CLICK or press the Properties button.

How to Add Fields to Data Dictionary Files
1. Press the Fields/Keys button to open the Field/Key Definition dialog.

2. On the Fields tab, press the Insert button.

The New Field Properties dialog appears.

3. On the General tab, type in the field Name, choose Data Type, specify length in Characters.

4. Select the Validity Checks tab, and choose a field validation option.

5. Select the Window tab to specify how the field and its prompt appear as controls in your
application windows and dialogs.

6. Select the Report tab to specify how the field will appear on printed reports.

The specifications on the Window and Report tabs establish defaults for the field. You can always change
the settings on a case by case basis.

7. Press OK to complete this field and define the next one.

The New Field Properties dialog appears again, ready for the next field.

8. Repeat steps 3 through 7 for additional fields within this file.

After each field is completed, the New Field Properties dialog appears, ready to accept the next field.

9. After adding the last field, press the Cancel button in the New Field Properties dialog to return to
the Field/Key Definition dialog.

How to Create a Key
Add and edit keys and indexes using the Field/Key Definition dialog.

Keys are automatically updated whenever records are added, changed, or deleted. Index files do
not update automatically. A BUILD statement is required to update an index.

1. Select a file from the list on the Files side of the Dictionary dialog and press the Field/Keys
button.

2. In the Field/Keys Definition dialog, select the Keys tab.

3. Highlight a key (if one exists), then press the Insert button.

The New Key Properties dialog appears.

4. Type a valid Clarion label in the Key Name field.

5. Optionally type a Description. This displays in various dialog boxes, including the File Definition
dialog.

6. Select the Attributes tab and check all boxes that are appropriate for the key.

A runtime index allows you to declare an index without specifying the key component fields in the Data
Dictionary. The application must define the key component fields at runtime, as the second parameter of
the BUILD statement. The application may rebuild the same index file at a later time, specifying a different
key component fields for the index.

7. Optionally type a valid DOS file name in the External Name field, if the file system needs one.

Clarion automatically adds the proper file extension.

8. Select the Fields tab, then press the lnsert button.

The Insert Key Component list appears.

9. DOUBLE-CLICK a field in the list;

This transfers its name to the Fields tab, which indicates the field will be part of the new key. Repeat
steps 8 and 9 to add more fields to the key.

10. Press OK to close the New Key Properties dialog.

The New Key Properties dialog appears again, ready to accept additional keys.

11. Repeat steps 4 through 10 to create additional keys for this file.

12. When you are finished adding keys, press Cancel to close the New Key Properties dialog and
return to the Field/Keys Definition dialog.

At the end of the process, your keys appear on the Keys tab, with their field components arranged in
order, one above the other in a tree diagram.

To modify a key, select the key and press the Properties button in the Field/Key Definition dialog. The
Edit Key Properties dialog appears. If you selected a key component, the Fields tab is on top. If you
selected the key, the General tab is on top. The Setting Key Properties section, below, describes the
options in this dialog.

How to Define File Relationships and Referential Integrity
Define relationships between files in the New Relationship Properties dialog. The relationships for the
currently selected file appear in the Related Files list on the right side of the Dictionary dialog.

1. Select a file from the Files list on left side of the Dictionary dialog.

2. Press the Add Relation button.

The New Relationship Properties dialog appears.

3. Select the relationship Type from the drop down list: 1:Many or Many:1.

The label for the group box immediately below will change to Child or Parent, depending on your choice.

4. Select the Related File from the drop down list.

5. Select Primary Key or Foreign Key for the first file from the drop down list at the top right of the
dialog.

Clarion automatically changes the label for the drop down list (either Primary Key or Foreign Key)
according to the relationship type.

6. Select the Primary Key or Foreign Key for the related file, if applicable, from the drop down list
immediately below the first drop down list.

7. Press the Map by Name button to establish the link between the two keys by matching field
names within the two keys.

The Field Mapping lists show the actual links established between the two files. Alternatively, you can
map by field order, or you can map each key manually by double-clicking the key name in the Field
Mapping list.

8. Optionally set Referential Integrity Constraints by choosing from the On Update and On Delete
drop down lists in the Referential Integrity Constraints group box.

See the section below for further information on Referential Integrity Constraints.

9. Press the OK button.

Setting Referential Integrity Constraints

By setting referential integrity constraints in the data dictionary, you can instruct the Application Generator
on how to set up executable code for linked field updates and deletions when working with related files.

Referential Integrity requires that a foreign key must always have a match in the primary key. This raises
potential problems when the end user wishes to change or delete the primary key record.

The New Relationship Properties dialog allows you to specify how the executable code should handle
these situations when one of several related records is updated or deleted..

No Action Instructs the Application Generator not to generate any code to maintain
referential integrity.

Restrict Tells the Application Generator to prevent the user from deleting or changing an
entry, if the value is used in a foreign key. For example, if the user attempts to
change a primary key value, the generated code checks for a related record with
the same key value. If it finds a match, it will not allow the change.

Cascade Tells the Application Generator to update or delete the foreign key record. For
example, if the user changes a primary key value, the generated code changes

any matching values in the foreign key. If the user deletes a parent record, the
code deletes the children too.

Clear Instructs the Application Generator to change the value in the foreign key to null
or zero.

Using Wizard Options
Wizard Options in the Data Dictionary Editor provide control over how Clarion's code generation wizard
create your code. Wizards use the Options specified for a file, field, key, or alias when creating
procedures.

File Options

Do Not Auto-Populate This File
Directs the wizards to skip this file when creating primary Browse procedures or
Report procedures.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Alias Options

Do Not Auto-Populate This Aliased File
Directs the wizards to skip the Aliased File when creating primary Browse
procedures or Report procedures.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Field Options

Do Not Auto-Populate This Field
Directs the wizards to skip this field when creating Form, Browse or Report
procedures.

Population Order Specifies the order in which the wizards populate fields. Choose Normal, First,
or Last from the drop down list. Wizards populate in this order: all Fields
specified as First, then all Fields specified as Normal, and finally all Fields
specified as Last.

Form Tab Specifies the TAB onto which the wizards populate the field. Type the Caption for
the TAB or select one you have previously created from the drop down list. This
allows you to direct the wizard to group fields in the manner you want.

Add Extra Vertical Space Before Field Controls on Form Procedures
Check this box to direct the wizards to add vertical space between this field's
control and the one populated above it.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Key Options

Do Not Auto-Populate This Key
Directs the wizards to skip this Key when creating primary Browse procedures or
Report procedures.

Population Order Specifies the order in which the wizards populate keys. Choose Normal, First, or
Last from the drop down list. Wizards populate in this order: all Keys specified as
First, then all Keys specified as Normal, and finally all Keys specified as Last.

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

Relation Options

User Options User Options are provided to enable you to provide information to be used by a
third-party template set. User Options are comma delimited, that is, each entry is
separated by a comma.

Follow the instructions provided with your add-on template set.

How to Import a File Definition From an Existing Data File
The Dictionary Editor allows you to quickly add a data file to the dictionary by creating a data definition
based on an existing data file.

1. With the Dictionary dialog active, select File Import File.

The Select File drive dialog appears.

2. Pick a file driver from the drop down list, and press the OK button.

Pick the driver of the file whose definition you are creating. The Open File dialog appears.

3. Press the ellipsis (...) button and pick the file using the standard Open File dialog.

4. Press the OK button twice to close the dialogs.

The Dictionary Editor creates the file definition and the Edit File Properties dialog appears.

5. Make any changes to your new file definition, then press the OK button.

The data file is added to the dictionary, along with its field and key definitions.

How to Create a New Application File
The first step in creating a new application is to create an .APP file. The .APP file holds the procedures,
data, and other properties you define for your application. Optionally create a new directory for the
application; whenever you open the .APP file, Clarion for Windows will use the directory in which the .APP
file resides as the working directory.

1. Use Windows 3.x, Windows 95, DOS, etc to create a subdirectory for your application, then return
to Clarion for Windows.

2. Choose File New (or press the

 button on the toolbar).
The New file dialog appears.

3. Choose Application by CLICKING on the tab.

4. Type a name for the .APP file in the File Name field. If you want to use the Quick Start wizard,
check the box below the file list. See Using the Quick Start Wizard.

Type a legal DOS filename. Clarion automatically adds the .APP extension.

5. Press the Create button.

The Application Properties dialog appears. This dialog allows you to define the essential files for the
application.

6. Name the .DCT file the application will use in the Dictionary File field, or press the ellipsis (...)
button to select the file in the Select Dictionary dialog.

See How to Create a Data Dictionary for information on creating your application's data dictionary. The
Select Dictionary dialog is a standard Open File dialog.

The Application Generator does not require a data dictionary to generate an application, if you uncheck
the Require a dictionary box in the Application Options dialog.

7. Optionally rename the first procedure from MAIN to another name of your choice.

You can do so by typing another procedure name from the First Procedure field. There is no practical
advantage to renaming this procedure.

8. Choose the Destination Type from the drop down list.

This defines the type of target file for your application. Choose from Executable (.EXE), Library
(.LIB), or Dynamic Link Library (.DLL).

9. Type a name for the application's .HLP file in the Help File field, or use the ellipsis (...) button to
select the file in the Open File dialog.

The Application Generator does not require that the .HLP file exist at this point. You can leave the field
blank for now, then fill in the field at a later time.

The Application Generator allows you to name the help topics in your application without determining that
the help file exists. You are responsible for creating a .HLP file that contains the context strings and
keywords that you optionally enter as HLP attributes for the various controls and dialogs.

10. Choose the Application Template field, type. You may accept the default Clarion template, or
press the ellipsis (...) button to select another (third party template set) in the Select Application
Type dialog.

The selected application template controls code generation.

11. Optionally, check the Application Wizard box to use the wizard to create a complete application
based on the selected dictionary and a few answers you specify. See Application Wizard for

more information.

12. Press the OK button.

Clarion for Windows creates the .APP file, then displays the Application Tree dialog for your new
application.

How to Add and Customize a Procedure
After completing the Application Properties dialog, your new application tree contains a single
procedure, called Main. The Main procedure is a "ToDo" item, which means it is basically a placeholder
with no functionality.

To add functionality you Define the Procedure Type, and Define Procedure Properties.

Part of the functionality you will add a procedure, is calls to other procedures, which will in turn appear as
"ToDo" items in the Application Tree.

Adding a Procedure
1. Select the Main "ToDo" procedure in the Application Tree dialog, then press the Properties

button.

The Select Procedure Type dialog appears.

2. Uncheck the Use Procedure Wizard box.

3. Select Frame, then press the Select button.

The Procedure Properties dialog appears.

4. Press the Window button.

The green check mark means a window has already been defined. The Window Formatter appears.

5. Choose Menu Menu Editor.

The Menu Editor dialog appears. Locate the MENU &Window item in the Menu Editor list.

6. Highlight the END immediately above MENU &Window, and press the Item button.

A new action bar item is added to the window.

7. In the Menu Text field, type "My Procedure."

The new item will be labelled My Procedure.

8. Select the Actions tab, and select Call a Procedure from the When Pressed drop down list.

Now you can fill in the blanks and specify the procedure that executes when the user selects the new
action bar item.

9. In the Procedure Name field, type "MyProcedure."

10. Check the Initiate Thread box.

11. Press the Close button to close the Menu Editor dialog.

12. Exit! the Window Formatter, and press the Yes button to save changes.

13. Press the OK button to close the Procedure Properties dialog.

Customizing a Procedure

You have added a new procedure to your application. The procedure appears as a "ToDo" item in the
Application Tree, which, means it is basically a placeholder with no functionality. Add functionality by
Defining the Procedure type and Defining Procedure Properties.

Define the Procedure Type
1. Select the Main "ToDo" procedure in the Application Tree dialog, then press the Properties

button, or choose Edit Properties. You can also DOUBLE-CLICK on the "ToDo" procedure.

The Select Procedure Type dialog appears.

2. Uncheck the Use Procedure Wizard box.

3. Highlight a procedure type (Frame is best for the Main procedure), then press the Select button.

The Procedure Properties dialog appears.

Note: If you select a Browse, Form, or Report procedure, and you check the Use Procedure Wizard
box, a Wizard dialog will guide you through each step of the procedure properties definition.

Define the Procedure Properties

Use the Procedure Properties dialog to define the procedure's propertiesthese properties include:

a description of the procedure
the procedure prototype
the module containing the source code
parameters passed to the procedure
files accessed by the procedure
window displayed by the procedure, including its size, shape, appearance and functionality
data items (fields and variables) used by the procedure
procedures called by the procedure
embedded source code within the procedure
formulas used by the procedure
template source code that extends the procedure

You need not define every property for every procedure. Frequently, the default property definitions are
appropriate, and need no further customization.

Defining Procedure Files

File data (data stored in your application files) are available to any procedure within the entire application,
however, you must tell the Application Generator which files will be used so it can provide source code for
reading the file.

1. Press the Files button in the Procedures Properties dialog.

The File Schematic Definition dialog appears.

2. Select Other Files in the Files list, and press the Insert button.

3. Choose a file from the Insert File dialog.

The first file you add is always the "primary" file. All others are secondary.

4. Press the Key button. To specify a sort key for the file.

5. Choose a key from the Change Access Key dialog.

Defining Procedure Windows

The Window Formatter allows you to visually design the size, shape, menus, controls and functionality
for the window in this procedure. Access the Window Formatter by pressing the Window button in the
Procedure Properties dialog, or from the Application Tree, select a procedure, RIGHT-CLICK and choose
Window from the popup menu.

Defining Procedure Data

Procedures may access several classes of data. These GLOBAL data, MODULE data, LOCAL data, and

file or field data(see Defining Procedure Files, Defining Entry Control Data, Select Field dialog). GLOBAL
data may be accessed by any procedure in the entire application. MODULE data may only be accessed
by the procedures contained in the module where the data are defined. LOCAL data may only be
accessed within the single procedure where the data are defined.

Defining LOCAL Data
1. Select a procedure in the Application Tree dialog.

2. Press the Properties button, choose Edit Properties, or RIGHT-CLICK and choose Properties
from the popup menu to display the Procedure Properties dialog.

3. Press the Data button to display the Local Data dialog.
If any local variables already exist, they appear in the list.

4. Press the Insert button and define the variable.

The New Field Properties dialog appears. Type in the variable name, choose the variable type, and set
any additional attributes, including screen attributes. You can also specify how memory is allocated for the
variable.

5. Close the Field Properties and the Local Data dialogs.

The data variables are now included in the procedure.

Defining MODULE Data
1. From the Application Tree dialog, select the Module tab.

2. Highlight a module (folder) inside the Application Tree dialog.

3. Press the Properties button to display the Module Properties dialog, or RIGHT-CLICK and choose
Data from the popup menu.

4. Press the Data button.

The Module Data dialog appears.

5. Press the Insert button.

The New Field Properties dialog appears. Type in the variable name, choose the variable type, and set
any additional attributes, including screen attributes. You can also specify how memory is allocated for the
variable.

6. Close the Field Properties, the Module Data, and the Module Properties dialogs.

Defining Entry Control Data

Entry controls are those items in a window that display or accept values; for example, check boxes, entry
boxes, and list boxes are entry controls. You define the fields and variables the entry controls can access
by using the Select Field dialog. Access the Select Field dialog several ways:

By placing entry boxes, check boxes, and combo boxes in a window. When you first CLICK to
place the control, the Select Field dialog appears. You can then select the field or variable whose
value the control displays.

By choosing the Populate Field or Populate
 Multiple Fields command in the Window Formatter. When you choose either of these populate

commands, the Select Field dialog appears so you can select the field or variable that will be displayed
by the control.

By placing a control template in a window. The point at which you can access the Select Field
dialog varies according to the template. For example, if the control template contains a list box, a
Populate button appears in the List Box Formatter, which allows you to select fields and variables from

the Select Field dialog.

Defining Calls to Other Procedures

Procedures may call other procedures. From the Procedure Properties dialog, press the Procedures
button to access the Called Procedures dialog. To add a procedure, press the Insert button, and type a
procedure name in the next dialog. To delete a called procedure, press the Delete button.

Note: The purpose of the Procedures button is to embed a call to another procedure and to add
the called procedure to the Application Tree.

How to Add Embedded Source Code
Use the Embedded Source dialog to embed source code. Embedding source code in a procedure allows
you to further customize your application. The Application Generator adds your embedded code to the
code it generates, at precisely the point you specify. The procedure templates contain predefined embed
points.

 Once you embed source code, the procedure containing embedded source are flagged with a blue "S"
on the procedure's icon in the Application Tree.

The Embedded Source dialog can be accessed at several levels:

the procedure level (Embeds button on Procedure Properties dialog)
select from embed points throughout the entire procedure

the window level (DOUBLE-CLICK the (see also)sample window in the (see also)Window
Formatter)
select from embed points related to the window the events it generates

the control level (DOUBLE-CLICK the control in the Window Formatter)
select from embed points related to the control and the events it generates

There are three ways to create the embedded source code: (see also)hand-coding with the text editor,
(see also)calling another procedure, or (see also)using a code template. You can even combine all three
methods, and the Embedded Source dialog provides powerful tools for (see also)managing embedded
source code, including (see also)Cut, Copy, and Paste capability.

Hand-coding Embedded Source Code with the Text Editor
1. In the Application Tree dialog, highlight a procedure and press the Properties button, or RIGHT-

CLICK and choose Embeds from the popup menu.

2. Press the Embeds button in the Procedure Properties dialog to display the Embedded Source
dialog.

The Embedded Source dialog lists points within the procedure where your custom source code may be
inserted. This includes the points where the field specific events occur within the procedure. For
example, if you place an entry box in a window, the embed points you can access include points where
the user selects or focuses on (TABS onto or mouse CLICKS on) the field, and points where the user
completes or accepts (TABS off, presses the ENTER key, or presses the OK button) the field.

3. Select a point at which to embed the code and press the Insert button.

The Select Embed Type dialog appears. There are three ways to create the embedded source code:
hand-coding with the text editor, calling another procedure, or embedding a template. You can even
combine all three methods.

4. Select the SOURCE item in the Select Embed Type dialog.

5. Press the Select button to start the Text Editor with a blank source code window.

6. Write your custom code in the source code window.

Tip: Don't forget to use the on-line help for explanations and examples of Clarion Language
syntax and techniques. Copy and paste directly from the help examples!

7. Choose Exit!.
8. Choose Yes when prompted to save the embedded source.

9. Press the Close button to close the Embedded Source dialog.

Embedding a Procedure Call
1. In the Application Tree dialog, highlight a procedure and press the Properties button, or RIGHT-

CLICK and choose Embeds from the popup menu.

2. Press the Embeds button in the Procedure Properties dialog to display the Embedded Source
dialog.

The Embedded Source dialog lists points within the procedure where your custom source code may be
inserted. This includes the points where the field specific events occur within the procedure. For
example, if you place an entry box in a window, the embed points you can access include points where
the user selects or focuses on (TABS onto or mouse CLICKS on) the field, and points where the user
completes or accepts (TABS off, presses the ENTER key, or presses the OK button) the field.

3. Select a point at which to embed the code and press the Insert button.

The Select Embed Type dialog appears. There are three ways to create the embedded source code:
hand-coding with the text editor, calling another procedure, or embedding a template. You can even
combine all three methods.

4. Select the Call a Procedure item in the Select Embed Type dialog.

5. Type a name for the procedure or choose an existing procedure from the drop down list which
appears in the next dialog. The caption of the dialog box corresponds to the embed point chosen.

Typing a new name specifies that the application calls another procedure, which automatically appears in
the Application Tree as a "To Do." If another procedure with the same name already exists, the Application
Generator assumes you meant to call it, and does not add a new "To Do."

You define the functionality of the other procedure using the Procedure Properties dialog.

6. Press the OK button to close the dialog.

Embedding Source Code with a Code Template

Code templates help you construct complex source code with minimal effort on your part. When you
select a code template to embed, Clarion displays a dialog box containing an explanation of what the
template does as well as prompts for the information required to complete the source code.

The names of the available code templates appear in the Select Embed Type dialog under the Class
Clarion item.

1. In the Application Tree dialog, highlight a procedure and press the Properties button, or RIGHT-
CLICK and choose Embeds from the popup menu.

2. Press the Embeds button in the Procedure Properties dialog to display the Embedded Source
dialog.

The Embedded Source dialog lists points within the procedure where your custom source code may be
inserted. This includes the points where the field specific events occur within the procedure. For
example, if you place an entry box in a window, the embed points you can access include points where
the user selects or focuses on (TABS onto or mouse CLICKS on) the field, and points where the user
completes or accepts (TABS off, presses the ENTER key, or presses the OK button) the field.

3. Select a point at which to embed the code and press the Insert button.

The Select Embed Type dialog appears. There are three ways to create the embedded source code:
hand-coding with the text editor, calling another procedure, or embedding a template. You can even
combine all three methods.

4. Select a code template in the Select Embed Type dialog and press the Select button.

This displays a Prompts for... dialog box (the title includes the name of the code template).

5. Read the instructions and explanations in the dialog.

Each code template includes explanatory text on its proper use and how to fill in the necessary options.

6. Fill in or choose from the options inside the Prompts for... dialog.

7. Press the OK button to close the dialog.

Managing Embedded Source Code

There are three ways to create the embedded source code: (see also)hand-coding with the text editor,
(see also)calling another procedure, or (see also)using a code template. You can even combine all three
methods, and you can embed multiple blocks of source code at a single embed point. You can even
embed multiple blocks of source code at many different embed points.

Execution of multiple embedded blocks occurs in the order they are listed. Use the and ¯ buttons in the
Embedded Source dialog to change the order of multiple embedded source blocks.

Use the Delete button to remove unwanted embedded source code, or use OMIT to temporarily or
conditionally remove embedded source.

Use the Properties button to edit embedded source code.

Use the (see also)Cut, Copy, and Paste buttons to rearrange, copy, or move embedded source code.

Cut, Copy and Paste Embedded Source Code
1. In the Embedded Source dialog, highlight a line in the tree diagram.

Highlighting an embed point line (folder icon) selects all the embedded source at this embed point for
subsequent cut and paste operations. Highlighting a single embed source item selects only that item.

2. Press the Cut or Copy button.

The selected code is placed in the clipboard.

3. Highlight another line in the tree diagram.

4. Press the Paste button.

The clipboard contents are pasted below the selected line. The paste operation will only accept
embedded source definitions. In other words, you must first copy or cut embedded source, before you can
paste.

Defining Procedure Formulas
Creating conditional expressions with the Formula Editor actually creates structures in the source code.
There are three structures you can create with the Formula Editora simple assignment expression, or an
IF or a CASE structure. You can also nest either of these structures, creating complex conditional
statements.

The Formula Editor creates simple (unconditional) assignments, the Conditionals dialog creates
complex conditional assignments, and the Formulas dialog manages these formulaic assignments for
your procedure. See:

(see also)How to Create a Simple Assignment Expression

(see also)How to Create a Complex Assignment Expression

Usually, you'll want to display the result of your assignment in a string control in a window or report. To
display it in a window:

1. Press the Window button to open the Window Formatter.

2. Select the string tool from the Controls toolbox (or choose Control String), and CLICK in the
window to place the control.

3. With the new string control selected, choose Edit Properties (or RIGHT-CLICK on the string
and choose Properties from the popup menu).
4. Check the Variable String check box in the String Properties dialog.
 The Select Field dialog appears.

5. Highlight the variable which contains the result of your formula and press the Select button.

The String Properties dialog returns, note however, that the Parameter field has now been replaced by
the Picture field.

6. Type a valid display picture in the Picture field.

7. Press the OK button to close the String Properties dialog.

8. Choose Exit! to close the Window Formatter and return to the Procedure Properties dialog.

Adding Procedure Extensions
Extension and control templates provide additional functionality to basic procedure templates. Control
templates give your procedure the ability to display and manage specific controls. For example a browse
box may be added using a control template.

Extension templates give your procedure additional functionality not associated with specific controls.
For example, date and time displays may be added using an extension template.

From the Procedure Properties dialog press the Extensions button to display theExtension and
Control Templates dialog. This dialog displays a list of control and extension templates and the prompts
associated with each template. Selecting a template on the left side of the dialog causes the prompts
associated with the selected template to be displayed on the right side of the dialog.

Add extension templates by pressing the Insert button. (see also How to Customize
Templates)Customize existing templates by filling in the prompts on the right side of the dialog.

Tip: Only Extension templates may be added and deleted using the Extensions button. Control
templates may not be added or deleted, but may be modified. Control templates may be
added or deleted from the Window Formatter by adding or deleting their associated
controls.

How to Assign an Image to Display at Runtime
The parameter for an IMAGE control cannot accept a variable; however, you can reassign the image to
display a runtime using a property assignment statement.

Insert the following line of source code in the embed point where the assignment will take place.
?Image{PROP:Text} = FileName

Optionally, you can use the DosFileLookup control template to allow a user to select the graphic image
from a standard File Dialog.

How to Create a Simple Assignment Expression
A simple assignment evaluates an expression on the right side of the equal (=) sign and assigns it to the
variable on the left side of the equal sign. The Formula Editor helps you build assignment expressions
by providing access to all your valid variable names, plus immediate syntax checking.

 Within the Application Generator, DOUBLE-CLICK a procedure, to open the Procedure Properties
dialog:
1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog appears. If this is the first formula in
this procedure, the Formula Editor dialog appears, so skip step 2.
2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

4. Press the ellipsis (...) button next to the Class field to choose a formula Class.

A formula's class determines when its calculation is performed. Each template has its own set of classes.
For example, in the Form Template there is a class called "After Lookups" which tells the Application
Generator to compute the formula after all lookups to secondary files are completed for the procedure.

5. Optionally, type a description of the formula in the Description field.

6. Press the ellipsis (...) button next to the Result field to choose the variable to which the result of
the expression is assigned.

You can choose a local, module, or global variable, or a data dictionary field.

7. Create your formula on the Statement line.

You may type in the expression, you may use the Formula Editor's buttons, or you may use a combination
of the two.

The first component of an expression must be an operand, left parenthesis, or a unary minus (the
negative sign).

8. Optionally, press an Operands button for the first component of your expression.

9. Optionally, press an Operator button for the next component of your expression.

10. Continue adding components to your expression until it is complete.

11. Press the Check button to check your syntax.

If the syntax is correct, a large green check mark appears to the left of the statement. If there is any
incorrect syntax, a large red X appears.

12. Press the OK button.

How to Create a Complex Assignment Expression
An IF structure assigns a value to the Result variable based on the true/false evaluation of a single
logical expression. There are two possible assignments. If the condition tested is true, one assignment is
made, if not true (false), then the other assignment is made. Nesting IF structures allows for even more
alternative assignments.

A CASE structure selectively assigns a value to the Result variable based on the evaluation of multiple
OF expressions against the CASE expression. The CASE structure offers a less complicated (but less
flexible) method for assigning alternative values. CASE structures may also be nested, and IF and CASE
structures may be nested within each other. See the Language Reference for more information.

Complex Expressions - IF

Use an IF structure to assign one of two values to the Result field depending on a condition. Nesting IF
structures allows more complex alternative assignments.

To create an IF conditional formula (from the Procedure Properties dialog):

1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog appears. If this is the first formula in
this procedure, the Formula Editor dialog appears, so skip step 2.

2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

4. Press the ellipsis (...) button next to the Class field to choose Formula Class.

A formula class determines where in the generated source code its calculation is performed. Each Clarion
procedure template has its own set of formula classes. For example, in the Form Template there is a
class called "After Lookups" which tells the Application Generator to compute the formula after all lookups
to secondary files are completed for the procedure.

5. In the Description field, type a description of the formula.

6. In the Result field, type the variable to which the result of the expression is assigned, or press the
ellipsis (...) button to choose a variable from the Select Field dialog.

You can choose a local, module, or global variable, or a data dictionary field.

7. Press the Conditionals button.

8. Press the IF..THEN button.

The IF structure appears in the Structure window.

9. On the Statement line, enter the IF condition to evaluate.

You can type the expression, or you can use the Operators and Operands buttons to select expression
components, or you can do both.

10. Press the Check button to check your syntax.

11. Press the Accept button to insert your expression into the structure.

12. Highlight the line below the IF line in the Structure window.

This is where the "True" assignment expression goes.

13. On the Statement line, enter the "True" assignment expression.

Again, you can type the expression, or you can use the Operators and Operands buttons to select

expression components, or you can do both. If the IF condition is true, this expression is evaluated and
the resulting value is assigned to the Result variable.

A "true" assignment expression is not required. If no assignment is entered, then no assignment is made.

14. Press the Check button to check your syntax.

15. Press the Accept button to enter your expression into the structure.

16. Highlight the line below the ELSE line in the Structure window

This is where the "False" assignment expression goes.

17. On the Statement line, insert the "False" assignment expression.

Again, you can type the expression, or you can use the Operators and Operands buttons to select
expression components, or you can do both. If the IF condition is false, this expression is evaluated and
the resulting value is assigned to the Result variable.

A "false" assignment expression is not required. If no assignment is entered, then no assignment is made.

18. Press the Check button to check your syntax.

19. Press the Accept button to insert your expression into the structure.

To add a nested control structure:

20. Highlight one of the assignment lines in the Structure window.

21. Press either the CASE..OF or IF..THEN button.

A new nested structure appears in the Structure window.

22. Insert expressions on the appropriate lines as described above.

Again, you can type the expression, or you can use the Operators and Operands buttons to select
expression components, or you can do both

23. When your control structure is complete, press the OK buttons in the Conditionals, Formula
Editor, and Formulas dialogs.

Complex Expressions - CASE

A CASE structure can be used to assign one of several values to the Result field depending on which OF
expression is equal to the CASE expression.

To create a CASE conditional formula (from the Procedure Properties dialog):

1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog appears. If this is the first formula in
this procedure, the Formula Editor dialog appears, so skip step 2.

2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

4. Press the ellipsis (...) button next to the Class field to choose Formula Class.

A formula class determines where in the generated source code its calculation is performed. Each Clarion
procedure template has its own set of formula classes. For example, in the Form Template there is a
class called "After Lookups" which tells the Application Generator to compute the formula after all lookups
to secondary files are completed for the procedure.

5. In the Description field, type a description of the formula.

6. In the Result field, type the variable to which the result of the expression is assigned, or press the
ellipsis (...) button to choose a variable from the Select Field dialog.

You can choose a local, module, or global variable, or a data dictionary field. This name appears in the
Formulas dialog list.

7. Press the Conditionals button.

8. Press the CASE..OF button.

The CASE structure appears in the Structure window.

9. On the Statement line, enter the CASE expression that is compared to the multiple OF
expressions.

You can type the expression, or you can use the Operators and Operands buttons to select expression
components, or you can do both.

10. Press the Check button to check your syntax.

11. Press the Accept button to insert your expression into the structure.

12. Highlight the OF line below the CASE line in the Structure window.

This is where the first OF comparison expression goes.

13. On the Statement line, enter the OF comparison expression.

Again, you can type the expression, or you can use the Operators and Operands buttons to select
expression components, or you can do both. At runtime, if the CASE expression equals this OF
expression, then the subsequent assignment expression is evaluated and the resulting value is assigned
to the Result variable.

14. Press the Check button to check your syntax.

15. Press the Accept button to insert your expression into the structure.

16. Highlight the line below the OF line in the Structure window.

This is where the first OF assignment expression goes.

17. On the Statement line, insert the OF assignment expression.

Again, you can type the expression, or you can use the Operators and Operands buttons to select
expression components, or you can do both. At runtime, if the CASE expression equals the above OF
expression, then this assignment expression is evaluated and the resulting value is assigned to the
Result variable.

18. Press the Check button to check your syntax.

19. Press the Accept button to insert your expression into the structure.

To add additional OF statements:

20. Highlight an OF line in the Structure window.

21. Press the Case..OF button

22. Insert your expressions in the same manner described above.

oTo add a nested control structure:

23. Highlight an assignment line in the Structure window.

24. Press either the CASE..OF or IF..THEN button

25. Insert expressions on the appropriate lines following the instructions in the previous sections.

Again, you can type the expression, or you can use the Operators and Operands buttons to select
expression components, or you can do both.

26. When your control structure is complete, press the OK buttons in the Conditionals, Formula
Editor, and Formulas dialogs.

How to Customize Your Window
Use the Window Formatter to visually design window elementswindows, menus, toolbars, list boxes,
prompts, entry fields, and other controlson screen. The Window Formatter automatically generates the
Clarion language source code that defines these elements.

The Window Formatter has five major components that help design your window: the (see also)Sample
Window, the (see also)Controls Toolbox, the (see also)Fields Toolbox, the (see also)Property Toolbox,
and the(see also) Align Toolbox.

Using the Window Formatter - A Typical Procedure

Here is the typical process for customizing a new window with the Window Formatter:

1. Set the size of the window by dragging the handles so that the sample window is the size you
wish.

2. Set other window attributes by using the Window Properties dialog.

RIGHT-CLICK the window and choose Properties from the popup menu, or select the window and choose
Edit Properties.
Other attributes include the window caption, whether the window is resizeable, whether the window is
scrollable, icons, messages, help files, and cursor types associated with the window, and many others.
3. Close the (see also)Window Properties dialog.

4. Place controls in the window.

See also: (see also)Controls Menu, (see also)Populate Menu, (see also)Controls Toolbox, (see
also)Fields Toolbox, (see also)Align Toolbox.

5. Set the properties for each control.

See also: (see also)Controls Menu, (see also)Controls Toolbox, (see also)Property Toolbox.

6. Preview the window by choosing Preview! from the action bar; repeat steps 1 - 6 to make any
necessary adjustments while still in the Window Formatter.

7. Choose Exit! from the action bar to return to the Application Generator or Text Editor.

Using the Window Formatter - Sample Window
The Window Formatter is a visual design tool. You always see a sample of the window you're working
on, as you work on it. For example, place a list box in the sample window and drag its handles to the size
you want.

In addition, you can see the window, exactly as it will appear to the end user by choosing Preview! from
the action bar. See also: Window Properties dialog; Choosing a window type.

Using the Window Formatter - Controls Toolbox
The Window Formatter contains a floating Controls toolbox, similar to those found in many draw or
paintbrush programs. Simply choose a control from the toolbox (CLICK on it), then CLICK in the sample
window to place the control in the window.

Display or hide the Controls toolbox by choosing Options Toolbox. Resize the Controls toolbox by
placing the cursor on the border of the box. When the cursor changes to a double headed arrow, CLICK
and DRAG. All the controls in the toolbox are also available from the Controls menu.

See also: the (see also)Controls menu, (see also)Fields toolbox, (see also)Align toolbox, (see
also)Property toolbox, (see also)Window Properties dialog; (see also)Using the Window Formatter - An
Overview

Tip: Position the cursor over any tool and wait for half a second. A tool tip appears telling you
the type of control that will be created by this tool.

String Allows you to place STRING control on the window under construction. See also
String Properties dialog.

Prompt Allows you to place PROMPT control on the window under construction. See also
Prompt Properties dialog.

Entry Box Allows you to place ENTRY control on the window under construction. See also
Entry Properties dialog.

Text Box Allows you to place TEXT control on the window under construction. See also
Text Properties dialog.

Group Box Allows you to place GROUP control (group box) on the window under
construction. See also Group Properties dialog.

Option Box Allows you to place OPTION control (OPTION structure, which appears as a
group box with radio buttons) on the window under construction. See also Option
Properties dialog.

Button Allows you to place BUTTON control on the window under construction. See also
Button Properties dialog.

Check Box Allows you to place CHECKBOX control on the window under construction. See
also Check Properties dialog.

Radio Button Allows you to place RADIO control on the window under construction. See also
Radio Properties dialog.

List Box Allows you to place LIST control (list box, or drop down list box) on the window
under construction. See also: List Box Formatter. See also List Properties
dialog.

Combo Box Allows you to place a COMBO control (combo box, or drop combo box) on the
window under construction. See also Combo Properties dialog.

Spin Box Allows you to place a SPIN control on the window under construction. See also
Spin Properties dialog.

Progress Bar Allows you to place PROGRESS control on the window under construction. See
also Progress Properties dialog.

Image Allows you to place IMAGE control (graphic image) on the window under
construction. See also Image Properties dialog.

Region Allows you to place REGION control on the window under construction. See also
Region Properties dialog.

Line Allows you to place LINE control on the window under construction. See also
Line Properties dialog.

Rectangle Allows you to place a BOX control on the window under construction. See also
Box Properties dialog.

Ellipse Allows you to place ELLIPSE control on the window under construction. See also
Ellipse Properties dialog.

Sheet Allows you to place SHEET control on the window under construction. Sheet
controls contain Tab controls. See also Sheet Properties dialog.

Tab Allows you to place a TAB control on the window under construction. Tab controls
may contain any other control types. See also Tab Properties dialog.

Dictionary Field Allows you to select a field defined in the Data Dictionary, and place the control
specified in the data dictionary, plus an associated PROMPT control, on the
window under construction. See also Select Field dialog.

Custom Control Allows you to place a CUSTOM control (Visual Basic custom control) on the
window under construction. See also Custom Properties dialog.

Control Template Allows you to place Control Template on the window under construction. See also
*** dialog.

Using the Window Formatter - Fields Toolbox
The Window Formatter contains a floating Populate Field toolbox. This toolbox allows you to quickly
"populate" a window with entry controls and prompts for fields in your data dictionary files.

Display or hide the Populate Field toolbox by choosing Options Fieldbox. Resize the Populate
Field toolbox by placing the cursor on the border of the box. When the cursor changes to a double
headed arrow, CLICK and DRAG.

See also: the (see also)Populate menu, (see also)Controls toolbox.

1. Choose a file from the drop down list.

2. Select the field you want on your window.

DOUBLE-CLICK the field to let Clarion automatically align the controls.

3. CLICK in the sample window to place the control and its associated prompt.

The cursor becomes a crosshair. The top left corner of the prompt is placed at the intersection of the
cursor crosshair.

The type of control (entry box, check box, radio button, etc.) is determined by the settings for this
particular field in the Data Dictionary.

Using the Window Formatter - Property Toolbox
The Window Formatter's Property toolbox allows you to quickly specify the appearance and content of
the text on each control within the window and on the window title bar. Control the font, size, style, and
content of all your text, using standard word processor buttons and drop down lists. See also Select Font
dialog.

Display or hide the Property toolbox by choosing Options Propertybox. Resize the Property
toolbox by placing the cursor on the border of the box. When the cursor changes to a double headed
arrow, CLICK and DRAG.

Using the Window Formatter - Align Toolbox
The Window Formatter's Align toolbox allows you to quickly, professionally, and precisely align the
controls in your window.

Display or hide the Align toolbox by choosing Options Alignbox. Resize the Align toolbox by
placing the cursor on the border of the box. When the cursor changes to a double headed arrow, CLICK
and DRAG.

Select the controls to align (CTRL+CLICK allows you to select multiple controls, or you can "lasso" multiple
controls with CTRL+DRAG), then click on the appropriate alignment tool. All the alignment actions are also
available from the(see also)Alignment menu.

Tip: For most alignment functions, the first controls selected (blue handles) are aligned with
the last control selected (red handles). That is, the last control selected is the anchor
control. It doesn't move, the others do.

Tip: Position the cursor over any tool and wait for half a second. A tool tip appears telling you
the type of alignment this tool will accomplish.

Align Left Aligns the left borders of the selected controls with the left border of the last
control selected (red handles).

Align Right Aligns the right borders of the selected controls with the right border of the last
control selected (red handles).

Align Top Aligns the top borders of the selected controls with the top border of the last
control selected (red handles).

Align Bottom Aligns the bottom borders of the selected controls with the bottom border of the
last control selected (red handles).

Align Vertical Along a vertical axis, aligns the centers of the selected controls with the center of
the last control selected (red handles).

Align Horizontal Along a horizontal axis, aligns the centers of the selected controls with the center
of the last control selected (red handles).

Spread Vertical Equalizes the vertical spaces between the selected controls.

Spread Horizontal Equalizes the horizontal spaces between the selected controls.

Same Size Makes all selected controls the same height and width as the last control
selected (red handles).

Same Height Makes all selected controls the same height as the last control selected (red

handles).

Center Vertical As a group (relative positions of selected controls don't change), centers the
selected controls horizontally within the window.

Center Horizontal As a group (relative positions of selected controls don't change), centers the
selected controls vertically within the window.

How to Add a Toolbar
You may add a toolbar to any window with a simple command in the Window Formatter: choose the
Toolbar New Toolbar. You may place any control on a toolbar, but the ones you will probably use the
most are command buttons, check boxes, radio buttons, and drop down list boxes. As with menus,
Clarion will automatically (see also) merge toolbars in certain situations.

Adding a Command Button

The following describes how to add a toolbar with a command button to a window. The starting point is
the Window Formatter, open to an empty window:

1. From the Toolbar menu, choose New Toolbar.
A rectangular area appears at the top of the window. This is the toolbar. At runtime, it appears dark gray.

2. Optionally choose the Options Grid Settings, then check the Snap to Grid box.

This makes sizing and placing the controls easier.

3. Select the Button icon (OK) in the Controls toolbox, then CLICK inside the new toolbar in the
sample window.

A button control appears.

4. RIGHT-CLICK on the button and select Properties from the popup menu, or choose Edit
Properties.

The Button Properties dialog for the new button appears.

5. Delete the default text in the Parameter field.

This allows you to create a picture button without text.

6. Type a descriptive Field Equate Label in the Use field.

For a File/Open button, for example, you might type ?OpenButton. The Field Equate Label will appear in
the Embedded Source dialog, making it easy to identify where to embed source.

7. From the Extra tab, choose an icon from the Icon drop down list, or type the name of an icon file
(*.ICO) of your own.

The icon list contains a number of default icons for such standard actions as File/Open, or Cut, Copy, and
Paste.

8. Add functionality to the button.

Select an STD ID from the drop down list, or select the Actions tab and embed source code, call a
procedure or run a program.

9. Press the OK button to close the Button Properties dialog.

10. Resize the button to the size you want by dragging its handles.

Tip: Clarion's . ICO files are 32 x 32 pixels . Most toolbar buttons will be smallerfor example, 16
x 18 pixels. By using these larger files, we can create the "disabled" icon from the same
file, rather than requiring a separate file. When creating a custom .ICO file for a toolbar
button, place the image in the center of the icon file. Clarion automatically crops the image
to fit the button size.

Adding a "Latched" Button

A latched button "stays depressed" when CLICKED, then returns to its original state when CLICKED a

second time. To place latched button:

1. Select the Check Box icon in the Controls toolbox, then CLICK inside the new toolbar in the
sample window.

The Select Field dialog appears.

2. Highlight Local Data, then press the Insert button.

The New Field Properties dialog appears.

3. In the Field Name field, type a name, then choose BYTE from the data type drop down list.

The Check Box Properties dialog appears. A button created from a check box control has two modes:
on or off. When the check box is 'on' (the button appears 'pushed in'), and the value of its USE variable is
one. When the check box is 'off' (the button appears raised), and the value of its USE variable is zero.

4. From the Extra tab, choose an icon from the Icon drop down list, or type the name of an icon file
(*.ICO) of your own.

5. Press the OK button.

The button is complete; you need only adjust its position by dragging its center, if necessary.

Adding a Button Group

A button group provides the user with mutually exclusive choices. For example, in a group of three
buttons, only one can be "depressed." If button number two is currently "depressed," push in button
number one, and button number two pops out. A button group can provide controls for left, right and
center text justificationonly one option can be active at a time.

To create a button group:

1. CLICK on the Option Box icon in the Controls toolbox, then CLICK inside the toolbar.

The Window Formatter places an Option Box on the toolbar. You may resize it by dragging its handles.
An Option Boxan OPTION structuremust always surround radio button choices, however, this Option Box
will not appear on the toolbar, because you will hide it.

2. RIGHT-CLICK on the Option Box and choose Properties from the popup menu.

The Option Properties dialog appears.

3. Press the ellipsis (...) button for the Use field, and define a string variable.

The variable may be global, module, or local data, or it may be a data dictionary field. The variable will
receive the Value text from the button selected by the user. If you don't specify any Value text, it gets the
Parameter text from the selected button. If you define a numeric variable, it will receive an integer value
corresponding to the selected button, that is, button 1, 2, or 3.
4. From the Extra tab, uncheck the Boxed box.

This hides the Option Box from the user. It appears in the Window Formatter dialog, but will not appear
at runtime.

5. Press the OK button.

6. CLICK on the Radio Button icon in the Controls toolbox, then CLICK inside the Option Box.

The Application Generator places a Radio Button where you clicked in the Option Box.

7. RIGHT-CLICK on the Radio Button and choose Properties from the popup menu.

The Radio Button Properties dialog appears.

8. Clear the Parameter field.

Clearing this field will remove text from the button so we can add an icon with no text.

9. In the Value field, type "Left."

When the user presses this button, the string "Left" is assigned to the USE variable we specified above.

10. From the Extra tab, choose an icon from the Icon drop down list, or type the name of an icon file
(*.ICO) of your own.

Adding an icon causes the radio button to look like a command button.

11. Press the OK button.

The first button is complete; you need only adjust its position by dragging its center.

12. Repeat steps 6 through 11 for the "center" and "right" buttons.

13. Choose Preview! from the Window Formatter menu.

This displays the window, including the toolbar and menus, as it would to the user at runtime. Test the
latching and radio features by pushing the buttons. Press ESC when done previewing your window.

14. Choose Exit! from the Window Formatter menu to save your window.

Toolbar Merging

Global and Local Tools
The TOOLBAR structure declares the tools displayed for a window. On an APPLICATION window, the
TOOLBAR defines Global tools available to all the windows in the application. However, if the NOMERGE
attribute is specified on the APPLICATION's TOOLBAR, the tools are local and are displayed only when
no MDI child windows are open; there are no global tools. Global tools are active and available on all MDI
child windows unless an MDI child window's TOOLBAR structure has the NOMERGE attribute.

MDI Windows
On an MDI child window, the TOOLBAR defines local tools that are automatically merged onto the Global
toolbar. Both the Global and the local tools are then active while the MDI "child" window has input focus.
Once the window loses focus, its specific tools are removed from the Global toolbar. If the NOMERGE
attribute is specified on an MDI child window's TOOLBAR, the local toolbar replaces the Global toolbar.

Non-MDI Windows
On a non-MDI WINDOW, the TOOLBAR is never merged with the Global menu. A TOOLBAR on a non-
MDI window always appears in the window, not on any parent window which may have been previously
opened.

Merging Order
When an MDI window's local TOOLBAR is merged into an application's global TOOLBAR, the global tools
appear first, followed by the local tools. The toolbars are merged so that the tools in the local toolbar
begin just right of the position specified by the value of the width parameter of the global TOOLBAR's AT
attribute. The height of the displayed toolbar is the maximum height of the "tallest" tool, whether global or
local. If any part of a control falls below the bottom, the height is increased accordingly.

Note: To merge toolbars, the global toolbar's AT width must be less than the APPLICATION's
frame width.

How to Minimize a window
A Minimize button is added to a WINDOW if you specify an ICON for the WINDOW. When the user
presses the Minimize button, the window is reduced to an Icon.

In the Window Formatter:

1. Make sure the Window is selected.

2. Choose Edit Properties (or press ENTER).

The Window Properties dialog appears.
3. Select the Extra tab.

4. In the Icon combo box, select a standard icon, type the name of the icon file, or select Select
File... to locate an icon file using the standard Open File dialog.

5. Press the Ok button to close the Window Properties dialog.

How to Create a New Menu
Here are the steps for creating a menu starting from an empty window within the Window Formatter.

1. Choose the Menu New Menu command.

The Menu Editor dialog appears. Only the MENUBAR statement is present.

2. In the New group box, press the Menu button.

This adds the first MENU statement, its name, and its corresponding END statement, ready for editing.

3. In the Menu Text field, type the text you want displayed for this MENU.

The ampersand within the menu text signifies that the character following the ampersand is the
accelerator key. For example, type &FILE, so the end user sees File.

4. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you should make it descriptive. You refer to
the MENU within executable code by its Field Equate Label.

5. In the New group box, press the Item button.

This inserts an ITEM between the MENU statement and its END statement. Note that ITEMs are used to
execute commands or procedures, whereas MENUs are used to display a selection of other MENUs or
ITEMs.

Tip: When using the Application Generator, each ITEM you place on a MENU or MENUBAR
automatically adds an embed point to the control event handling tree in the Embedded
Source dialog. This allows you to easily attach functionality to your ITEMs.

6. In the Menu Text field, type the text you want to display for this menu ITEM.

For example, type &OPEN, so the end user sees Open. The ampersand within the ITEM name signifies
the character following the ampersand is the accelerator key.

7. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you should make it descriptive. For
example ?FileOpen shows at a glance the intended purpose of this ITEM: to open a file.

8. In the Message field, type theMSG attribute contents.

This message text displays in the status bar (if enabled) when the user highlights this MENU or ITEM.

9. In the Help ID field, type either a help keyword or a context string present in a .HLP file.

If you fill in the Help ID for a MENU or an ITEM, when the user highlights the MENU or ITEM and presses
F1, the help file opens to the referenced topic. If more than one topic matches a keyword, the search
dialog appears.

A Help keyword is a word or phrase indexed so that the user may search for it in the Help Search dialog.
When referencing a context string in the Help ID field, you must identify it with a leading tilde (~).

10. From the Actions Tab, choose Call a Procedure from the When Pressed drop down list.

The procedure you specify executes when the user selects this ITEM. You may specify parameters to
pass and standard file actions (insert, change, delete, or select) if applicable, or you may initiate a new
thread. The procedure appears as a "ToDo" item in your Application Tree (unless you named a procedure
that already exists).

This is one way to add functionality to your ITEM. You may also add functionality by Run a Program from
the drop down list, by embedding source code, or by typing an STD ID in the (see also)STD ID field.

After following these steps, you have a single MENU called File, with a single ITEM called Open. To add
other ITEMS to the MENU, repeat steps 5 through 10. To add a second MENU, select the END statement

and press the Menu button. To add a subMENU, select a MENU or ITEM statement and press the Menu
button.

11. To finish the menu and return to the Window Formatter, press the Close button.

How to Implement Standard Windows Behavior
There are some menus and commands that you see in almost every windows program. For example, Cut,
Copy, and Paste. Clarion provides an easy method for implementing these standard actions in your
application menuswith the Std ID field on the Menu Editor dialog.

Simply enter one of the equates listed below in the Std ID field. Clarion will automatically implement the
command using standard windows behavior; you do not need any other support for it in your code. The
standard equate labels and their associated actions are also contained in the C:\CW\LIBSRC\
EQUATES.CLW file.

STD:PrintSetup Printer Options Dialog.
STD:Close Closes active window.
STD:Undo Reverses the last editing action.
STD:Cut Deletes selection, copies to clipboard.
STD:Copy Copies selection to clipboard.
STD:Paste Pastes clipboard contents at the insertion point.
STD:Clear Deletes selection.
STD:TileWindow Arranges child windows edge to edge.
STD:TileHorizontalArranges child windows edge to edge.
STD:TileVertical Arranges child windows edge to edge.
STD:CascadeWindow Arranges child windows so all title bars are

visible.
STD:ArrangeIcons Arranges iconized child windows.
STD:WindowList Adds child window names to menu.
STD:Help Opens .HLP file to the contents page.
STD:HelpIndex Opens .HLP file to the index.
STD:HelpOnHelp Opens Microsoft's .HLP file for the Windows

Help system.
STD:HelpSearch Opens Microsoft's Help Search utility for

the .HLP file.

How to Create an MDI Menu
Multiple Document Interface applications make special demands upon a program. Often, the program
may support a variety of document windows, each of which has a slightly different set of commands from
which the user may select.

Normally in this situation, the programmer writes code to monitor which window is active, then changes
the menu and toolbar to reflect the options available to the user. Clarion does this automatically.

To create menus for MDI applications:

1. Create a master menu for the APPLICATION frame window.

Most likely, this will include a File menu and a Help menu, since they contain functions that are available
even when no document windows are open.

Tip: Clarion's Application Frame procedure template comes with a predefined menu with many
of the most common functions already provided for you.

You will use the Window Formatter's Menu Editor to create your menus. Be sure to choose the FIRST
attribute for the File MENU, and the LAST attribute for the Help MENU from the Position drop down list.
This ensures that when Clarion merges this global menu with local menus, File and Help will keep their
correct positions.

2. Plan the additional menus for the child windows.

Can they all share the same menu titles? Do they share many of the same commands? Ideally, most of
the MENUs and ITEMs can be active in all the child windows. If there are only a few commands specific
to certain windows, plan on disabling those MENUs and ITEMs in the windows that don't support them,
and enabling them in those that do.

3. Create the menu for the first child window.

Again, you will use the Window Formatter's Menu Editor to create the menu. Add any window-specific
MENUs to the first child window. That is, the window-specific MENUs the application frame lackssuch as
Edit, Insert, etc.

Optionally, add a File MENU to the first child window. This is necessary only if the child window needs an
ITEM on the File MENU that is not already included on the application's File MENU. For example, adding
a Close command might be appropriate. If so, add the File MENU to the first child window. Add the Close
ITEM to the File MENU.

Add the Window MENU to the first child window. Window MENUs are standard for most windows
programs. A typical Window MENU includes the following ITEMs: "Arrange Icons," "Tile," "Cascade," plus
a document (windows) list that displays all open child windows and allows the user to switch between
them. In many cases this entire MENU, including the document list, can be implemented with standard
ID's (StdID's).

4. Exit the Menu Editor and save the menu.

5. Test the interaction of these first two menus.

Do they merge the way you planned? Are the correct selections available for the window with focus?
Make any adjustments with the Menu Editor.

6. Repeat steps 3 through 5 for other child windows.

How to Use a Combo Box
This topic describes how to use a combo box without using the File Drop Combo Control template. For
information on using the template, see File Drop Combo Control template.

There are two ways to use a combo box--for a static list and for a list of choices from a file.

For a finite list of static choices:

1. Place a COMBO control on the window.

2. In the Select Field dialog, select the USE variable for it to update.

3. Press the Cancel button to close the List Box Formatter (no need to use it).

4. RIGHT-CLICK the combo box, then choose Properties.

5. In the From field, type the list of choices as a string constant (in single quotes with | separating
choices), eg 'One|Two|Three'

6. Enter a numeric value into the Drop field.

This the number of rows displayed at one time by the drop down list.

7. Enter the correct picture token in the Picture field.

8. Press the OK button.

For a list of choices from a file:

1. On the Procedure Properties dailog, press the Data button.

2. Add a QUEUE to the local data.

3. Add a single field to the QUEUE to hold the data from the file.

4. Return to the Procedure Properties dialog, then press the Window button.

5. Place a COMBO control on the window.

6. In the Select Field dialog, select the USE variable for it to update.

7. Press the Cancel button to get out of the List Box Formatter (no need to use it).

8. Right-click then choose Properties.

9. Type the name of the QUEUE into the FROM field, or press the ellipsis button to select or define
a QUEUE.

10. Enter a numeric value into the Drop field.

This the number of rows displayed at one time by the drop down list.

11. Enter the correct picture token in the Picture field.

12. Press the OK button.

13. Return to the Procedure Properties dialog, then press the Embeds button.

14. Open the Procedure Setup embed point and add code to open the file and build the COMBO
control's QUEUE.

15 Open the End of Procedure embed point and add code to close the file and FREE the QUEUE.

How to Create a List Box
When creating a list box control, you define its data source, its functionality, and its format. Clarion's
development environment divides these property definitions among several dialogs:

The List Properties dialog specifies a drop down list versus a regular list, specifies the file or
queue that supplies the data, and specifies the general scrolling capability, that is, all the
properties of the list box that are not column-specific. This dialog is discussed in the previous
chapter.

The List Box Formatter dialog lets you add, delete, reorder, and resize the specific fields or
columns that are displayed in the list box. This dialog is discussed in this chapter.

The List Field Properties dialog defines the appearance and behavior of individual list box
columns. For example, define individual column headers, widths, and scrolling. This dialog is discussed in
this chapter

The List Field Properties dialog also defines the appearance and behavior of groups of
columns within the list box. For example, you can spread a header across several columns.

After you've started defining your list box with the List Properties dialog, these are the general steps for
completing your list box.

Adding Columns to a List Box
1. From the Window Formatter, RIGHT-CLICK on the list box control, and choose List Box Format

from the popup menu to display the List Box Formatter dialog.

The List Box Formatter displays a representation of the list box. Each field appears as a column in the
list box, the data represented by "$" characters for strings, or "<" and "#" characters for numbers.

2. Press the Populate button to add a new field. (When working from the Text Editor, the Insert
button replaces the Populate button).

When working from within the Application Generator, choose a field from the Select Field dialog. The List
Box Formatter reappears, with the new column added. In the Text Editor, the Select Field dialog does
not appear; you go directly to the List Field Properties dialog, so skip step 3.
3. Press the Properties button.

 The List Field Properties dialog appears. Use this dialog to specify column headers, widths, borders,
scrolling, etc. Specifications for the first column become the default settings for subsequent columns.

4. Specify the column width in (see also)dialog units.

Provide about four dialog units for each character to be displayed.

5. Specify a picture token for the data.

The picture token determines how the data is displayed. For example, the picture token @P(###) ###-
####P displays a phone number as (555) 555-5555.
6. Specify optional formatting.

You can choose the justification and set indentation. You can specify a column header, borders,
underlining, and more.

7. Specify optional functionality.

For example, add a scroll bar for a single column. Allow column searches. You can specify resizeable
borders, that allow the end user to adjust column widths with the mouse.

8. Press the OK button to return to the List Box Formatter dialog.

9. Repeat steps 2 - 8 for each additional column.

For each modification you make to the list box on screen, the List Box Formatter creates the appropriate
FORMAT attribute for the LIST statement that defines your list box. The LIST statement, in turn, resides in
the WINDOW structure. See the Language Reference for a complete explanation.

How to Create Column Groups Using the List Box Formatter
List box groups are composed of two or more fields which share common formatting elements, such as a
header, or even the same columnar space within the list box.

1. From the List Box Formatter, select the a column and press the Properties button.

The List Field Properties dialog appears.

2. In the List Field Properties dialog, select the Group tab.

3. Press the Yes button when prompted to create a new group.

This specifies that the currently selected field will share formatting elements with the next field you add, or
with any fields you move into the group.

4. Specify the group heading text.

The simplest shared element is a common header. The group header appears directly above the field
headers for the two fields.

5. Optionally specify additional formatting.

You can, for example format the fields so that no separator appears between the members of the group,
but a separator does appear at the end of the group. To do so, be sure the Right Border box is
unchecked for the first field(s) in the group, and is checked only for the last.

6. Press the OK button to close the List Field Properties dialog.

7. Press the Populate (or Insert) button to add a new field to the group, or use the ***left/right
arrow buttons to move existing fields into or out of the group.

How to Make a Record Occupy Two or More Rows in a List Box.
1. From the List Box Formatter, select the a column and press the Properties button.

The List Field Properties dialog appears.

2. In the List Field Properties dialog, select the Group tab.

3. Press the Yes button when prompted to create a new group.

This specifies that the currently selected field will share formatting elements with the next field you add, or
with any fields you move into the group.

4. Select the Field tab and check the Last on Line box.

This option is equivalent to adding a carriage return immediately after the current field. The next field
within the group appears directly below the current field, within the same column.

5. Press the OK button to close the List Field Properties dialog.

6. Press the Populate (or Insert) button to add a new field to the group, or use the ***left/right
arrow buttons to move existing fields into or out of the group.

How to Restore User Resized List Box Column Widths
The resize feature on listboxes is most useful if the user specified sizing is remembered and reapplied to
the list box. The following procedure uses embedded GETINI, PUTINI, and PROPERTY assignment
syntax statements to save and restore the user specified formatting changes. The formatting is stored in
an application specific .INI file. See the Language Reference for more information.

1. In the Application Tree dialog, DOUBLE-CLICK on your browse procedure.

The Procedure Properties dialog appears.

2. Press the Embeds button.

The Embedded Source dialog appears.

3. In the Embedded Source dialog, DOUBLE-CLICK on the "Preparing to Process the Window"
embed point.

The Select Embed Type dialog appears.

4. DOUBLE-CLICK on SOURCE.

The Text Editor appears, ready to accept your embedded source statements.

5. Type the following statement, then Exit! the Text Editor and save your changes.

?Browse:1{PROP:FORMAT}=GETINI('Preferences','?Browse:1Format',?
Browse:1{PROP:FORMAT},'MyApp.INI')

where ?Browse:1 is the field equate label for your list box, and MyApp is the name of your .APP file.
"Preferences" is the section in the .INI file where the information is stored. "?Browse:1Format" is the entry
in the .INI file where the information is stored, and "?Browse:1{PROP:FORMAT}" supplies the current
format string as the default in case there is no formatting information in the .INI file.

6. DOUBLE-CLICK on the "End of Procedure, before closing window" embed point.

The Select Embed Type dialog appears.

7. DOUBLE-CLICK on SOURCE.

The Text Editor appears, ready to accept your embedded source statements.

8. Type the following statement, then Exit! the Text Editor and save your changes.

PUTINI('Preferences','?Browse:1Format',?Browse:1{PROP:FORMAT},'MyApp.INI')

where ?Browse:1 is the field equate label for your list box, and MyApp is the name of your .APP file.

How to Trap a Double Click on a List Box
Trapping a DOUBLE-CLICK on a list box is built into the Clarion Browse templates. To trap a DOUBLE-CLICK
on a list control in hand-code:

1. Establish an ALRT(double-click) on the list control.

2. Trap for EVENT:AlertKey on the list control.

3. Trap for the MouseLeft2 keycode, as in the following example:
ACCEPT

CASE FIELD()
OF ?List

CASE EVENT()
OF EVENT:AlertKey

IF KEYCODE() = MouseLeft2
CurrentSel = CHOICE(?List1) ! Get current selection in list box
GET(TheQueue, CurrentSel) ! Get corresponding data from queue

. . . .

The above code finds out what item the user DOUBLE-CLICKED on using the CHOICE() function, then uses
the GET() function to retrieve the item from the QUEUE.

You can add the two lines of code within the above IF structure to the Browse Double Click Handler
embed point to handle DOUBLE-CLICKS for lists populated with the BrowseBox control template in the
Application Generator.

How to add Drag and Drop to a List Box
Drag and Drop capability for lists means the user can select an item in a list box, hold down the left
mouse button, "drag" the item to another control, release the mouse button to "drop" the item on the
control, which can look at the data that was "dropped" on it, and then do something with it.

Adding Drag and Drop to a Clarion for Windows list box is a simple operation. This section provides an
example of dragging an item from one list box to another, within the same application. You can also "Drag
and Drop" to or from another applicationfor example, File Managersee the Language Reference for more
details.

To implement Drag and Drop, you must add the DRAGID and DROPID attributes to the controls. You can
add either or both to a control. The simplest, quickest way to do this is with Property Syntax statements.
Assume for this example that the field equate labels for the two list boxes are ?FromList and ?ToList.
Assume you want the end user to be able to drag from ?FromList to ?ToList.

Set up ?FromList as a drag host:

1. RIGHT-CLICK on the list control and choose Properties from the popup menu.

2. Select the Extra tab.

3. In the Drag ID field, type "FromList."

4. Press the OK button.

This sets the Drag ID signature which identifies "FromList" as the source of any "drag" operation from this
control.

Set up ?ToList as a drop target:

1. RIGHT-CLICK on the list control and choose Properties from the popup menu.

2. Select the Extra tab.

3. In the Drop ID field, type "FromList."

4. Press the OK button.

This sets the Drop ID signature which specifies that the list will accept any "drop" operation with a Drag ID
signature of "FromList."

Add drag functionality to the drag host, that is, detect a drag event and provide something to drag and
drop:

1. RIGHT-CLICK on the FromList control and choose Embeds from the popup menu.

2. Locate the "Control Event Handling, before generated code; event:Drag" embed point and embed
the following code:

IF DRAGID() ! Doesn't matter who dropped it for now
SETDROPID('string to drag and drop') ! Passing a simple string

END
This code detects a drag eventat the time the user releases the mouse button over a valid drop targetand
places a string to drag with the SETDROPID function.

You can just as easily use the CHOICE() and GET() functions to retrieve an item from the local QUEUE
for the first list box, then place the item in a global QUEUE. Then, upon detecting a drop event in the
second list box, you could ADD from the global QUEUE to the local QUEUE for the second list box.

Add drop functionality to the drop target, that is, detect a drop event and retrieve whatever was
dropped:

1. RIGHT-CLICK on the ToList control and choose Embeds from the popup menu.

2. Locate the "Control Event Handling, before generated code;" event:Drop embed point and embed
the following code:

MyField = DROPID() ! Retrieve the passed string
CallMyProcedure ! Handle the rest in procedure

This code detects a drop eventat the time the user releases the mouse button over the drop targetand
retrieves the "dropped" string with the DROPID function.

You can just as easily use the CHOICE() and GET() functions to retrieve an item from the local QUEUE
for the first list box, then place the item in a global QUEUE. Then, upon detecting a drop event in the
second list box, you could ADD from the global QUEUE to the local QUEUE for the second list box.

How to Create a Wizard
A wizard is a window with a "tabless" SHEET control containing one or more TABS. You'll need to write
the code to handle the "turning of the pages".

This topic explains one method of creating a wizard using <<Back and Next>> buttons.

1. Create a procedure using the Window Template.

2. Create two Local Variables (by pressing the Data Button on the Procedure properties dialog).

Label Data Type Initial Value
TabNumber Byte 1

MaxTabs Byte number of desired TABs

3. Place a SHEET Control on the Window.

4. Place the desired number of Tabs on the SHEET.

5. Design each TAB.

6. On the Extra tab, check the Wizard box on the Sheet Properties dialog.

This adds the WIZARD attribute to the SHEET control, which hides the "tab" portion of the TAB
controls. Waiting to add this attribute until after designing the TABs makes TAB design easier.

7. Place two button controls under the SHEET control.

Use Caption
?Back <<Back

?Next Next>>

8. Place a third button control under the SHEET control using either a standard button, a Save
Button Control template, or a Close Button control template.

Use Caption
?Finish Finish

The type of control will depend on the task you intend the wizard to perform. If you are using a
Save Button control template, you will need to either call the wizard from a browse or set
GlobalRequest=InsertRecord in the Initialize Procedure embed point.

9. In the After Opening Window embed point, add this code:
HIDE(?Finish)
Select(?sheet1,TabNumber)
Disable(?Back)

This hides the Finish button and disables the <<Back button when the window opens.

10. In the Control Event Handling before generated code, ?Back, Accepted embed point, add this
code:

TabNumber -=1
CASE TabNumber

OF 1
HIDE(?Finish)
DISABLE(?Back)
SELECT(?SHEET1,TabNumber)

OF MaxTabs
UNHIDE(?Finish)
DISABLE(?Next)
SELECT(?SHEET1,TabNumber)

ELSE
HIDE(?Finish)
ENABLE(?Back)
ENABLE(?Next)
SELECT(?SHEET1,TabNumber)

END
This code decrements TabNumber, disables inappropriate buttons, and keeps the Finish button
hidden until the final TAB.

11. In the Control Event Handling before generated code, ?Next, Accepted embed point, add this
code:

TabNumber +=1
CASE TabNumber

OF 1
HIDE(?Finish)
DISABLE(?Back)
SELECT(?SHEET1,TabNumber)

OF MaxTabs
UNHIDE(?Finish)
DISABLE(?Next)
SELECT(?SHEET1,TabNumber)

ELSE
HIDE(?Finish)
ENABLE(?Back)
ENABLE(?Next)
SELECT(?SHEET1,TabNumber)

END
This code increments TabNumber, disables inappropriate buttons, and keeps the Finish button
hidden until the final TAB.

12. Write the code for the Finish button to accomplish the desired tasks and close the window.

What is a Dialog Unit
Dialog units are Windows' standard way of measuring distance on screen.

Dialog units are defined as one-quarter the average character width by one-eighth the average character
height of the default font used on a window (creating a roughly square unit of measurement). The actual
size of a dialog unit can vary from one window to the next, depending upon your selection of the font to
use for the window. If you do not choose a specific font for a window, the Windows default font is used as
the default font for the window and as the basis for the definition of the size of a dialog unit.

The purpose of using such a "floating definition" for sizing and positioning controls in Windows is to
ensure that the relative design of your windows is kept despite any font change. The user can change
their Windows default font in SYSTEM.INI, and Windows video drivers supplied by video board
manufacturers can also change the Windows default font. Therefore, using dialog units ensures
consistent relative window and control size and positioning from one computer to the next.

How to complete an entry field when the last character is entered
In Clarion for DOS, Clarion Database Developer and Clarion Professional Developer an entry field with
the immediate attribute (IMM) was automatically completed when the last character was typed. In Clarion
for Windows, the IMM attribute behaves differently. In Clarion for Windows, an entry field with the IMM
attribute generates an Event:NewSelection as each character is typed.

To mimic the behavior of Clarion DOS products, a few lines of embedded source code are needed.

In the Window Formatter:

1. RIGHT-CLICK on the control, then select Properties.
2. On the Extra tab, check the Immediate box, then press the Ok button.

3. DOUBLE-CLICK on the control to access the Embedded Source dialog.

4. Select the "Control Event Handling, before generated code:Event:NewSelection" embed point for
the control, then press the Insert button.

This embed point will only appear after you have checked the Immediate box.

5. Select SOURCE and type one of the following code segments in the Embedded Source Code
Point:

Use this code if the field is a string:
UPDATE(?PRE:FieldName)
IF LEN(CLIP(PRE:FieldName)) = SIZE(PRE:FieldName) AND KEYCODE()<> MouseLeft ! use size of -1
with CSTRING or PSTRING
 SELECT(?+1)
END !IF

Use this code if the field is any non-string numeric data type:
UPDATE(?PRE:FieldName)
Str" = PRE:FieldName
IF LEN(CLIP(Str") = 5 AND KEYCODE() <> MouseLeft
 SELECT(?+1)
END !IF

In this example the value of the field is assigned to an implicit string variable (Str") so that its length can
be determined. Its length is compared to a constant number (in this case 5) instead of using the SIZE
function. Since SIZE() returns the number of BYTES in the Use variable, it is not a valid comparison for
numeric data types.

Note: This example does not handle leading zeros. If your data can contains leading zeros, you will have
to modify the embedded source code to handle them.

How to Use Spin Controls for Date or Time Fields
Spin Controls are commonly used for date or time entry controls. Using a SPIN control gives the end user
more flexibility, allowing data entry by typing or by clicking on the up or down buttons to increment or
decrement the value.

In the Window Formatter:

1. Place a SPIN control on the window by clicking on the Spin icon in the Controls toolbox and then
clicking on the desired position in the window.

2. RIGHT-CLICK on the spin control and choose Properties from the popup menu.

3. In the Use entry box on the General tab, type the field's label (or press the ellipsis (...) button to
select the field from the Select Field dialog).

4. Select the Extra tab, and specify the Step value.

This is the amount by which the value is incremented or decremented when the Spin Control's Up
or Down button is pressed. For a Date, a step value of 1 increments or decrements by one day.
For a Time, a step value of 6000 increments or decrements by one minute.

5. Optionally, provide an initial value for the fields.

You can specify an initial value in the Data Dictionary or if you are using the Form procedure
template or Save button control template, you can provide an Initial value by specifying it in the
Field Priming on Insert dialog. To specify the current date, assign the TODAY() function to a
date field. To specify the current time, assign the CLOCK() function to a time field.

Tip: If you always want spin controls for these fields, specify a SPIN control as the default
Window control in the Field Properties dialog in the Data Dictionary.

How to Create a Multi-Page Form
In the Window Formatter:

1. Place a SHEET control on the form window.

One TAB or page is automatically included in the SHEET. The SHEET structure declares a group of TAB
controls that offer the user multiple pages of controls for a single window. The multiple TAB controls in the
SHEET structure define the pages displayed to the user.

2. Place additional TAB controls on the SHEET as required.

The TAB structure declares a group of controls. This group is one of many pages of controls that may be
contained within a SHEET structure. The SHEET structure's USE attribute receives the text of the TAB
control selected by the user.

The Windows 95 standard to change from tab to tab is CTRL+TAB. Clarion TAB controls follow this
standard, both in the development environment and in a compiled application.

3. Place controls on the tabs as required.

Required Fields on Tabbed Dialogs

The REQ attribute behaves differently for tabbed dialogs than for single page dialogs. Because the user
has the option of never even selecting secondary tabs (pages), special steps are required to enforce entry
of required fields that reside on secondary tabs.

Enforcing required entry fields on Tabbed Dialogs:

Put all required fields on the first tab; add the REQ attribute to the tab and to the required entry
fields.

Make a (see also)"Wizard".
Embed code at the beginning or end of the procedure that selects all tabs with required fields;

add the REQ attribute to the required entry fields and to their parent tabs.

How to use Pattern Pictures on a form
The standard Windows behavior for an entry control is free-form entry. To override this behavior, you must
add the MASK attribute to the WINDOW.

In the Window Formatter:

1. Make sure the Window is selected.

2. Choose Edit Properties (or press ENTER).

The Window Properties dialog appears.

3. On the Extra tab, check the Entry Patterns box.

4. Press the OK button.

5. For each entry control in the window, add a Picture token to the Picture field of the Entry
Properties dialog.

How to Implement a Splash Screen
A "splash screen" opens automatically when your application starts and provides an interesting, colorful,
and even a musical, beginning; all of which is fun. Practically speaking, it provides the user with a certain
sense of security and confidence that comes with familiarity. This can be especially true an application
that is brand new to the user. A familiar picture or sound can get them off on the right foot. To implement a
splash screen for your application:

1. Call the Splash Screen Procedure from the Main Application Frame.

2. Create Your Splash Screen Window.

3. Add an Image to Your Splash Screen.

4. Add an Alert Key so your user can exit with a mouse click.

5. Embed the code to end the Splash Screen on timer or mouse click.
See the example Video application shipped with this product as C:\CW15\EXAMPLES\APPS\VIDEO\
VIDEO.APP

Call the Splash Screen Procedure from the Main Application Frame
1. From the Application Tree dialog, RIGHT-CLICK the Main procedure and choose Embeds from the

popup menu.

2. Highlight the "After Opening the Window" embed point and press the Insert button.

3. From the Select embed type dialog, select SOURCE, type the following statement, then Exit!
the Text Editor:

DISPLAY

The DISPLAY statement causes the Application Frame to be drawn before the splash screen. If want the
splash screen to appear by itself, omit this step.

4. Highlight the embedded source you just added, and press the Insert button again.

5. This time, select Call a procedure, then type "SplashScreen" in the After Opening the Window
dialog.

This creates a new "ToDo" procedure in the Application Tree entitled SplashScreen.

6. Press OK, then press the Close button to exit the Embedded Source dialog.

Create Your Splash Screen Window
1. From the Application Tree, highlight the SplashScreen procedure, and press the Properties

button.

The Select Procedure Type dialog appears.

2. Clear the Use Procedure Wizard box, then select Window - Generic Window Handler.
3. From the Procedure Properties dialog, press the Window button.

4. From the New Structure dialog, highlight Window and press OK.

5. From the Window Formatter, choose Edit Properties.
6. From the General tab, clear the Caption field.
7. From the Extra tab, type 500 in the Timer field.
This generates an Event:Timer, every 5 seconds. We will use this event to close the splashscreen after 5
seconds.

8. From the Position tab, choose Center for the X and Y coordinates.

This will center our splash screen on the monitor.

Add an Image to Your Splash Screen

1. From the Window Formatter, choose Control Image.
2. CLICK anywhere in the Sample Window to place the IMAGE control, then drag it's handles so it
fills the entire Sample Window.
3. RIGHT-CLICK the IMAGE control and choose Properties from the popup menu.
4. Press the ellipsis (...) button beside the File field to select a graphic (.BMP, .ICO, .JPG, .WMF,
etc.) with the standard Open File dialog.
You may also add text, lines, etc. to the splash screen window.

5. Press the OK button to return to the Window Formatter.

Add an Alert Key so Your User can Exit with a Mouse Click

1. From the Window Formatter, select the window (press TAB) and choose Edit Alert.
2. From the Alert Keys dialog, press the Add button to add an alert key.
3. From the Input Key dialog, select Left Button and press OK twice.
An Alert key generates an Event:Alert whenever the specified key is pressed when the window has focus.
We will use this event to close the splash screen when the user mouse clicks.

4. Exit! the Window Formatter, and save your changes.

Embed the Code to End the Splash Screen on Timer or Mouse click
1. From the Procedure Properties dialog, press the Embeds button.

2. Highlight AlertKey under the "Window Event Handling, after generated code" embed point,
then press the Insert button.

3. From the Select embed type dialog, select SOURCE, type in the following statement, then Exit!
the Text Editor.

DO ProcedureReturn

4. Highlight the source item you just embedded, the press the copy button (or CTRL+C).

5. Now highlight Timer under the "Window Event Handling, after generated code" embed point,
then press the paste button (or ctrl+v).

This copies the DO ProdecureReturn statement from the AlertKey embed point to the Timer embed point,
so the splash screen will end after the 5 second timer event, or when the user mouse clicks, whichever
comes first.

How the Print Engine Processes Report Sections at Runtime
Before learning how to create a report using the Report Formatter, it's important to understand how
Clarion executes a report--in other words, the division of labor between the print engine and your source
code, and the order in which Clarion processes all the sections of your report. Each section of the report
is a data structure, and each in turn is contained in the REPORT structure.

Smart Processing

The REPORT data structure contains all the information necessary for formatting and printing each page.
It automatically handles page overflow management, including widow and orphan control. This frees you
from worrying about the "mechanics."

This means that the Clarion executable code to print a report is simple and clean. The following example
shows how a total of six lines of executable code can access the file and print a fully-formatted listing of
all Customers. Since the Report Formatter writes the entire REPORT data structure, this is all the code
the programmer has to write:

CODE
OPEN(CustReport) !Open report for processing
SET(Cus:NameKey) !Top of file, alpha order
LOOP !Process the entire file

NEXT(CustomerFile) !one record at a time
IF ERRORCODE() THEN BREAK. !Check for errors

PRINT(Rpt:Detail)
!PRINT tells the REPORT structure to do the work.

END

Of course, if you're using the Application Generator, you don't even have to write that much! In the
example above, the PRINT statement prints a DETAIL structure for each record in the file retrieved with
the NEXT statement inside the LOOP .

The REPORT data structure contains the items that belong on the page, plus the attributes that determine
how they appear there. Since you visually design these in the Report Formatter, the code example above
really is all you have to do to print the report.

The PRINT statement automatically initiates the page overflow handling. This means that when the LOOP
goes through enough records to fill up the page, it automatically generates any other structures on the
page--the FOOTER, for example. Then it sends the entire page to the print spooler.

Order

The parts are wholly contained and managed within the REPORT data structure. The parts of the data
structure are the FORM, PAGE, HEADER, DETAIL, and page FOOTER; their functions are fully described
below. The REPORT data structure may also contain group BREAK structures. Each group BREAK
structure can contain its own group HEADER, DETAIL, and FOOTER.

Normally, you want to design reports with only one DETAIL. When you generate reports using the
Application Generator, they will probably have only one. This usually is the one inside the group BREAK
structure. The Report Formatter adds a DETAIL for each BREAK, for flexibility. You can delete the ones
not used.

Once you know the order in which the parts generate at print time, you can understand how to use them
better. For the following example, assume a report utilizing all the parts listed above, containing one group

structure, with a DETAIL inside. Immediately upon the PRINT command:

1. The print engine composes the FORM, but does not send it to the print spooler yet. The FORM
generates only once; the application repeats the FORM and does not recompose it for additional
pages.

2. The print engine composes the page HEADER.

3. The print engine processes the group HEADER.

4. The application generates the DETAIL section (within the BREAK) for as many times as will fill the
first page, continuously checking for group BREAKs.

If a BREAK occurs on the page:

5. The print engine composes the group FOOTER for the first group.

6. The print engine composes the group HEADER for the next group.

7. The application generates the DETAIL section for the next group of records, continuously
checking for further group BREAKs.

At the bottom of the page:

8. The print engine checks for widows, increments the page count, and checks the next page for
orphans.

9. The print engine composes the page FOOTER.

10. The print engine sends the entire first page to the print spooler.

11. For page two, since the FORM was composed already, it does not get regenerated, though it will
print on the page. The application proceeds directly to the page HEADER.

12. The application repeats the procedures above for this and any additional pages.

Flexibility

The page-oriented nature of the Report Formatter is the key to its flexibility. The print engine composes
each page in its entirety before sending it to the printer. This means you may arrange the parts of the
report into any page layout you wish.

You can place the FORM, page HEADER, and page FOOTER structures anywhere on the page, within
certain limitations. Their placement does not affect the order that the application generates the parts.

That means you can physically place a page FOOTER above a page HEADER. Since the FOOTER
generates only after the report processes all the records on the page, this allows you, for example, to
place a page total above the records on the page.

You set the position and size of the DETAIL structure as an offset vs. the last DETAIL printed. The print
engine prints each DETAIL from page top to page bottom. If the DETAIL is narrow enough so that more
than one fits across the width of the page, they print in order left to right, top to bottom.

Group BREAK structures--group HEADER, group DETAIL and group FOOTER--all print as offsets within
the DETAIL area, one after the other.

You can do some fancy footwork in cooperation with the print engine. For example, because the DETAIL
structure must be printed with the PRINT statement, you can utilize embedded source to place conditional
statements within your executable code, to print one DETAIL upon one condition, and another upon a
different condition.

As long as you remember the order in which the application generates each section, which determines

the current record and the values of the totals, tallies and other operations on the fields in each structure,
you can build in a great deal of flexibility within the REPORT data structure, and let the print engine worry
about fitting it all onto the page at runtime.

How to Use the Report Formatter - An Overview
Use the Report Formatter to visually design report elementsheaders, totals, detail lines, graphic images,
preprinted forms, etc.on screen. The Report Formatter automatically generates the Clarion language
source code that defines these elements.

The Report Formatter has six major components that help design your report: the (see also)Sample
Report with Rulers and Grid Snap, the (see also)Controls Toolbox, the (see also)Fields Toolbox, the (see
also)Property Toolbox, the (see also)Align Toolbox, and (see also)report Preview.

Using the Report Formatter - A Typical Procedure
The Report Formatter represents the four basic parts of the REPORT data structure by showing the
page HEADER, DETAIL, FOOTER, and FORM as four "bands."

Here is the typical process for developing a report with the Report Formatter:
1. Specify the files and sort keys your report procedure will use.

See (see also)How to Sort Reports.

2. Establish the general layout of your report: (see also)paper size, page orientation, page margins,
and band positions.

See (see also)Paper Size, (see also)How to Set Report Margins, (see also)Page Layout, (see also)Report
Properties.

3. Place constants such as report titles and logos in the header band or the form band.

See (see also)Constant Strings, (see also)Graphic Images, (see also)Controls Toolbox.

4. Place variables such as page numbers and section headers in the header band.

See (see also)Constant Strings, (see also)Variable Strings, (see also)Controls Toolbox.

5. Place data dictionary fields from your data files in the detail band.

See (see also)Fields Toolbox, (see also)Controls Toolbox(see also)Align Toolbox, (see also)Report
Formatter Menu Commands.

6. Set a group break or breaks, with variable headers, subtotals, etc.

See How to Set Report Group Breaks, How to Sort Reports.

7. (see also)Preview! your report.

8. Repeat any of the above steps as necessary, to fine tune your report.

9. Exit! the Report Formatter.

Using the Report Formatter - Page Layout

1. Choose View Page Layout View.
2. Reposition the report bands by dragging their handles.
Bands may overlap, abut, or be separated by space.

How to Set Report Margins

The default margins for the detail print area are one inch from the left edge of the page, and two inches
from the top. This setting leaves space for a HEADER at the top of the page. You specify the margins on
the Position tab of the respective Report Properties, Page/Group Header Properties, Detail
Properties, and Page/Group Footer dialogs. See (see also) Page Layout.

To specify the left margin, enter a value in the X pos box.
To specify the top margin, enter a value in the Y pos box.
To specify the height, enter a value in the Height box.
To specify the width, enter a value in the Width box.

These values set the AT attribute for the selected report structure.

The AT attribute on report structures performs two different functions, depending upon the structure on
which it is placed.

When placed on a FORM, or page HEADER or FOOTER the AT attribute defines the position and size on
the page at which the structure is printed. The position specified by the x and y parameters is relative to
the top left corner of the page.

When placed on a DETAIL, or group HEADER or FOOTER the print structure is printed according to the
following rules (unless the ABSOLUTE attribute is also present):

The width and height parameters of the AT attribute specify the minimum print size of the
structure.

The structure is actually printed at the next available position within the detail print area (specified
by the REPORT´s AT attribute).

The position specified by the x and y parameters of the structure's AT attribute is an offset from
the next available print position within the detail print area.

The first print structure on the page is printed at the top left corner of the detail print area (at the
offset specified by its AT attribute).

Next and subsequent print structures are printed relative to the ending position of the previous
print structure:
If there is room to print the next structure beside the previous structure, it is printed there.

If not, it is printed below the previous.

The values contained in the AT attribute's x, y, width, and height parameters default to dialog units
unless the THOUS, MM, or POINTS attribute is also present. See the Report Properties dialog. Dialog
units are defined as one-quarter the average character width by one-eighth the average character height.
The size of a dialog unit is dependent upon the size of the default font for the report. This measurement is
based on the font specified in the FONT attribute of the report, or the printer's default font.

Using the Report Formatter - Paper Size

1. Choose Edit Report Properties.

The Report Properties dialog appears.

2. Select the Paper Size tab.

3. Standard Sizes: choose from forty-one sizes in the Paper Size drop down list.

The list includes standard letter, legal, ledger, envelopes, and more.

4. Custom Sizes: choose Other from the Paper Size drop down list, then type your own width and
height values.

5. Check the Landscape box to orient the report text parallel with the longest edges of the paper.

Using the Report Formatter - Constant Strings

1. Choose Controls String, or pick the String tool from the Controls toolbox.
2. CLICK in one of the report bands.
3. DOUBLE-CLICK on the string control you just placed.

The String Properties dialog appears.

4. Type the constant text: in the Parameter field, then press the OK button.

5. Resize the control so that it's wide enough to hold the text, by DRAGGING its right handle.

Using the Report Formatter - Variable Strings

Use variable strings to display data dictionary fields, Clarion total fields, such as Page No., Sum, Average,
Count, etc., and your own calculated fields.

1. Choose Controls String, or pick the String tool from the Controls toolbox.
2. CLICK in one of the report bands (except the form band - forms cannot display variables).
3. DOUBLE-CLICK on the string control you just placed.
4. Check the Variable String box.
5. Type a (see also)picture token in the Picture field.
@n2 specifies a numeric picture for the control. @S10 specifies an alpha-numeric picture for the control.

6. For data dictionary fields or memory variables, press the Use field ellipsis (...) button to choose a
field (or define a new field) from the Select Field dialog.

7. For Clarion total fields, simply choose a total type from the Total Type drop down list.

8. Press the OK button to close the String Properties dialog.

Using the Report Formatter - Graphic Images

1. Choose Controls Image, or pick the Image tool from the Controls toolbox.
2. CLICK in one of the report bands.
3. Resize the image control by DRAGGING its handles.
4. DOUBLE-CLICK on the image control you just placed.
The Image Properties dialog appears.

5. Press the File ellipsis (...) button to choose a graphic file from the Select Image File dialog.

Choose bitmaps (.BMP), metafiles (.WMF), icons (.ICO), jpeg (.JPG), etc.

How to Set Report Group Breaks
Group breaks provide a means of grouping report data into sections and optionally displaying
subheadings, subtotals, or other information associated with the subgroup. Each group consists of a set
of records, all sharing the same value in the BREAK field.

In order to generate meaningful groups, the records should be sorted in the same sequence as the
BREAKs are declared. In other words, when you select a sort key for your report, the key will determine
the variables on which you define your group breaks. See (see also)How to Sort Reports

You may also break on the common fields used to relate two files. File relationships are defined in the
Data Dictionary's Relationship Properties dialog. Adding secondary files to your procedure gives you
another logical field to break on: that is, the common field(s) linking the two files.

To create a group break:
1. Be sure the DETAIL band is visible; if not, press the restore button.

2. Choose Bands Surrounding Break.
3. When the cursor changes to a crosshair, CLICK in the DETAIL band.
The Break Properties dialog appears.

4. In the Label field, type a valid Clarion label to use as a name for the break.

5. In the Variable field, type the name of a variable to break on.

You can press the ellipsis (...) button to select a break field from the Select Field dialog.

6. Press the OK button.

This inserts the group BREAK. When the report prints, it groups together all records with the same value
for the BREAK field, and prints any group HEADER and FOOTER defined for the break.

Tip: If the break variable is a global or local variable, you must be sure that the executable code
updates its value, so that it can generate a group BREAK.

7. Choose Bands Group Header from the menu to define a group HEADER for the BREAK.
8. When the cursor changes to a crosshair, CLICK in the BREAK mini caption bar.
The Page/Group Header Properties dialog appears. Specify a field equate label and any special page
breaking behavior. See (see also)How to Control Page Breaks.

9. Press the OK button.

This inserts the group HEADER band. You may place controls here just as in any other report band.
Group footers are added similarly, using Bands Group Footer from the menu

How to Sort Reports
The sort sequence of a report is determined by a KEY or INDEX defined in the Data Dictionary's
Field/Key Definition dialog. Keys or indexes are selected for use in this particular report procedure,
using the File Schematic Definition dialog. When you select a sort key for your report, the key will
determine the variables on which you define your group breaks. See(see also) How to Set Report Group
Breaks.

For example, if you select the CUS:LastNameKey as your key, then your BREAK variables should be
among those fields listed as components of the CUS:LastNameKey. You can see the key's component
fields in the Data Dictionary's Field/Key Definitions dialog.

To specify the sort sequence for your report:

1. From the Application Tree dialog, DOUBLE-CLICK on the report procedure name.

The Procedure Properties dialog appears.

2. Press the Files button.

The File Schematic Definition dialog appears. Use this dialog to tell the Application Generator which
files and keys your report procedure will access.

3. DOUBLE-CLICK the ToDo item for your procedure.

The Insert File dialog appears.

4. DOUBLE-CLICK the file you wish to report from.

The File Schematic Definition dialog reappears. You may specify more than one file to report on: a
primary file, and secondary files. The secondary files must be related to the primary file by a common
field. Adding secondary files to your procedure gives you another logical field to break on: that is, the
common field(s) linking the two files.

5. Press the Key button, to specify which key is used for this report procedure.

The Change Access Key dialog appears.

6. DOUBLE-CLICK the key you want for this report.

The File Schematic Definition dialog reappears.

7. Press the OK button.

How to Control Page Breaks
One of the main considerations when laying out a report is unplanned page breaks. For example, you
can't always predict how long or short a group will be. You therefore should plan on how your report will
behave when it reaches the end of the page, yet there is still more data (in the group) to print.

There are several options available. Each controls what happens when a DETAIL section may be split at
the end of a page.

To access the dialogs which allow you to set these options, DOUBLE-CLICK the DETAIL section.
Alternatively, select either section and press the Properties button. This displays the Detail Properties
dialog, containing the options below.

You may also set these options for group headers or footers. The options are available in the Group
Header Properties and Group Footer Properties dialogs.

PAGEAFTER

To print the DETAIL, then force a new page, type a value in the Page after box in the Detail
Properties dialog. This sets the PAGEAFTER attribute. This prints the DETAIL, then prints the page
FOOTER, then begins a new page.

Tip: To print a separate page for each record, place the variable strings and/or controls you
wish in the DETAIL, and specify the PAGEAFTER attribute in the Detail Properties dialog.

The page number automatically increments, unless you reset it. To reset the page number to a value you
specify, type it in the Page after field in the Detail Properties dialog.

PAGEBEFORE

To print the DETAIL structure on a new page, type a value in the Page before box in the Detail
Properties dialog. This sets the PAGEBEFORE attribute. The report prints the full DETAIL starting at the
top of the next page. The report FOOTER, however, prints on the first page.

The page number automatically increments, unless you reset it. To reset the page number to a value you
specify, type it in the Page before field in the Detail Properties dialog.

WITHNEXT

To prevent 'widow' elements in a printout, type a value in the Keep next field in the Detail Properties
dialog. This sets the WITHNEXT attribute. A 'widowed' print element is one which prints, but then is
separated from the succeeding elements by a page break.

The value specifies the number of succeeding elements to print--a value of '1,' for examples, specifies
that the next element must print on the same page, else page overflow puts them on the next.

WITHPRIOR

To prevent 'orphan' elements in a printout, type a value in the Keep prior field in the Detail Properties
dialog. This sets the WITHPRIOR attribute. An 'orphaned' print element is one which prints on a following
page, separated from its related items.

The value specifies the number of preceding elements to print--a value of "1," for example, specifies that
the previous element must print on the same page.

Tip: When placing subtotals or totals in a DETAIL, use the WITHPRIOR attribute to insure they
print with at least one member of the column above it when a page break occurs.

Using the Report Formatter - Sample Reports
The Report Formatter is a visual design tool. In Band View, you always see a sample of the report band
you're working on, as you work on it. For example, place a list box in the detail band and drag its handles
to the size you want.

Switch to (see also)Page Layout View to resize and reposition the report bands. Drag the band handles
or drag the entire band. All bands appear together on a representation of the page.

In addition, you can quickly generate filler data and see a sample report by choosing (see also)Preview!
from the action bar, all without actually compiling or running the report.

Using the Report Formatter - Controls Toolbox
The Report Formatter contains a floating Controls toolbox, similar to the Window Formatter. Simply
choose a control from the toolbox (CLICK on it), then CLICK in the report band to place the control in the
report.

Display or hide the Controls toolbox by choosing Options Toolbox. Resize the Controls toolbox by
placing the cursor on the border of the box. When the cursor changes to a double headed arrow, CLICK
and DRAG. All the controls in the toolbox are also available from the Controls menu.

See also: the (see also)Controls menu, (see also)Fields toolbox, (see also)Align toolbox, (see
also)Property toolbox, (see also)Using the Report Formatter - An Overview

Tip: Position the cursor over any tool and wait for half a second. A tool tip appears telling you
the type of control that will be created by this tool.

String Allows you to place STRING control on the report under construction. See the
String Properties dialog.

Text Box Allows you to place TEXT control on the report under construction. See the Text
Properties dialog.

Group Box Allows you to place GROUP control (group box) on the report under construction.
See the Group Properties dialog.

Option Box Allows you to place OPTION control (OPTION structure, which appears as a
group box with radio buttons) on the report under construction. See the Option
Properties dialog.

Check Box Allows you to place CHECKBOX control on the report under construction. See
the Check Box Properties dialog.

Radio Button Allows you to place RADIO control on the report under construction. See the
Radio Properties dialog.

List Box Allows you to place LIST control (list box, or drop down list box) on the report
under construction. See also: List Box Formatter. See the List Properties
dialog.

Image Allows you to place IMAGE control (graphic image) on the report under
construction. See the Image Properties dialog.

Line Allows you to place LINE control on the report under construction. See the Line
Properties dialog.

Rectangle Allows you to place a BOX control on the report under construction. See the Box
Properties dialog.

Ellipse Allows you to place ELLIPSE control on the report under construction. See the
Ellipse Properties dialog.

Dictionary Field Allows you to select a field defined in the Data Dictionary, and place the control
specified in the data dictionary, plus an associated PROMPT control, on the
report under construction. See the Select Field dialog.

Custom Control Allows you to place a CUSTOM control (Visual Basic custom control) on the
report under construction. . See the Custom Control Properties dialog.

Control Template Allows you to place Control Template on the report under construction. See the
*** dialog.

Using the Report Formatter - Fields Toolbox
The Report Formatter contains a floating Populate Field toolbox. This toolbox allows you to quickly
"populate" a window with entry controls and prompts for fields in your data dictionary files.

Display or hide the Populate Field toolbox by choosing Options Fieldbox. Resize the Populate
Field toolbox by placing the cursor on the border of the box. When the cursor changes to a double
headed arrow, CLICK and DRAG.

See also: the (see also)Populate menu, (see also)Controls toolbox.

1. Choose a file from the drop down list.

2. CLICK on the field you want on your report.

3. CLICK in the report band to place the control.

The cursor becomes a crosshair. The top left corner of the control is placed at the intersection of the
cursor crosshair.

The type of control (text box, check box, radio button, etc.) is determined by the settings for this particular
field in the Data Dictionary (see also)Field Properties dialog.

Using the Report Formatter - Property Toolbox
The Report Formatter's Property toolbox allows you to quickly specify the appearance and content of
the text on each in the report. Control the font, size, style, and content of all your text, using standard
word processor buttons and drop down lists. (see also)Select Font dialog.

Display or hide the Property toolbox by choosing Options Propertybox. Resize the Property
toolbox by placing the cursor on the border of the box. When the cursor changes to a double headed
arrow, CLICK and DRAG.

Using the Report Formatter - Align Toolbox
The Report Formatter's Align toolbox allows you to quickly, professionally, and precisely align the
controls in your report.

Display or hide the Align toolbox by choosing Options Alignbox. Resize the Align toolbox by
placing the cursor on the border of the box. When the cursor changes to a double headed arrow, CLICK
and DRAG.

Select the controls to align (CTRL+CLICK allows you to select multiple controls, or you can "lasso" multiple
controls with CTRL+DRAG), then click on the appropriate alignment tool. All the alignment actions are also
available from the (see also)Alignment menu.

Tip: For most alignment functions, the first controls selected (blue handles) are aligned with
the last control selected (red handles). That is, the last control selected is the anchor
control. It doesn't move, the others do.

Tip: Position the cursor over any tool and wait for half a second. A tool tip appears telling you
the type of alignment this tool will accomplish.

Align Left Aligns the left borders of the selected controls with the left border of the last
control selected (red handles).

Align Right Aligns the right borders of the selected controls with the right border of the last
control selected (red handles).

Align Top Aligns the top borders of the selected controls with the top border of the last
control selected (red handles).

Align Bottom Aligns the bottom borders of the selected controls with the bottom border of the
last control selected (red handles).

Align Vertical Along a vertical axis, aligns the centers of the selected controls with the center of
the last control selected (red handles).

Align Horizontal Along a horizontal axis, aligns the centers of the selected controls with the center
of the last control selected (red handles).

Spread Vertical Equalizes the vertical spaces between the selected controls.

Spread Horizontal Equalizes the horizontal spaces between the selected controls.

Same Size Makes all selected controls the same height and width as the last control
selected (red handles).

Same Height Makes all selected controls the same height as the last control selected (red

handles).

Center Vertical As a group (relative positions of selected controls don't change), centers the
selected controls horizontally within the band.

Center Horizontal As a group (relative positions of selected controls don't change), centers the
selected controls vertically within the band.

Using Preview!
You can quickly "preview" alternative layouts for DETAILs, HEADERs, and FOOTERs. Fonts, sizes,
colors, and positions of report controls are all displayed, and you can see these effects all without actually
compiling or running your report.

In the Report Formatter:

1. Choose Preview! to "visualize" how the printed page will appear.

The Preview Print Details dialog appears. This dialog lets you generate "filler" data for your report. The
data have no values, but serve as placeholders, so you can get a feel for the appearance of your finished
report.

2. Highlight a detail (if you have more than one) in the Details list then press the Add button.

Each press of the Add button populates the preview with a filler record. Add one record for a one-record-
per-page type report, or add lots of records to see the effects of the page breaking, group breaking, and
header and footer options you have selected.

3. Press the OK button.

The Report Formatter generates a preview of your report including DETAILs, HEADERs, FOOTERs,
BREAKs, fonts, sizes, colors, and positions of report controls.

4. When done "previewing," choose Band View! to continue editing your report.

How to Print to a File
You can change the windows default printer without calling the printerdialog function. This can be done by
using Clarion's property syntax. The property to use is PROPPRINT:Device. This property definition can
be found in the CW15\LIBSRC\PRNPROP.CLW. This must be included in your application before making
use of any of the properties defined therein.

To include PRNPROP.CLW:

1. Press the Global button on the Application Tree, to open the Global Properties dialog.

2. Press the Embeds button.

3. Select the 'Inside Global Map' embed point and add the following embedded source code:
 include('prnprop.clw')

To change the printer device:

1. From the Application Tree, select your report procedure and press the Properties button.

2. Press the Embeds button.

3. Select the 'Before Opening Report' embed point and add the following embedded source code:

 sav::printer = PRINTER{PROPRINT:Device} ! save windows default printer
PRINTER{PROPRINT:Device} = 'Generic / Text Only' ! set to ASCII device

 PRINTER{PROPRINT:PrintToFile} = TRUE ! print to file flag
PRINTER{PROPRINT:PrintTo Name} = 'REPORT.TXT' ! set filename for report

At the end of the report, restore the original default printer:

1. From the Application Tree, select your report procedure and press the Properties button.

2. Press the Embeds button.

3. Select the 'After Closing Report' embed point and add the following embedded source code:

PRINTER{PROPRINT:Device} = sav::printer
PRINTER{PROPRINT:PrintToFile} = FALSE ! print to file flag

How to change the printer device without calling PRINTERDIALOG
You can change the windows default printer without calling the printerdialog function. You may want to do
this when a report is designed for pre-printed forms, and therefore must always be routed to a printer
loaded with the forms.

This can be done by using Clarion's property syntax. The property to use is PROPPRINT:Device. This
property definition can be found in the CW15\LIBSRC\PRNPROP.CLW. This must be included in your
application before making use of any of the properties defined therein.

To include PRNPROP.CLW:

1. Press the Global button on the Application Tree, to open the Global Properties dialog.

2. Press the Embeds button.

3. Select the 'Inside Global Map' embed point and add the following embedded source code:
 include('prnprop.clw')

To change the printer device:

1. From the Application Tree, select your report procedure and press the Properties button.

2. Press the Embeds button.

3. Select the 'Before Opening Report' embed point and add the following embedded source code:

sav::printer = PRINTER{PROPRINT:Device} ! save windows default printer
PRINTER{PROPRINT:Device} = 'HP Laserjet Series II' ! set new default printer

The device property takes the name of the printer device. This can be found by looking in windows print
manager. The device is the actual printer name. The device property string is case insensitive.

At the end of the report, restore the original default printer:

1. From the Application Tree, select your report procedure and press the Properties button.

2. Press the Embeds button.

3. Select the 'After Closing Report' embed point and add the following embedded source code:

PRINTER{PROPRINT:Device} = sav::printer

How to Print Labels
Printing labels simply means printing a multi-column report, that is, getting the report rows and columns to
match up with the commercial label forms you use.

1. With a ruler, measure the height and width of the label paper, measure the height and width of the
individual labels, and measure any top or left margins on your label paper. Make your
measurements in inches.

2. Create a report of your address file.

Use the Report Wizard if you want, but don't worry about formatting yet. Just make sure the report
contains all the address fields you need for your labels.

3. From the Application Tree, RIGHT-CLICK your report procedure and choose Report from the popup
menu.

4. Delete all report sections, except the Detail section.

5. Choose Edit Report Properties.
6. On the General tab, choose 1/1000 inches in the Units drop down list.
7. On the Postion tab, set the margins you measured earlier.
In the Top Left Corner group, the X field represents the left margin in thousandths of and the Y field
represents the top margin in thousandths of inches. So, if the left margin of your label paper is 1/2 inch,
type 500 in the X field. If the margin is zero, type zero in the X field. Do the same for the top margin and
the Y field.

8. On the Postion tab, set the height and width of the label paper.

In the Width group, click on fixed, and type the paper width in thousandths of inches. Standard letter size
paper is 8 1/2 inches, so type 8500. Do the same for the paper height. Standard letter size paper is 11
inches, so type 11000.

9. Press the OK button to return to the Report Formatter.
10. Arrange your address fields in a vertical format, that is, one field below another near the left

margin.

Use the (see also)Alignment tools for precise alignment.

11. RIGHT CLICK the detail band and choose Position from the popup menu.

12. On the Postion tab, set the height and width of the individual labels.

In the Width group, click on fixed, and type the label width in thousandths of inches (eg for a 2 1/2 inch
label, type 2500). Do the same for the label height.

13. Press the OK button to return to the Report Formatter.
14. Readjust the position, size, and font of your address fields if necessary.

15. (see also)Preview! your label report.

16. Exit! the Report Formatter and save your changes.

How to Link External Resources
The Project System allows you to specify external resources to link into the executable. These include
graphics, such as .BMP, .ICO and .WMF files. By linking them into the executable, you can avoid having
to ship them as separate, external files.

If you directly reference a graphic file within a data structure, the compiler automatically links the graphic,
so there is no need to add the graphic file to your Project Tree. For example, if you place an IMAGE
control in a window, and specify a file by name in the Image Properties dialog, the linker automatically
includes that file in your executable. But if you assign a different graphic to a control using a runtime
property assignment statement, the linker will only include the new file in your executable if you add the
file to your Project Tree.

To add graphic files to the executable:
1. Highlight Library and object files and CLICK on the Add File button.

Select the bitmap, icon, or metafile graphic from the standard Open File dialog.

2. Press the OK button to return to the Project Editor dialog.

3. Highlight the source code file that references the graphic, and CLICK on the Edit button.

The source code file is opened by the Text Editor.

4. Place a tilde (~) in front of the graphic file name in the source code assignment statement (not in
data section).

For example: change ?Image{PROP:Text} = 'I.ICO' to ?Image{PROP:Text} = '~I.ICO.' The tilde indicates
the program should find the item as a linked in resource, not as an external file.

Optionally, choose Search Find to locate the file name.

5. Choose File Exit, then CLICK on Yes when asked if you want to save.

Now, when you recompile and link, the executable will no longer require the external graphic file.

How to Manage Threads
This topic will show you how to limit an MDI Child browse procedure to a single instance using
messaging.

The simplest solution is to disable the menu item when the browse procedure is active. You can't do this
in the menu itself--you must send a message to the Frame procedure from the browse.

First you need to declare two new events in the Global Properties, Global Data embed point:
EVENT:DisableCustomerItem EQUATE(401h)
EVENT:EnableCustomerItem EQUATE(402h)

(Note that user-defined events must start after 400h.)

You also need a global variable, define this in Global Properties, Data. Call this GLO:MainThreadNo,
make it a BYTE.

In the Frame procedure, Setup procedure embed, type the following:
 GLO:MainThreadNo = THREAD()

(Whenever an MDI procedure is STARTed, a thread number is allocated to it. We need the thread
number in order to post a message to the frame procedure.)

Now, still in the frame procedure, you need to write code in the Case EVENT() structure, before
generated code embed to handle the two user-defined events that the frame procedure will receive.
 OF EVENT:DisableCustomerItem
 DISABLE(?ShowCust)
 OF EVENT:EnableCustomerItem
 ENABLE(?ShowCust)

In the Browse procedure, in the Initialize the Procedure embed, type:
 POST(EVENT:DisableCustomerItem,,GLO:MainThreadNo)

In the End of Procedure embed, type:
 POST(EVENT:EnableCustomerItem,,GLO:MainThreadNo)

Now, the first time you select the Browse Procedure from your menu, ShowCust starts up, the POST()
statement executes and an EVENT:DisableCustomerItem is sent to the Frame procedure.

If the user then clicks on the menu again, the message is processed and the item is disabled.

As the user exits ShowCust, the EVENT:EnableCustomerItem message is sent to the Frame. When that
message is processed the menu item is enabled again.

Why store the Frame's thread number - surely it would always be number 1? Well it might NOT be the
first thread in the application.

Thanks to Rob Mousley of Chariot Software for submitting this topic.

Using Windows DLLs NOT Created in Clarion for Windows
You can use Windows .DLLs which have not been created with Clarion for Windows if you know the
prototypes for the .DLLs procedures and functions.

If the source language prototypes are known, then equivalent Clarion prototypes must be created and
included in a CW program's MAP for all referenced DLL procedures and functions. Also, Clarion for
Windows 1.0 requires a Library (.LIB) file in the Project Tree under Library and Object files. This Library
file entry enables the linker to resolve the procedure and function references in the .DLL.

If you have a Windows DLL (not created with Clarion for Windows) that you want to use in a CW program,
then the following steps are required to enable the CW program to access the DLL's procedures and
functions:

 Create Equivalent Clarion for Windows Language Prototypes.

 Create a Clarion for Windows Library (.LIB) File for the DLL.
 Reference the Library (.LIB) File in the Project System.

Create Equivalent Clarion for Windows Language Prototypes.

Prototypes for any referenced .DLL procedures and functions must be in the CW program's MAP
structure. Procedures and functions written in a language other than Clarion can still be referenced in a
Clarion program by creating an equivalent Clarion prototype. The prototypes are placed in a MODULE
structure which identifies the name of the DLL's library as the MODULE parameter. For example, if the
DLL name is MY.DLL then the module structure would be:
 MODULE('MY.LIB')

There are several issues to consider when creating equivalent prototypes in Clarion which are dependent
upon a DLL's source code language. A primary consideration is relating equivalent data types in the other
language to Clarion. Equivalent data types can be determined by considering the "underlying" machine
data type represented by each language data type. For example, the CW Language Reference identifies
the Clarion data type SREAL as a "four-byte signed floating point".

The following is an example of C and C++ code data type equivalents.
 unsigned char ==> BYTE
 short ==> SHORT
 unsigned short ==> USHORT
 long ==> LONG
 unsigned long ==> ULONG
 float ==> SREAL
 double ==> REAL
A Clarion GROUP is roughly equivalent to a C or C++ struct. For example:
 Struct1 GROUP ! Struct1 is defined as a GROUP
 ul1 ULONG ! containing two ULONG values
 ul2 ULONG
 END
This form of definition reserves space for Struct1 and is equivalent to the C definition:
 struct {
 unsigned long ul1;

unsigned long ul2;
 } Struct1;
A second important prototyping consideration is the procedure/ function calling convention utilized by

another language. Clarion provides support for three different calling conventions: PASCAL, C, and
TopSpeeds Register Based. See Function and Procedure Prototypes. in the Language Reference for
further information on Clarion prototypes.

Create a Clarion for Windows Library .LIB File for the DLL.

You can create a .LIB file for the DLL using the LIBMAKER.EXE utility program that comes with Clarion
for Windows as one of the example programs. Simply run the program, select the .DLL and have it
automatically create the TopSpeed format .LIB file for you.

Reference the .LIB File in the Project System.

You must place the Library (.LIB) file in the Project Tree under Library and Object files for any Project
that will use the .DLL.

Creating a .DLL (Sub-Application)
This section describes the steps to create a program using one main application and several sub-
applications compiled and linked as external.DLLs. It is written with Team Development in mind, so it
describes some of the aspects of working in a multi-developer environment. Dividing a large project into
multiple .DLLs provides many benefits:

Each sub-application can be modified and tested independently.
Developers can work on their portion of the project without interfering with others on the

development team.
Each sub-application can be compiled as a DLL and tested in the main program without

recompiling the entire project. This reduces compile and link time.
Dynamic Pool Limits are avoided in large projects.
Future updates can be deployed by shipping a new .DLL, reducing shipping costs.

With this approach, each Team Member creates a separate .DLL that is called by a "master" application.
This requires splitting the application into a "Main" executable and "secondary" .DLLs. The individual
team members maintain separate application files for each component. The Team Leader creates a
master application that calls the sub-applications and a "data" application that contains (and exports) all
the File definitions and Global variables. Optionally, members can call procedures from another member's
.DLL.

This method also requires extensive pre-planning of the "division of labor" between the various target files
created by the application.

The following outlines a possible implementation of this strategy:

1. Create the data dictionary and set up the workstations as described above.

2. Create a "dummy" application to store and export all data declarations. All Global variables or
structures and all file definitions are defined (and exported) in this application. Use the following
settings:

In the Application Properties:

Dictionary File: The master dictionary residing on the network.

Target Type: DLL

In the Application's Global Properties:

Generate Global Data as External: OFF

File Control Flags

Generate All File declarations: ON

External: NONE EXTERNAL

Export All File declarations: ON

3. Team members create their own sub-application .APP files, specifying the dictionary file on the
network as the data dictionary, and a directory on the local drive as the default directory for
the .APP file. Each team member specifies a different target file using the following settings:

In the Application Properties:

Dictionary File: The master dictionary residing on the network.

Target Type: EXE during the design and testing phase
DLL when releasing to the master directory.

Note: Changing the Target Type enables procedures to be exported. Make sure that every
procedure that is called by the master application or another .DLL has the Export
Procedure check box in the Procedure Properties checked (the check box is only available
after changing the target type).

In the Application's Global Properties:

Generate Global Data as External: ON

File Control Flags

Generate All File declarations: OFF

External: ALL EXTERNAL

All Files declared in another .App:ON

Declaring Module: Leave this blank

In the Application's Module Tree:

Choose Application Insert Module, select External DLL, then select the corresponding .LIB
for the .DLL containing the data definitions.
One particular .APP creates the executable which launches or calls library functions or

procedures in the others. To the end user, this is the .EXE program to start when working with the
complete application.
4. Team members synchronize their local directory with an equivalent on the network at the end of
each day.
5. Team Members release their compiled and linked .DLLs to the Team Leader.
Each sub-application has a "dummy" frame (not exported) that calls the sub-application's procedures so
the Team Member can test the sub-application by compiling it as an .EXE. Once it passes testing, the
member compiles it to a .DLL by changing the Application Properties' Target File type to .DLL and
releases the file to the Team Leader.

Tip: If you edit the Redirection file to include "." at the start of the *.DLL and *.LIB search paths,
Clarion will generate the *.DLL and *.LIB files into the local sub-application subdirectory
instead of \CW15\BIN and \CW15\OBJ. This is a little safety precaution that prevents the
*.DLL and *.LIB from getting into other Team Members' hands before it's ready. In addition,
adding the Master directory to the end of these search paths enables the sub-application
or main application to find the completed LIB's and DLL's belonging to other sub-apps in
the master subdirectory.

6. The Team Leader copies the released .DLLs into the master directory and creates a master .APP
file which calls the entry point procedures in the .DLLs.

The Master .APP is typically just a bare bones application with just a splash screen and a main frame with
a menu and toolbar. The .DLLs are called at runtime so you don't need to compile a large Master .EXE.
The Master .APP should have the same settings as the sub-applications except that it is always compiled
as an .EXE.

The master .APP should have these settings:

In the Application Properties:

Dictionary File: The master dictionary residing on the network.

Target Type: EXE

In the Application's Global Properties:

Generate Global Data as External: ON

File Control Flags

Generate All File declarations: OFF

External: ALL EXTERNAL

All Files declared in another .App:ON

Declaring Module: Leave this blank

In the Application's Module Tree:

Choose Application Insert Module, Select External DLL, then select the
corresponding .LIB for the .DLL containing the data definitions.

Choose Application Insert Module, Select External DLL, then select the corresponding .LIB
for the sub-application .DLL. Repeat this step for each sub-application.

For each procedure the main application calls, edit the ToDo procedure as follows:

Template: External template.

Module name: Select the corresponding .LIB for the DLL drop down list.

If necessary delete any empty generated modules.

7. The Team Leader compiles the master .APP and tests the calls to the DLLs.

8. The Team leader repeats the last step on a periodic basis until all work by all developers is
complete, and the entire application can be tested.

How to Import an ODBC File Definition
The Dictionary Editor allows you to quickly add a data file to the dictionary by creating a data definition
based on an existing data file.

With the Dictionary dialog active:

1. Select File Import File. Select a data file from the Import File Definition dialog.

The Import File Dialog displays a list of installed database drivers.

2. Select the ODBC driver from the dropdown list, and press the OK button.

The Data Sources dialog appears. This is similar to the ODBC Administrator dialog.

3. Highlight the Data Source and press the Select button.

If the ODBC data file contains multiple tables, the Tables for... dialog appears.

4. Select the Table to import, then press the Select button.

The File Properties dialog appears.
5. Edit the File Properties, as needed, then press the Ok button.

Tip: If the file system you are using supports multi-threading, and you want to use multi-
threading with the file, you must check the Threaded box to add the THREAD attribute to
the file definition. Consult your file system's documentation to see if multi-threading is
supported.

How to Create a File Definition for an ODBC Data Source
Adding ODBC support to your application only requires choosing Clarion's ODBC driver and providing the
parameters to pass to the ODBC driver manager. You provide the parameters in the OWNER and NAME
attributes of the FILE declaration.

You may also import the file definition into your data dictionary. See How to Import an ODBC File
Definition for more information.

The following introduces the basics, as approached from the Data Dictionary Editor. Of course, you must
also be sure that the field data types in your dictionary match the variable formats supported by the
DBMS you're connecting to.

1. Create a new Dictionary file.

2. Choose File Import File.

The Select File Driver dialog appears.

3. Select ODBC from the drop down list, then press the OK button.

The Data Sources dialog appears. This is similar to the ODBC Administrator's interface. If the data
source has not yet been defined, you can add it by pressing the New button.

4. Highlight the desired Data Source, then press the Next button.

5. If the Data Source has password protection, the Logon dialog appears. Provide the User ID and
password, then press the OK button.

If the file contains multiple tables, the Tables for ... dialog appears.

6. Highlight the desired table, then press the Finish button.

The file definition is imported and the File Properties dialog appears allowing you to modify attributes, if
you choose.

Notice the fields in the File Properties dialog that have been filled in during the import:

Name: This is extracted from the Table name as defined in the ODBC database. You
may modify this, if desired. It is used as the Clarion label in your source code.

Prefix: This defaults to the first three characters of the table name, you may modify this if
desired.

Owner Name The ODBC data source name, and optionally, the user ID, and password,
separated by commas. Some databases require additional connection
information. This information follows the password and is separated by
semicolons, using the syntax: keyword=value;keyword=value.

For example, when accessing a Sybase database, this would appear as :
A Data Src,UserID,PassWord,DATABASE=DataBaseName; APP=APPName

The data source name is the section name in the ODBC.INI file which stores all
the information necessary for the ODBC manager to load the driver and access
the data. The Application Generator will add the information to the OWNER
attribute of the file declaration:

OWNER(DataSourceName, UserID, Password)

Full Pathname: The import process places the table name only in this field. The ODBC driver
retrieves the physical file name from ODBC.INI.

This places the file or table name in the NAME attribute of the file declaration:
NAME(DataFileName) or NAME(TableName)

The remainder of the attributes depend on your preferences and your application.

7. Repeat the last six steps for each table in the database.

How to Choose When to Use ODBC vs. a Native Clarion Driver
ODBC offers both pros and cons.

Using ODBC offers the following advantages:

ODBC is an excellent choice in a Client-Server environment, especially if the Server is a native
SQL DBMS. It allows you to add Client-Server support to your application, without having to do much
more than choose a file driver. ODBC was specifically designed to create a non-vendor specific (if you
exclude Microsoft) method of connecting front end applications to back end services. Via ODBC, the
Server can handle much of the work, especially for SQL JOIN and PROJECT, speeding up your
application.

Existing ODBC drivers cover a great many types of databases. There are ODBC drivers available
for databases for which Clarion may not have a native driver--for example, for Microsoft Excel and Lotus
Notes files.

ODBC is already widespread. Major application suites such as Microsoft Office install ODBC
drivers for file formats such as dBase and Microsoft Access.

ODBC is platform independent. One of Microsoft's prime objectives in establishing the ODBC API
was to support easier access to legacy systems, or corporate environments where data resides on
diverse platforms or multiple DBMS's. As long as an ODBC driver and back end are available, it doesn't
matter whether you use Microsoft's NetBEUI, SPX/IPX, DECNet or others; your application can connect
to the DBMS and access the data.

Given that there are many drivers available, and that the standard was developed by the company that
developed Windows, you might consider using ODBC as the driver of choice for all your Windows
applications. Yet, when choosing when to use an ODBC driver vs. a Clarion for Windows native database
driver, you must also consider possible disadvantages:

Unfortunately, ODBC adds a layer--the ODBC Driver Manager--between your application and the
database. When it comes to accessing files on a local hard drive, this generally results in slower
performance. The driver manager must translate the application's ODBC API call to an SQL statement
before any data access.

The information required by the ODBC database manager to connect to a data source varies
from one ODBC driver to another. Unlike the selection of Clarion file drivers, where file operations are
virtually transparent, you may need to do some work to gather the information required to use a particular
ODBC driver. This topic provides a few tips that might make it easier, and many ODBC drivers come with
a .HLP file which documents special settings (usually stored in ODBC.INI); but the burden is on you to
solve any problems with third party ODBC drivers.

ODBC is not included with Windows 3.1. When distributing your application, you'll need to install
the ODBC drivers and the ODBC driver manager into the end user's system, if the end user doesn't have
them already. This requires the ODBC SDK from Microsoft. In some cases, the back end server may have
already provided a distribution kit which installs the ODBC driver on the workstation.

The normal Microsoft setup program that installs the ODBC driver manager adds an applet to the
end user's Control Panel window for managing ODBC. It's very easy for an end user to use this tool to
change the settings in the ODBC.INI file. The end user can unwittingly remove the back end ODBC driver
which would make it impossible for your application to connect to the data file. Additionally, since most
ODBC drivers store the data directory in ODBC.INI, it's very easy for the end user to change it, again
introducing a possible problem for your application.

Given the pros and cons, we recommend using native Clarion for Windows file drivers when both a native
driver and an ODBC exist for the same file format.

How to Work With the ODBC.INI File
The data source listing in the ODBC.INI contains varying information according to what each driver needs
to know to connect to the data. Some of the more important items:

The file name of the actual ODBC driver; your application usually does not need to know this. The
ODBC driver manager uses this information. Only this item is required.

The data directory; or in the case of a file format that can store more than one table in a physical
file, such as Microsoft Access, the name of the data file.

A User ID.
A Password; though it would be surprising to find a driver which stores this in an ASCII file!

You can optionally specify variable strings to hold the information the ODBC driver requires, then fill
them in at run time. This allows you to check the ODBC.INI file to verify the information you need,
protecting your application should the end user modify some of the settings, such as the data directory.

To specify variable strings for the OWNER and NAME attributes in the data dictionary, place an
exclamation point (!) before the variable name as you type it in the Owner Name or Full Pathname
fields in the New File Properties dialog; for example, !MyOwnerAttrib and !MyNameAttrib. When creating
your application, the variables must be declared globally.

Using the GETINI function, you can then build up the proper OWNER and NAME attributes, then place
them in the "Before Opening the Window" embed point.

For example, assume that the data source name is "MS Excel Databases." Assume that you've checked
and found that the windows directory on the end user's machine is "C:\WINDOWS." Finally, assume you
data file is named 'MyData.XLS.' Using the variables we "named" above, and two others, namely,
MyDataDir, UserID, and MyPassword, in which you can temporarily store the data directory, UserID, and
Password, the following would construct the attributes:
MyUserID = GetIni('MS Excel Databases', 'UID', '' , 'c:\windows\odbc.ini')
MyPassword = GetIni('MS Excel Databases', 'PWD', '' , 'c:\windows\odbc.ini')
MyOwnerAttrib = 'MS Excel Databases,' & CLIP(MyUserID) & ',' & CLIP(MyPassword)
MyDataDir=GetIni('MS Excel Databases', 'DataDir', '' , 'c:\windows\odbc.ini')
MyNameAttrib = CLIP(MyDataDir) & '\MyData.XLS'

If the GETINI function fails to find entries for the UserID (UID) or Password (PWD) in the
ODBC.INI file, it returns an empty string. In fact, the Excel driver included in the Microsoft SIMBA.DLL
does not maintain these entries. They are in this example to illustrate how to successfully use them for
driver which do supply the entries.

For the MS Access driver, which stores the physical file name in ODBC.INI, you have to know the table
name, and place it in the NAME attribute. For example, assume the data source name "MS Access
Databases," which contains a table named "MyTable." Since the ODBC driver manager can look up the
physical file name, you don't even have to include it. Most likely, you would not even use a global variable
to store the table name. You would type "MyTable" directly into the Full Pathname field in the New File
Properties dialog. You could then use the following to fill in the OWNER attribute:
MyUserID = GetIni('MS Access Databases', 'UID', '' , 'c:\windows\odbc.ini')
MyPassword = GetIni('MS Access Databases', 'PWD', '' , 'c:\windows\odbc.ini')
MyOwnerAttrib = 'MS Access Databases,' & CLIP(MyUserID) & ',' & CLIP(MyPassword)

ODBC.INI Section Format

The standard format for the ODBC data source entry varies from "back-end" driver to driver. It's essential
to have the individual driver help file if you plan to edit the ODBC.INI file. The following is a "pseudo-
entry," meant to be representative:

[dBase_sdk20] ;The data source name; uniquely
;identifies the database to the
;ODBC administrator.

UID=dba ;User ID, if required by driver
PWD=secret ;Password, if required by driver
Driver=c:\windows\simba.dll ;Identifies the driver dynamic link library
Description=Sample dBase Data ;String describing the database
FileType=dBase4 ;Identifies the file structure to the driver
DataDirectory=c:\DBASE ;Identifies either a directory

;or file, depending on the driver.
SingleUser=False ;Optional driver parameters

Additionally, the data source name must also be identified in the [ODBC Data Sources] section, which
usually appears at the top of the ODBC.INI file. A single line contains the data source name as it appears
in the entry described above, and a short string description:

dBase_sdk20=dBase Driver

How to Test Your ODBC Application
Here are two tips for use when developing your ODBC application.

The ODBC driver manager can create a log file documenting all ODBC calls. It includes the actual SQL
statements made by the driver to the data source, and includes any errors posted. Additionally, The
ODBC "back-end" driver can pass an error message back to the Clarion for Windows ODBC driver. You
can access this as an external variable.

The following tells you how to take advantage of these tips.

The ODBC Log File

There are different log files you can produce. One is produced by the Clarion ODBC driver, the other
through the ODBC Driver Manager.

The ODBC Driver Manager's logging writes every ODBC call and the SQL statements they generate to
disk, as the calls are made. The Clarion ODBC driver only logs errors that occur. This allows you to match
calls to SQLError in the ODBC manager's log to actual error messages. This slows down the process
considerably, so this should only be activated during testing. Additionally, the log file can grow to large
proportions very quickly, so you must turn it off and delete the file after using it.

Besides "snooping" on the actual SQL statements generated by the driver, you can zero in on any errors.
If the application was unable to connect, you can open the log file using the Write or WordPad applet (the
file is usually too big for Notepad). Scroll to the very bottom of the file, then work up until you find the word
"SQLError."

To enable Clarion ODBC driver logging:

You can enable logging on a system-wide basis, on a per-file basis, or on demand using a SEND()
command.

For system-wide logging:

1. Add the following to your WIN.INI file:

[CWODBC]

Trace=1

TraceFile=[name of trace file]

For file logging:

1. In the File Properties dialog, in the Dictionary Editor, add the following in the Driver Options entry
box:

LOGFILE=filename.ext

where filename.ext is the name of the logfile you wish to create.

For logging on demand:

1. Use a SEND() command at the appropriate point in your code, using the following syntax:
SEND(file,'/LOGFILE=filename.ext')

where file is the label of the data file and filename.ext is the name of the logfile you wish to create.

To turn logging off:

1. Use a SEND() command at the appropriate point in your code, using the following syntax:
SEND(file,'/LOGFILE')

where file is the label of the data file

To enable ODBC Administrator logging:

1. Start theODBC administrator.

You can do so by either running the ODBCADM.EXE file in the \Windows\System directory, or by DOUBLE-
CLICKING the ODBC icon in Control Panel.

2. Press the Options button in the Data Sources dialog.

3. Check theTrace ODBC Calls box.

4. Optionally uncheck the Stop Tracing Automatically box if you think you need to test connecting
more than once.

It's common to test several times before pinning down the error.

5. Press the Select File button and name a file to log to.

The default is called SQL.LOG.

6. Switch to your program and begin testing.

After the errors occur, open the log file and examine it. Remember to turn off the Trace ODBC Calls box
when done testing.

The ODBC Error Message

You can name a global variable to store any ODBC error strings returned by the driver. To do so, you
must define an EXTERNAL variable of the type CSTRING, whose length is commonly 80, declaring its
external NAME as _ODBC_ERROR. Don't forget the underscores! The actual variable declaration is:
MyLabel CSTRING(80),EXTERNAL,NAME('_ODBC_ERROR')

Following an error in your application, display the contents of MyLabel in a message box.

The ODBC driver can create a logfile to track error messages. This can be done on a system-wide basis
or on a file-by-file basis.

To trace ODBC errors system-wide:
1. Add the following section to your WIN.INI file:
[CWODBC]
Trace=1
Tracefile=[name of file]
.
To trace ODBC errors for a single file:
1. Use either the SEND command or driver string:
DRIVER ('ODBC','/LOGFILE=logfile [message]')
res" = SEND (file,'/LOGFILE=logfile [message]')
res" = SEND (file,'/LOGFILE [message]')

/LOGFILE=logfile

Opens the named logfile for exclusive access. If the file exists, the new log data is appended to the file.
You can add a message to the Start line by including the message inside square brackets ([]). There must
be a space between the name of the logfile and the opening square bracket ([).

/LOGFILE

Closes the file. You can add a message to the Stop line by including the message inside square brackets
([]). There must be a space between the name of the logfile and the opening square bracket ([).

Using /LOGFILE in a DRIVER string to start logging is exactly the same as issuing it in a SEND before
any call to OPEN(file) or CREATE(file).

The /LOGFILE switch must be the last switch in the DRIVER string.

Using an ODBC Connect String
Normally you need only pass the DataSource name, User ID, and Password to an ODBC Data Source.
However, some drivers, such as Sybase, may require more information. With these drivers, you can
supply the additional information in the OWNER attribute after the password.

Use the following syntax:
keyword=value; keyword=value.

For example, to supply the Database and App name to Sybase:
OWNER(DataSourceName,UserID,PassWord,DATABASE=DataBaseName;APP=AppName)

How to Start a DDE Conversation
DDE (Dynamic Data Exchange) is a Windows Inter-Process Communication (IPC) protocol. A DDE
"conversation" consists of two applications trading messages. Within the DDE conversation, one
application acts as the client, the other as the server.

The application which starts the conversation, requesting data or services from the other, is the client. The
contacted application is the server. The server must "register" with Windows that it has server capability.

Clarion for Windows allows you to create both DDE clients and DDE servers. An application can be both.
In fact, your application can act as both a client and server at the same time, though it requires two
separate DDE conversations.

Starting a DDE conversation is as easy as using the DDECLIENT function. The only "catch" is that both
applications must already be running to open the channel.

The simplest way to ensure that the conversation takes place at run time is to use an IF (conditional
execution structure) structure. The DDECLIENT function returns zero if the server application isn't already
running. Test its return value, and use the RUN statement to start the server app if it returns zero.

Many of the DDE procedures and functions require that you specify the DDE channel number, which is an
integer that Windows returns when you open the DDE conversation. Create a local variable to hold the
return value. Begin at the Procedure Properties dialog of the procedure you wish to contain the code for
the DDE conversation.

To enable support for the DDE commands for your project or application, you must include the DDE.CLW
file, located in the LIBSRC subdirectory.

Create a variable to hold the DDE channel number:
1. Press the Data button in the Procedure Properties dialog.

2. Press the Insert button in the Local Data dialog.

3. Type Channel in the Name field.

4. Choose LONG from the Type dropdown list.

5. Press the OK button to close the Field Properties dialog.

6. Press the Close button to close the Local Data dialog.

Initializing the Conversation

You must embed the code to initialize the DDE conversation, starting the server application if it's not
already started. Assuming a menu choice in your application begins the conversation, embed the code at
a field event associated with the Accepted menu choice.

1. Choose the appropriate field event in the Embedded Source list.

2. Press the Edit button.

3. Choose the Source item in the Embedded Source dialog.

4. Press the Add button.

5. Type the following code, substituting the file name (without extension) of the Server application
for "Excel."

Channel = DDECLIENT('Excel','System') ! Contact Excel re System topic
IF Channel < 1 ! If no contact made

 RUN('Excel') ! Attempt to start Excel
 Channel = DDECLIENT('Excel','System') ! And try again
ELSE
 RETURN ! Give up if no contact - add error msg!
END

The code example is deliberately simplistic; it would be more efficient to LOOP through the attempt to
contact twice, then warn the end user of the failure.

The code attempts to open a DDE conversation with Excel named as the server. The DDECLIENT
function returns a value corresponding to the channel; it doesn't matter what the channel number is. If it's
less than one, it failed. You must therefore start the server, and try to open the conversation again.

The second parameter of the DDECLIENT function is the DDE "Topic." It tells the server what the DDE
conversation is "about." In most cases, the topic is a file name. In this case, the code names the "System"
topic, which tells Excel the conversation is not regarding a particular document file.

How to Send DDE Commands and Data to a DDE Server
Once the DDE channel is open, you can use the DDE functions to send commands, data, or requests to
the server.

The example code below sends a command to Excel to open a new file and save it under a specified file
name. This is a common DDE task when working with commercial applications. Often, the server
application allows access to "document" functions only when you specify a document name in the
DDECLIENT function. The document name must be a file that already exists.

In this particular case, to execute any "document" actions, such as entering a value in a cell, Excel (and
many other applications) require the DDE channel "topic" to be the name of document. Therefore, if your
application is providing new data it wants the server to save in a new document file, your application:

Opens a conversation about the "System" topic.
Sends a command asking the server to save a document file under a specified name.
Closes the conversation.
Opens a second conversation with the server, this time specifying the newly created file's name

as the topic.
Sends the "unsolicited" (because the server didn't ask for it) data and then tells the DDE Server

(Excel) to execute commands or other requests for data that apply to the file.
Closes the conversation.

The following therefore should execute only if the example code shown in the How to Start a DDE
Conversation topic was successful.
DDEEXECUTE(Channel,'[NEW(1)]') ! Excel's File/New command
The DDEEXECUTE statement takes the DDE channel number as its first parameter, and the command
string as the second. Excel requires you to enclose all DDE commands in square brackets. This
command creates a blank spreadsheet.

The Excel command string enclosed by the square brackets is an Excel macro statement. Excel, and
many other applications allow you to send a macro statement via the DDEEXECUTE statement. In this
particular case, you don't have to know the name of the open Excel file to execute the statement.

Tip: Many commercial applications with their own macro languages allow you to both record
and edit macros. Use the application to make a "dry run" of the actions you need it to
execute, with its macro recorder turned on. Edit the resulting macro, and use the clipboard
to copy each macro statement to your embedded source in the Text Editor. Put each macro
statement in the second parameter of the DDEEXECUTE statement, and you can be
assured of the correct syntax for the DDE command!

2. In the next embedded source line, tell Excel to save the new (blank) sheet under a name that you
specify.

DDEEXECUTE(Channel, '[SAVE.AS("DDE_TEST.XLS",1,"", FALSE,"",FALSE)]')
Knowing the name allows you to close this channel, then open another specifying the file name as the
topic. Note that the Excel command string requires double-quote marks.

3. Terminate the channel started under the "System" topic.
DDECLOSE(Channel) ! Close first DDE channel

Sending Data from Client to Server

To continue the example, to send data to Excel, you need to open another DDE conversation, this time
with the newly created file name as the topic:

1. Open the DDE channel and name the file as the topic.
Channel = DDECLIENT('Excel','DDE_TEST.XLS')!New channel under known filename

To place data in a spreadsheet cell, use the DDEPOKE statement.
DDEPOKE(Channel,'R1C1','999')

Following the successful placement of the value in the spreadsheet, you could then send further Excel
macro statements using DDEEXECUTE. This would allow you to send additional spreadsheet data,
highlight a range, then tell Excel to draw a chart.

How to Customize Procedure Templates
Each procedure template can have multiple default procedures. For example, the Window template can
have more than one default procedure--each with its own window design, pre-populated controls and/or
control templates, and pre-defined local variables.

Default procedures are customized through the Template Registry.

You can also create and modify templates. See How to Modify Templates

1. Choose Setup Template Registry.
The Template Registry lists all registered templates.

2. Highlight the procedure template to customize, then press the Properties button.

The Template Procedure Properties dialog appears.

3. Press the Defaults button.

The Edit Default Procedures dialog appears with a list of the default procedures. All of the procedure
templates in the shipped with this product have one default procedure each.

4. Press the Add button.

5. Provide a name for the new default procedure in the New Procedure dialog, then press OK.
A standard Procedure Properties dialog appears.

6. Edit the procedure as desired, designing a window, adding controls and/or control templates,
adding local variables, etc.

7. Exit by pressing the appropriate OK or Close buttons.

The next time you add a procedure to an application and select the procedure type, you will be prompted
to select the default procedure from which to start.

How to Modify Templates
We do not recommend modifying the templates shipped with this product. Instead, you should create your
own template set, and make any desired modifications to that set.

You can copy any of the template files and include them in your own set. Keep in mind that any #INSERT
statements referencing groups from the Clarion Template Set must be modified to indicate its source. For
example:

#INSERT(%StandardWindowHandling)
should be modified to:

#INSERT(%StandardWindowHandling(Clarion))
Creating a New Template Set

There is only one requirement for the new template set; a #TEMPLATE statement to identify the set for
the template registry. Of course, it also needs to have the specific procedure, code, control, and extension
templates to add to the template registry.

For example, the following code is completely valid as a template set with nothing else added:

Example:
#TEMPLATE(PersonalAddOns,'My personal Template set')
#CODE(ChangeProperty,'Change control property')
 #PROMPT('Control to change',CONTROL),%MyField,REQ
 #PROMPT('Property to change',@S20),%MyProperty,REQ
 #PROMPT('New Value',@S20),%MyValue,REQ
%MyField{%MyProperty} = %'MyValue #<!Change the %Property of %MyField
#!***
#EXTENSION(CommentBlock,'Add a comment block to the procedure'),PROCEDURE
 #PROMPT('Comment Line',@S70),%MyComment,MULTI('Programmer Comments')
#ATSTART
 #FOR(%MyComment)
 !%MyComment
 #ENDFOR
#ENDAT
When you (see also)register this template set, it will appear in the template registry as Class
PersonalAddOns containing the ChangeProperty code template and the CommentBlock extension
template.

Once a template set is registered in the template registry, all its components are available to the
programmer for application development, along with all the components of all other registered template
sets. This allows the programmer to "mix-and-match" template components during development.

For example, the programmer could create a procedure from a procedure template in the standard
Clarion template set, populate it with a control template from a third-party vendor, insert a code template
into an embed point from another third-party vendor, then add an extension template from their own
personally written template set. At source generation time, all these separate components come together
to create a fully functional procedure that performs all the tasks required by the programmer (and nothing
else). This is the real power behind Clarion's Template-oriented programming!

For more information see the Template Language Reference.

How to Register a Template Set
You can register template sets shipped with this product, your own template sets, or third-party vendors'
template sets.

1. Choose Setup Template Registry.
The Template Registry lists all registered templates.

2. Press the Register button.

Select the template (.TPL) file from the standard Open File dialog.

3. Press the OK button.

How do I handle an Error 47
Error 47--Invalid Record Declaration indicates that the application's file declaration does not match the
data file.

To correct the problem, you should convert the file using one of these two conversion methods:

How to convert a file--Generate Source

How to Convert a File (without generating source)

How to Convert a File--Generate Source
If a file's definition needs to be changed and meaningful data exists, follow these steps to convert the file.
This method creates an executable file that you can ship to end users to convert their data files. If you
want to convert a file without creating a file conversion program see How to Convert a File (without
generating source) .

1. Open (load) the dictionary that contains the file to be modified.

2. Copy the data file definition to a new name. To copy a file definition, highlight the file to be copied
in the Files List and press CTRL+C, then press CTRL+V to paste it. You will be prompted to supply a
new name and prefix. (Example - copy Customer to OldCustomer)

An alternative would be to copy the entire dictionary to a new name. You might use this method if there
are multiple files to be converted in one session. Clarion for Windows allows files to be converted from
one dictionary to another.

3. After the file definition has been copied, make any necessary changes (add fields, change the file
driver type, etc.) to the definition with the original name. In our example above, the Customer file
is the file to be modified.

4. Save the Dictionary after file modification and close it.

The Dictionary file must be closed in order to use it for file conversion.

5. Load the file in the Database Manager File utility (File Open , Database Tab)
6. Next, you will be prompted to pick a file to load. For this example, you would select the Customer
file.
The Customer file displays.

7. Choose File File Convert (or press CTRL+V).

The File Convert dialog appears, prompting for the information below:

Source Filename Specifies the file to convert. This defaults to the file opened by the Database
Manager.

Source Dictionary Specifies the dictionary which contains the file definition for the source data file. A
Source Dictionary is not required.

Source Structure Specifies the structure (within the dictionary) which defines the source file. A
Source Structure is not required.

Target Filename Specifies the name of the new file. This defaults to the current file name.

Target Dictionary Specifies the dictionary which contains the file definition to which to convert. A
Target Dictionary is required.

Target Structure Specifies the structure (within the dictionary) of the target file. The Target
Structure is required.

8. Specify the file name for the generated source code of accept the default of CONVERT.CLW.

9. Press the OK button.

This generates a source file. This file can now be compiled and linked to an executable program which
will perform the file conversion.

NOTE: Prior to executing the source conversion program, the current data file loaded into the
Database Manager must be closed.

10. Press the Exit button to close the data file in the Database Manager.

11. Load the conversion program by choosing File Open and selecting the Source tab.
12. Select CONVERT.CLW (or the file name you specified) in the File Open dialog. The conversion
source code is displayed in the Text Editor.

Tip: If you changed the name of a field, edit the source code to make the field assignments.
Otherwise, your data will be lost. See the Language Reference How to Make Field
Assignments.

13. The project file must now be loaded. Choose Project Set. Select the project file. This defaults
to CONVERT.PRJ.

14. Finally, you may now Make and/or Run the conversion program.
After the conversion program runs:

15. Check the file that has just been converted by loading the new (target) file back into the Database
Manager.

After viewing the file converted, some clean up steps are all that's left to do:

16. If the file converted was located in a different directory, you may now copy it into the working
program directory. If you had originally renamed the file and placed it in the same directory, you
may rename it to the original file name at this time.

17. The "old" file definition may now be deleted from the active dictionary, or archived into a backup
dictionary file.

The conversion process is now complete. This example creates CONVERT.EXE which may be shipped to
end users to convert their files.

How to Convert a File (without generating source)
If a file's definition needs to be changed and meaningful data exists, follow these steps to convert the file.
This method does not create an executable file. It converts the data file on your system to a new format. If
you want to create a file conversion program see How to Convert a File--Generate Source

Tip: It is always a good idea to make backup copies of your files before running any
conversion process.

Note: If you change the name of a field, you must generate source code, and edit the source
code to make the field assignments. Otherwise, your data will be lost.

1. Open (load) the dictionary that contains the file to be modified.

2. Modify the data file definition as desired (add fields or keys, change the file driver type, etc.).

3. With the modified file highlighted, choose File Browse to load the data file in the Database
Manager.

A message appears, warning that the physical file structure does not match the dictionary
declaration.

4. Press the Yes button to convert the file.

The conversion process is now complete!

How to Make a Field Assignment
The File Conversion Utility creates source code to convert a file to a different specification. The
conversion is handled automatically except in two cases:

u If a field's label is changed
u If a field is split into two separate fields.

In these cases you must modify the source code to handle the field assignments. The portion of the
source code you'll need to examine is the AssignRecord ROUTINE. This is where field assignments are
made. Here is an example:.

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 CUS:PHONENUMBER = IN::PHONENUMBER

If you examine the source code, you'll see that the first line in the routine clears the record buffer. Nex,t
each field in the output file is assigned the value from the matching field in the input file. However, if the
field labels do not match, no assignment is made. For example, if you change the LastName field to
Surname, a comment statement is generated to alert you of an assignment that may need to be made:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 ! CUS:SURNAME = ''
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 CUS:PHONENUMBER = IN::PHONENUMBER

To assign the values from the original file, edit the line containing the assignment to assign the value of
LastName to the SurName field as shown below:

 CUS:SURNAME = IN::LASTNAME

Writing the assignment statements to split the contents of a field into two fields involves a little more work,
but using string slicing minimizes the effort. For this example, let's assume that you had a single field in
the original file for a phone number and area code. You now want to store the area code in one field and
the phone number in a another. Assuming that these fields are numeric data types, you will need to
temporarily assign the value to a string, then slice the string to assign the desired portion to each new
field. In this example the original PhoneNumber field is a ten-digit number, the area code is a three-digit
number, and the new PhoneNumber field is a seven-digit number. The AssignRecord ROUTINE in the
generated file conversion source code will look like this:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY

 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 ! CUS:AREACODE =
 CUS:PHONENUMBER = IN::PHONENUMBER

Notice that there is an assignment from the original PhoneNumber field to the new PhoneNumber field.
However, since the new field only stores seven digits, you must edit this. To handle the field assignments,
you will create an implicit string variable, assign to it the value of the original PhoneNumber field, then use
string slicing to assign the desired portions to the new fields, as shown below:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 TempPhoneNumber" = IN::PHONENUMBER
 CUS:AREACODE = TempPhoneNumber"[1:3]
 CUS:PHONENUMBER = TempPhoneNumber"[4:10]

For more information on String Slicing, see Implicit Arrays and String Slicing in Chapter 4 of the
Language Reference.

Redirection File
The development environment sets the working directory to the one in which the current .APP or .PRJ file
resides. Additionally, you can tell the Project System to search for additional components at compile/link
time by specifying the directories to search in the Redirection file.

The .RED file is a text file, which you edit with the Text Editor. File types appear on the left; paths on the
right. The syntax for specifying paths is the same as for the DOS PATH command.

The default file types are as follows:

*.DBD Debug information files.

*.DLL Dynamic Link Libraries. The does not refer to the .DLL files used by the IDE;
those are loaded from the current directory, the Windows\System directory, or the
PATH. This refers to .DLL files referenced in the Project Tree.

*.LIB Static link libraries.

*.OBJ Object Files.

Tip: If you wish the Project System to place all .OBJ files in the same directory, no matter
where the project is located (this allows you to "clean up" after your projects more
quickly), specify ".;" as the first directory for the .OBJ entry.

*.RSC Compiled resource files.

*.ICO Icon files.

*.TPL Template libraries.

*.TPW Template source files.

*.TRF The template registry.

. All other files.

QCKSTART.TXA Quick Start script.

QCKSTART.TXD Quick Start script.

Distributing Your Applications
Clarion for Windows 1.5 produces true 16 or 32-bit executable application files which you may distribute
on a royalty-free basis. The 16-bit applications you distribute require Windows 3.10, or 3.11. The 32-bit
applications you distribute require Windows NT 3.x, or WIN95.

Applications created using Clarion for Windows require that the file CWRUNxx.DLL be present on the end
user's system or linked into the executable. The file may reside in the same directory as the application, in
the Windows\System subdirectory, or in a directory referenced in the DOS PATH. TopSpeed recommends
that you install CWRUNxx.DLL to the application directory when you create a setup program for
distributing your applications.

Multiple Clarion for Windows applications may use the same CWRUNxx.DLL file, avoiding the need to
duplicate space on the end users' hard drive. Windows loads CWRUNxx.DLL into memory once for each
running Clarion for Windows executable.

Additionally, you should also distribute any file drivers required by your application. The Database
Drivers section lists all the drivers and their files. Multiple Clarion for Windows applications may use the
same file drivers also saving space on the end users' hard drive.

In Clarion for Windows 1.5, the runtime libraries' .DLL--CWRUN10.DLL--has been replaced with two
versions. CWRUN16.DLL is used for 16-bit applications, and CWRUN32.DLL is used for 32-bit. In
addition you now have the option to link in the runtime libraries and database drivers to create a "one-
piece" executable. Keep in mind that when installing multiple Clarion for Windows applications, keeping
them as external .DLLs saves disk space.

When creating an application using the Application Generator, the Clarion for Windows template library
automatically creates a ship list in a text file. The file has the same file name as the .APP file, and its
extension is .SHP. You can view the file in the Text Editor. The list includes only those files which the
Application Generator knows about. If you name a file in a variable, such as, for example, a .JPG file
which the app places in an IMAGE control via Property Assignment Syntax, it does not appear in the ship
list. You are responsible for checking that the list is complete.

How to Clip and Concatenate Name Fields
First names and last names are often stored in separate fixed length fields. If printed directly from those
fields they usually contain extra spaces and no punctuation, like this: Katie Kelton
E. However, you may want the name to look like this: Kelton, Katie E. Follow these steps to display
names with punctuation and without the extra spaces. This procedure assumes you already have a report
procedure that displays your name fields.

1. Create a Memory Variable to Hold the Concatenated Names.

2. Creata an Expression to Clip and Concatenate the Names.

3. Place the Variable in Your Report.

Create a Memory Variable to Display the Concatenated Names
1. From the Application Tree dialog, highlight your report procedure and press the Properties

button.

2. From the Procedure Properties dialog, press the Data button.

3. From Local Data dialog, press the Insert button to add a local variable.

4. From the New Field Properties dialog, define the new variable as follows.

In the Field Name box, type FullName. This is the name by which we will refer to the variable in our
concatenation formula, and in our report.

The variable should be long enough to hold all the name fields to be concatenated, plus any punctuation
and spaces. For example: if the first name field is 20 characters, the last name field is 20 characters, the
middle name field is 1 character and you plan to use a comma, a period, and a space for punctuation,
then you will need 20 + 20 + 1 + 3 (ie. 44) characters for your new variable.

In the Characters spin box, type 44, then press the OK button, then the Close button to return to the
Procedure Properties dialog.

Create an Expression to Clip and Concatenate the Names
You can create the same result by typing the assignment statement into the "Before Print Detail" embed
point for your procedure. However, we will use the Formula Editor to accomplish our goal.

1. From the Procedure Properties dialog, press the Formulas button.

2. In the Name field, type Name Concatenation.

3. For the Class field, press the ellipsis (...) button and choose Before Print Detail from the
Template Class list, then press the OK button.

The class (also called Formula Class) determines when the expression is evaluated and the
assignment performed.

4. For the Result field, press the ellipsis (...) button, highlight Local Data, highlight FullName (the
variable we defined above), then press Select the button.

5. Press the Functions button, then choose CLIP from the Functions list, then press OK.

6. Press the Data button, highlight your report procedure file, highlight the last name field, then
press Select the button.

7. At the insertion point, type the following code:

&', '&CLIP(FirstNameField)&' '(MiddleInitialField)&'.'

Where FirstNameField is the first name field in your report file, and MiddleInitialField is the initial field in

your report file. Steps 5 - 7 show how you may type your expression, or use the Formula Editor buttons to
choose valid operands and operators.

8. Press the Check button to check your expression syntax.

A green check appears if syntax is correct, otherwise a red X appears.

9. Press OK to exit the Formula Editor; press OK again to exit the Formulas dialog.

Place the Variable in Your Report
1. From the Procedure Properties dialog, press the Report button.

2. Delete all but one of the name fields from your report.

CLICK on the field, then press DELETE.

Tip: Display the Property Toolbox (Option Show Propertybox) to help you identify your
report fields.

3. CLICK on the remaining name field to select it.

If you haven't displayed the Property Toolbox as described in the Tip, do it now.

4. In the Property Toolbox Picture field, type @S44.

5. In the Property Toolbox Use field, type FullName.

6. Resize the field by dragging its handles.

How to Store and Display a Graphic Image with a Memo or Blob Data
Type
Memo and Blob variables are capable of storing large variable length chunks of binary data. This makes
them suitable for storing graphic images. MEMOs are limited to 64K or less. BLOBS have no size limit.
Storing and displaying images with Memo or Blob variables requires the following:

Storing Graphic Images in BLOBs or MEMOs
To store the graphic image into the MEMO or BLOB variable, channel it through an IMAGE control.

That is, assume the image resides in C:\IMAGES\IMAGE.BMP. We need to transfer the .BMP file to a CW
IMAGE control, then transfer from the IMAGE control to the MEMO or BLOB variable.

1. The BLOB or MEMO variable must have the BINARY attribute.

In the Data Dictionary, use the Field Properties dialog's General tab to set the Data Type to MEMO or
BLOB, then check the Binary box.

2. Assign the image file to an IMAGE control.

In the Image Properties dialog, in the File field, use the ellipsis (...) button to name the file containing the
graphic image.

or

Assign the file name with Clarion's property syntax as follows:

?Image1{PROP:Text} = filename

3. Transfer the image from the IMAGE control to the MEMO or BLOB variable using Clarion's
property syntax:

For MEMOs: CON:TheMemo = ?Image1{PROP:ImageBits}

For BLOBs: CON:TheBlob{PROP:Handle} = ?Image1{PROP:ImageBlob}

Displaying Graphic Images from BLOBs or MEMOs
To restore (ie display) the image from a BLOB or MEMO to an IMAGE control, you must properly define
the size of the IMAGE control. The IMAGE control must either be of Default size, or of a fixed size set
after the MEMO or BLOB data is assigned to it.

1. To set the IMAGE control to default size.

In the Image Properties dialog, on the Position tab, check the Default boxes for Height and Width.

2. Use Clarion's property syntax to transfer the MEMO or BLOB data to the IMAGE control.

For MEMOs: ?Image2{PROP:ImageBits} = CON:TheMemo

For BLOBs: ?Image2{PROP:ImageBlob} = CON:TheBlob{PROP:Handle}

3. After the MEMO or BLOB has been assigned to the IMAGE with property syntax, a fixed width
and height may be assigned to the IMAGE Control:
?Image2{PROP:Width} = 92
?Image2{PROP:Height} = 88

The PROPS.APP example in the \CW\EXAMPLES\APPS\PROPERTY directory demonstrates using
property assignments for images.

BrowseBox Control: The Inside Story
This is both a template upgrade guide, and some insider information about some structures used
internally.

Users of CW1.0 will find many new features in CW1.5. One of the greatest areas of change is the
BrowseBox control template. This template has been rewritten to reduce both the amount of code
generated and the amount of time taken to keep the browse active. To do this, it's been necessary to
replace several routines and to change the functionality of others.

When routines and variables are discussed, I've used the value %InstancePrefix in the names of some of
these. The InstancePrefix is an identifier unique to each instance of a control template. BrowseBoxes
have an InstancePrefix of BRWn:, where BRW indicates that the control is a BrowseBox, n represents the
order in which the control or extension template was populated. The first control template populated
would be 1, the fourth, 4. Please note that this number does not represent the first or fourth BrowseBox,
rather the first or fourth control or extension template. The colon is necessary to separate the prefix from
the routine or variable. Therefore, if I mention a routine called %InstancePrefix:SelectSort, you should
look in your code for a routine named (approximately) BRW1::SelectSort.

VIEWs, Filters, and Hot Fields
The 1.5 BrowseBox, Report, Process, FileDrop and FileDropCombo (new) now use the VIEW structure to
control the records read for the BrowseBox. The printed documentation goes into greater detail on the
VIEW structure, but there are a few new implications when using BrowseBox because of the VIEW
structure:

The VIEW structure only retrieves those fields from the file that are built into the VIEW using the
PROJECT statement. Any fields used for EMBEDs and hand-coded FILTERs need to be added to the
VIEWs list of fields to PROJECT. This is done through the Hot Fields tab in the template's properties
screen.

The VIEW structure uses PROP:Filter to filter records. This filter is evaluated through a mechanism
similar to the EVALUATE() command. Because of this, values added to the filter through the Hot Fields
list need to have the "Bind Field" checkbox set.

The VIEW structure uses PROP:Filter to perform range limit optimizations. If you have a string field in a
case insensitive (NOCASE) key, the optimization needs to have both the key field and the limit value
uppercase. For instance, if you have a status field called FIL:Status, with valid values of 'Active' and
'Inactive', and you want to limit the BrowseBox display to records with a value of 'Active', you would code
the filter UPPER(FIL:Status) = 'ACTIVE'. Without this, the VIEW will not only NOT display all of the
records, but it will do it very slowly.

Conditional Displays
One of the big changes is the multi-display capability. CW 1.0 could display a file by a single key only.
1.5 allows you to select, based on condition specified, on any combination of keys, or in record order, and
with any number of filters. Refreshing the browse is based on the use of "Reset Fields", which minimize
the number of redisplays, since the triggering of redisplay is much more selective than the 1.0 method of
setting the ForceRefresh flag to true, then DOing the RefreshWindow routine. The "Reset Fields" can be
unique for each conditional sort.

The %InstancePrefix:SelectSort routine is used to determine which conditional sort order to use, and to
control refresh of the browse. This routine is called whenever the RefreshWindow routine is called. The
internal decision-making code is something like:

Determine the sort criteria to use. If none of the conditions specified are met, use the default browse
criteria.

If the sort order has not changed from the current sort order, check if any of the current sort order's Reset
Fields have changed.

If the sort order has changed, or the reset fields have changed, or ForceRefresh is set, redisplay the
browse.

Locating a Record
In 1.0, the %InstancePrefix:LocateRecord routine used the value returned by POSITION(key), followed by
a combination of values in the record buffer, or records in the browse queue to determine its operation.
This was bad for two reasons. First, the template had to guess what you wanted. Second,
POSITION(key) can be a slow function for some file drivers In 1.5, we move to a more direct method of
determining the operation of %InstancePrefix:LocateRecord

A variable has been declared for each browse, called %InstancePrefix:LocateMode. This variable will be
set to values, represented by the EQUATEd values LocateOnPosition and LocateOnValue. If
%InstancePrefix:LocateMode = LocateOnPosition, the browse will find and highlight the record currently
active in the VIEW, otherwise, the closest record to the one with key values the same as those currently in
the record buffer will be located.

Refreshing a Browse Page
In 1.0, %InstancePrefix:RefreshPage was, like %InstancePrefix:LocateRecord, based on POSITION(key).
In 1.5, we again replace that messaging system with one that requires that %InstancePrefix:RefreshMode
be set to one of a set of values. These values are:

RefreshOnPosition - puts the record active in the VIEW on the top of the browse

RefreshOnQueue - If there's a record in the QUEUE, refreshes the browse, keeping the item in it's
location on the browse, if possible. If there's no record in the QUEUE, rebuilds the first page of the
browse.

RefreshOnTop - Requires that the QUEUE be FREEd. Loads the first page of the browse.

RefreshOnBottom - Requires that the QUEUE be FREEd. Loads the first page of the browse.

RefreshOnCurrent - Used internally only.

Retrieving a record in sequential order
In 1.0, we had two routines, %InstancePrefix:FillForward and %InstancePrefix:FillBackward, which filled
the queue with one record forward or backward in the key. Since most of the code in these two routines
is the same, the routines been replaced with %InstancePrefix:FillRecord. To control whether a record is
read with a NEXT or PREVIOUS, a variable, labelled %InstancePrefix:FillDirection has been declared.
Additionally, as in 1.0, the variable %InstancePrefix:ItemsToFill contains the number of records to retrieve.
If this is assigned a value of FillForward (equated to 2), the routine will read records using NEXT. If
assigned a value of FillBackward, the routine reads using PREVIOUS. This value is NOT cleared when
the routine is completed.

The %InstancePrefix:FillRecord routine has a few additional flags that it uses to make it more general
purpose:

%InstancePrefix:AddQueue - If set to 1 (True), will not add the fetched records to the Browse queue.
This is a trigger, and is reset upon exit from the routine.

%InstancePrefix:ItemsToFill - As mentioned above, this value is set to instruct the routine on how many
records to retrieve. When an error during a read is experienced (which usually indicates that all records
have been read), or when all of the records requested have been read, the routine is terminated. When
control returns to your code that called this routine, you can check the value of
%InstancePrefix:ItemsToFill, and if it has a non-zero value, you know that all of the records you requested
were not available.

Making a NewSelection
In 1.0, it was common to POST(Event:NewSelection,?List) to invoke a redisplay of information. It
happened so often that in some cases the Event was invoked so many times that stack faults occurred.

To prevent this, we've added a routine called %InstancePrefix:PostNewSelection. This routine maintains
an internal flag, and if this flag is not set, the routine sets it, and posts a new selection event. The code
to process this event clears the flag. Please use this routine to post this event, rather than the POST()
function.

Scrolling the BrowseBox
In 1.0, there were six routines to control scrolling. Since most of their functionality was duplicated (up
and down simply called a different routine each), they've been consolidated into three routines. These
routines do their work based on the value of %InstancePrefix:CurrentEvent, which is assigned the value
of the event being handled before calling the routines.

ScrollOne - Scrolls a single record

ScrollPage - Scroll a page of records

ScrollEnd - Displays the first or last page of the BrowseBox

We recommend that you post the appropriate events to the list box rather than use these routines.

How to Display the Sort Field First on a Multi-Key Browse
Clarion's Browse Wizard generates multi-key browses for files with multiple keys. To see records in a
different sort order, the user simply selects a tab with a different key. However, when switching to a new
sort order, the sort column does not automatically appear as the first (or leftmost) column in the list box.

To dynamically shift the sort column to the leftmost position in the list box, follow these steps:

1. Find the FORMAT string for the affected list box and copy it to the clipboard.

In the Application Tree dialog, DOUBLE-CLICK on your browse procedure.

In the Procedure Properties dialog, press the ellipsis (...) button next to the Window button.

On the LIST control declaration statement, highlight the entire FORMAT attribute parameter and choose
Edit Copy to copy it to the clipboard.
Exit! without saving.
2. Paste the FORMAT string into the "Control Event Handling, before generated code; ?CurrentTab;

NewSelection" embed point of the Browse procedure.

Press the Embeds button.

DOUBLE-CLICK on the "Control Event Handling, before generated code; ?CurrentTab; NewSelection"
embed point.

Choose SOURCE from the Select embed type dialog.

When the Text Editor opens, choose Edit Paste.

3. "Chop up" the FORMAT string so there is only one list box column definition per line.

Each column definition begins with the width of the column immediately followed by a justification
letter (L, R, C, or D). If necessary, you can get the widths and justification for each column from
the List Box Formatter.

On each line you need to add enclosing single quotes.

On each line except the last, you need to add a trailing ampersand (&) and pipe (|). The ampersand is
the concatenation operator, and the pipe is the line continuation character.

Your code should look something like this:

'16L|M~Cust Number~@N4@' & |
 '80L|M~Last Name~@S20@' & |
 '80L|M~First Name~@S20@' & |
 '12L|M~Area Code~@S3@' & |
 '32L|M~Phone Number~@S8@' & |
 '32L|M~Description~@S8@'

4. Add explicit QUEUE field numbers to each list box column definition.

Queue numbers are integer constants surrounded by pound (#) signs. The QUEUE field numbers start
with 1 and continue in ascending sequence. Your code should now look something like this:

'16L|M~Cust Number~@N4@#1#' & |
 '80L|M~Last Name~@S20@#2#' & |
 '80L|M~First Name~@S20@#3#' & |
 '12L|M~Area Code~@S3@#4#' & |
 '32L|M~Phone Number~@S8@#5#' & |
 '32L|M~Description~@S8@#6#'

5. Add a CASE structure and property assignment to the embedded source code.

Type ?BROWSE:1{PROP:Format}= before the first column definition. This creates the assignment
statement that formats the list box at run time.

Add a CASE CHOICE(?CurrentTab) statement before the first column definition.

Add an OF 1 statement before the first column definition.

Your code should now look something like this:

CASE CHOICE(?CurrentTab)
OF 1 !Tab1, sorted by Cust Number
 ?BROWSE:1{PROP:FORMAT} ='16L|M~Cust Number~@N4@#1#' & |
 '80L|M~Last Name~@S20@#2#' & |
 '80L|M~First Name~@S20@#3#' & |
 '12L|M~Area Code~@S3@#4#' & |
 '32L|M~Phone Number~@S8@#5#' & |
 '32L|M~Description~@S8@#6#'

6. Duplicate the FORMAT string, with the sort column first, for each OF in the CASE.

You should have a separate OF clause for each tab (sort key) in the browse. Cut and Paste the FORMAT
string for each OF assignment so that the columns appear in the sequence you want them.

Your code should now look something like this:

CASE CHOICE(?CurrentTab)
OF 1 !Tab1, sorted by Cust Number
 ?BROWSE:1{PROP:FORMAT} ='16L|M~Cust Number~@N4@#1#' & |
 '80L|M~Last Name~@S20@#2#' & |
 '80L|M~First Name~@S20@#3#' & |
 '12L|M~Area Code~@S3@#4#' & |
 '32L|M~Phone Number~@S8@#5#' & |
 '32L|M~Description~@S8@#6#'
OF 2 !Tab2, sorted by Last Name
 ?BROWSE:1{PROP:FORMAT} ='80L|M~Last Name~@S20@#2#' & |
 '80L|M~First Name~@S20@#3#' & |
 '16L|M~Cust Number~@N4@#1#' & |
 '12L|M~Area Code~@S3@#4#' & |
 '32L|M~Phone Number~@S8@#5#' & |
 '32L|M~Description~@S8@#6#'
END

In this example, notice that when the user selects tab 2, QUEUE field number #2# becomes the first
column in the FORMAT string, and will be the leftmost column in the list box!

7. Exit! the Text Editor and save your changes.

Clarion Language Enhancements
This portion provides an easy method to jump into the Language Reference to see the syntax changes for
CW 1.5. These include new Controls, new attributes, and other changes to the Clarion Language.

Chapter 2--Program Source Code Format
Field Qualification

FUNCTION and PROCEDURE Prototypes

DLL (set procedure defined externally in .DLL)

PROC (set function called as procedure without warnings)

PRIVATE (set procedure private to a single module)

Passing GROUPs and QUEUEs as Parameters

Chapter 3--Declaring Variables
STRING (fixed-length string)

CSTRING (fixed-length null terminated string)

GROUP (compound data structure)

DIM (set array dimensions)

DLL (set variable defined externally in .DLL)

Chapter 6--Window Structures
Controls
PROGRESS (declare a progress control)

SHEET (declare a group of TAB controls)

TAB (declare a page of a SHEET control)

Attributes
SPREAD (set evenly spaced TAB controls)

TIP (set 'balloon help' text)

VALUE (set RADIO control OPTION USE variable assignment)

WIZARD (set "tabless" SHEET control)

Chapter 7--Window Commands
Window Functions
POPUP (return popup menu selection)

Chapter 9--Reports
REPORT (declare a report structure)

Attributes
PAPER (set report paper size)

Chapter 10--Data Files
BLOB (declare a variable-length memo field)

DLL (set file defined externally in .DLL)

Chapter 12--Memory Queues
QUEUE (declare a memory QUEUE structure)

EXTERNAL (set queue defined externally)

DLL (set queue defined externally in .DLL)

Chapter 13--Miscellaneous Procedures and Functions
DIRECTORY (get file directory)

REJECTCODE (return reject code number)

Appendix C--Properties
Property Assignments

Appendix D--Events
Event Equates

Editor Options Dialog

Click on a TAB to see its help

To personalize your editing environment, customize appearance and cursor behavior with the Editor
Options dialog. To view the dialog, choose Setup {BMC ARROW.BMP} Editor Options. Select the
corresponding tab to set specific Text Editor options.

Insertion

Indent New Line To automatically give a new line the same indention as the previous line, check
this box. This will make your code more readable.

Insert Within Column
When the insertion point is in the middle of a line, ENTER adds a new line after the
current line.

Automatic Word-wrap
To cause automatic line breaks at column 70, check this box.

Split Line at Cursor When this box is checked, ENTER will split the current line at the insertion point
(cursor). The second part of the line will appear on a new line. When this box is
not checked, ENTER inserts a blank line below the current line, without splitting
the current line.

Tab Size To set the default spacing between tabs, enter a number in the Tab Size box.

Block

Automatic Block Delete
To delete the selected text when pasting, check this box. To insert before a
selected block, uncheck the box.

Remove Block On Copy
To delete the selected text when copying, check this box.

Colors
These options allow you to set color choices for twenty-one different Clarion language elements. For
example, make Clarion keywords appear in red, or make equates appear in green.

Select a language or text element in the Color Groups list box, then CLICK on a color selection box. The
sample text shows you how the selected language element will appear in the Text Editor.

Color Groups Highlight the language or text element to receive a color assignment.

Color To assign a color to the selected language element, CLICK on a color selection
box.

Default To assign the default color to the selected language element, check this box.

Custom To reset the custom color for the selected language element, check this box.

Sample Text Shows how the selected language element will appear in the Text Editor.

Enabled To apply the color syntax highlighting to the file types listed in the Source

Extensions box, check this box.

Source Extensions
To specify the file types that color syntax highlighting is applied to, type a list of
file extensions separated by semicolons.

Restore Defaults To assign the default colors to all language and text elements, check this box.

Saving

Make Backup Files
To cause the Text Editor to make a backup file (.BAK) each time you explicitly
save a source file, check this box. The .BAK file contains the source as it was
previously saved.

Prompt for Reload if file changed
To receive a "source.CLW has changed on disk. Do you want to reload?"
message whenever the Text Editor detects such a change, CHECK THIS box.

Automatic Save time (minutes)
Clarion's Automatic Save option saves the current file according to the time
interval you specify.Type the desired number of minutes in this box. The a copy of
the last explicitly saved version of the file is stored in a temporary file and is used
to restore if you cancel the current session and choose not to save.

Application Options Dialog

Click on a TAB to see its help

The Application Options dialog allows you to specify default settings for each new application you
create.

Application

Require Dictionary This options specifies that each new application must have a data dictionary.

Default Dictionary Names a data dictionary file as the default which appears in each new
Application Properties Dialog . You can change to another dictionary before
closing the dialog.

Multi User Development Specifies file management options for multiple developer projects. See the Multi-
Programmer Development appendix in the User's Guide for more information.

Display Repeated Funcs
Specifies the Application Generator displays the names of all functions, as it
encounters them in the source code modules, in the progress box displayed
during code generation.

Procedures per Module
The Procedures per Module spin control specifies the number of procedures
that the Application Generator writes to each source code module. This can affect
compile time when used with Conditional Generation turned on. Specifying one
procedure per module, for example, means that each successive compile
rebuilds only those procedures changed since the last one, and no more. The
down side to this is that it requires more disk space. Generally, a smaller number
is faster.

Populate Main Module This option specifies that the Application Generator writes procedures to the main
source code module. When this option is off, the main module only contains the
MAIN procedure, program global code, internally generated procedures and
functions standard for every application. All other procedures reside in other
file(s).

Import Clash Specifies how the Application Generator handles procedure names from an
imported application file which clash with procedure names already resident. The
drop down list choices are self-explanatory.

Disable Field Prompts Specifies that template-generated field-specific prompts will not display. This
does not disable prompts created by Control Templates.

Application Wizard Check this box to specify the default when creating a new application is to use the
Application Wizard. You can override this choice when creating an application by checking
or unchecking the Application Wizard box in the Application Properties dialog.

Procedure Wizards Check this box to specify the default when creating a new procedure is to use the
appropriate Procedure Wizard. You can override this choice when creating a procedure by
checking or unchecking the Procedure Wizard box in the Select Procedure Type dialog.

Registry

Template Language code can be logically split among many files. Clarion for Windows uses the files to
produce one logical template set for creating applications. The Registry Options are mainly for
programmers who produce their own template files or make modifications to the default templates.

Re-register Changed To automatically re-register your templates when the Application Generator
detects a change, check the Re-register When changed box. This defaults to
"On."

Update Template Chain To automatically update the Template files when making a change in the
Template Registry, check the Update Template Chain box.

Regenerate Deleted To specify the Application Generator should re-generate the .TPL and .TPW files
from REGISTRY.TRF, should the files be deleted, check the Regenerate Deleted
Templates box.

Generation

Conditional Generation This check box specifies that only source code modules changed since the last
make should be compiled.

Debug Generation Specifies a text file for the Application Generator to log events to, and turns
logging on and off. In case of a fatal error by the Application Generator, this log
provides a trace to identify where the problem occurred. You can specify the file
name in the Debug Filename box.

Generation Message Allows to to specify what displays during generation. The choices from the drop
down list are self-explanatory.

Application Properties Dialog
This dialog allows you to create a new application, or edit the "essential" information for an existing .APP
file.

Application File Type a name for the .APP file. When opening the .APP file, the IDE makes the
directory in which the .APP file resides the working directory.

Dictionary File Type the name of the data dictionary file (.DCT). If your application does not
require a dictionary, you can leave it blank. You must, however, uncheck the
Require Dictionary box in the Application Options dialog.

You can press the ellipsis button (...) to locate the dictionary file using the Open
File dialog.

First Procedure Type the name of the first procedure. This is usually called MAIN.

Destination Type Select Executable, Library or Dynamic Link Library.

Help File Optionally type the name of a Windows Help file (.HLP). You do not have to
create the help file beforehand.

You can press the ellipsis button (...) to locate the help file using the Open File
dialog.

Application Template The template controls code generation. You can select the default Clarion
template, or choose a third party template set by pressing the ellipsis button
(...), then choosing from the Select Application Type dialog.

See also:

How to Create a New Application File

Notes:

Create new .APP files only using CW. Do not copy a file (using the DOS command line, or File
Manager) to a new file name, then open it in Clarion for Windows. This prevents the Application
Generator from changing the internal names recorded in the file. If you need to copy and rename an .APP
file, open it, then use the File

 Save As command. (1148)
Application file names, besides being legal DOS names, must also be valid Clarion labels. The

file name, 1MyApp.APP, for example, is illegal because it starts with a number instead of a character.
(1304)

Module Properties Dialog
This dialog allows you to specify settings for an individual source code document file. You must first view
the Application Tree in module view to access this dialog. To do so, you choose View Module View
from the IDE menu. Then press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Module Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

New Procedure Dialog
This dialog allows you to add a new procedure to the Application Tree. Generally, you use this command
to add a source code procedure, which you can then call from Embed Points accessed from other
procedures.

Type a new procedure name in the dialog, then choose from the Select Procedure Type dialog.

Select New Dictionary Dialog
This dialog allows you to change the data dictionary for the current application.

This can be very problematical, since you must take great care to ensure that any files and fields
referenced in any procedures are present in the new dictionary. Additionally, changing pre-formatting for
controls, file relationships and file driver types can introduce more problems.

Therefore, the dialog box contains a warning that there are no guarantees that changing a dictionary file
will work for every application.

To change the dictionary, type a new dictionary file name in the New Dictionary box, or press the ellipsis
button (...), then select a file from the Open File dialog.

Procedure Properties
These dialogs--each is customized according to the procedure template--contain entry boxes in which you
can add a text description for the procedure, or specify its source code module, plus command buttons
which lead to the dialogs which allow you to customize the procedure.

Each procedure has its own custom help page which you can access by pressing the Help button on the
Procedure Porperties dialog. If you are using a third party template, or a template which you wrote
yourself, this help topic will appear.

Therefore, this help page only describes the essential elements of the Procedure Properties dialog; the
controls which each procedure template builds upon.

Clarion's Template language allows the template writer to add controls to the Procedure Properties
dialog. These controls vary from template to template. Since each template performs a different task, the
template writer provides whatever controls and options are necessary to gather input from you, the
developer. Most of your input is stored in template variables (Template Symbols). When generating code,
the Application Generator processes the template language code, and fills in the Template Symbols with
the options you specify. As it does so, it generates your application's source code.

A Procedure Properties dialog could have, for example, a checkbox to specify that an MDI window
should save its position in the .INI file between sessions. Each template adds controls such as these to
the Procedure Properties dialog, to gather choices from you. At code generation time, the Application
Generator evaluates a symbol which stored your choice as to whether you wanted to save the MDI
window position. If the checkbox was marked "yes," the Application Generator processes the template
code containing the executable code to support saving the window position, and writes it to the generated
source code file.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the
dropdown list. By default, the Application Generator names modules by taking the
first five characters of the .APP file name, then adding a three digit number for
each module.

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas) for your procedure, which you can pass to it from a calling procedure.
You must specify the functionality for the parameters in embedded source code.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window.

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by

hand.

Report Press this button to call the Report Formatter to visually design the window.

The ellipsis (...) button next to the Report button allows you to edit the REPORT
structure at the source code level. Clarion for Windows allows you to easily
switch back and forth between editing the report graphically, and editing the
source code that describes it.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension templates, if any are installed on your system. Extension
Templates allow additional functionality through "add-ins" to the Application
Generator.

Controls If any control templates were pre-defined in the current procedure template, or
were in a window or report by you, this button accesses the Action dialog for the
control templates.

Control templates provide "off the rack" controls, such as list boxes, and the code

to maintain them. This allows you to start with a "bare" procedure template, such
as the generic window, and add controls to create your own browse or form
windows.

Edit Procedure Description
Allows you to enter string descriptions for the procedure. Clarion for Windows automatically displays the
short description in certain dialogs, allowing you to quickly recognize the file contents. The long text
description only appears in this dialog box, and holds up to 1000 characters.

The descriptions are solely for your convenience, and have no effect on the application. They´re useful for
situations in which other programmers may pick up your code later, or for when you expect to return to the
project after a long period of time since you last looked at it.

Application Tree Dialog - Procedure View
In this, its default view, the Application Tree dialog displays your procedures in logical call tree, nesting
each procedure under its calling procedure. A procedure is a collection of instructions--Clarion language
statements--which perform a task. The first procedure your application executes is called "Main" by
default.

The tree controls in this dialog illustrate how the procedures branch from "Main" and from each other. This
provides a schematic diagram of your program's logical structure.

The Application Tree shows the procedures you create when you add a menu item, toolbar command, or
an embedded source procedure. Each new procedure is marked "To Do." When you "fill in" its
functionality, the Application Tree dialog replaces the "To Do" with your description.

Global Opens the Global Properties dialog, which allows you to declare, or edit the
declarations of Global data.

The Global Properties dialog also allows you to specify your name as the
program author, specify that your application store settings such as Window size
and position in its own .INI file, and choose the file access modes your
application will utilize when it works with its data files.

Properties Once the procedure appears on the Application Tree, you can define its
procedure type by selecting it, then pressing this button. Choose a procedure
template from the Select Procedure Type dialog.

Once you select a procedure template, you access the other parts of the IDE to
determine its functionality through the Procedure Properties dialog.

Application Tree Dialog - Module View
In module view, the Application Tree dialog displays your procedures according to the source code
document which they reside in. A procedure is a collection of instructions--Clarion language statements--
which perform a task. The first procedure your application executes is called "Main" by default.

The tree controls in this dialog illustrate how the procedures reside in each separate file. Within each,
they branch from each other when parent and child procedures reside in the same file.

The Application Tree shows the procedures you create when you add a menu item, toolbar command, or
an embedded source procedure. Each new procedure is marked "To Do." When you "fill in" its
functionality, the Application Tree dialog replaces the "To Do" with your description.

Global Opens the Global Properties dialog, which allows you to declare, or edit the
declarations of Global data.

The Global Properties dialog also allows you to specify your name as the
program author, specify that your application store settings such as Window size
and position in its own .INI file, and choose the file access modes your
application will utilize when it works with its data files.

Properties Once the procedure appears on the Application Tree, you can define its
procedure type by selecting it, then pressing this button. Choose a procedure
template from the Select Procedure Type dialog.

Once you select a procedure template, you access the other parts of the IDE to
determine its functionality through the Procedure Properties dialog.

Application Tree Dialog - Alphabetic View
In alphabetic view, the Application Tree dialog displays your procedures according to the order of the
procedure names. A procedure is a collection of instructions--Clarion language statements--which perform
a task. The first procedure your application executes is called "Main" by default.

Alphabetic view makes it easier to locate the precise procedure you wish to edit, when your application
includes many procedures. There is also a Find command on the Edit menu, to help you locate the
procedure you want when the Procedure tree is very long.

The Application Tree shows the procedures you create when you add a menu item, toolbar command, or
an embedded source procedure. Each new procedure is marked "To Do." When you "fill in" its
functionality, the Application Tree dialog replaces the "To Do" with your description.

Global Opens the Global Properties dialog, which allows you to declare, or edit the
declarations of Global data.

The Global Properties dialog also allows you to specify your name as the
program author, specify that your application store settings such as Window size
and position in its own .INI file, and choose the file access modes your
application will utilize when it works with its data files.

Properties Once the procedure appears on the Application Tree, you can define its
procedure type by selecting it, then pressing this button. Choose a procedure
template from the Select Procedure Type dialog.

Once you select a procedure template, you access the other parts of the IDE to
determine its functionality through the Procedure Properties dialog.

Application Tree Dialog - Template Type View
In template type view, the Application Tree dialog groups all your procedures according to template type.
A procedure is a collection of instructions--Clarion language statements--which perform a task. The first
procedure your application executes is called "Main" by default.

The Application Tree shows the procedures you create when you add a menu item, toolbar command, or
an embedded source procedure. Each new procedure is marked "To Do." When you "fill in" its
functionality, the Application Tree dialog replaces the "To Do" with your description.

Global Opens the Global Properties dialog, which allows you to declare, or edit the
declarations of Global data.

The Global Properties dialog also allows you to specify your name as the
program author, specify that your application store settings such as Window size
and position in its own .INI file, and choose the file access modes your
application will utilize when it works with its data files.

Properties Once the procedure appears on the Application Tree, you can define its
procedure type by selecting it, then pressing this button. Choose a procedure
template from the Select Procedure Type dialog.

Once you select a procedure template, you access the other parts of the IDE to
determine its functionality through the Procedure Properties dialog.

Select Default Dialog
If a procedure template has more than one WINDOW or REPORT structure defined, when you press the
Window or Report buttons in its Procedure Properties dialog, this dialog appears.

Select the window or report you wish to use, then press the OK button.

Select Parent Instance Dialog
If a control template needs to attach itself to another, and there is more than one "candidate" to attach to,
this dialog appears and allows you to specify which "candidate."

Select the control template you wish to associate, then press the Select button.

Select Destination Module Dialog

This dialog allows you to manually move a procedure from one module (source code document) to
another. Select a module from the list, then press the Select button to move it.

Select Items to Import Dialog
This dialog allows you to choose a procedure from another .APP file to import into your current
application.

You can select an item by DOUBLE-CLICKING on it. A check mark appears to indicate the item is selected.
Select additional items by DOUBLE-CLICKING. De-select an item by DOUBLE-CLICKING a previously selected
item.

When your selections are made, press the Select button to import them.

Select Items to Export as Text Dialog
This dialog allows you to choose a procedure from the current .APP file, then export it to a .TXA file for
incorporation into another .APP file.

You can select an item by DOUBLE-CLICKING on it. A check mark appears to indicate the item is selected.
Select additional items by DOUBLE-CLICKING. De-select an item by DOUBLE-CLICKING a previously selected
item.

When your selections are made, press the Select button to export them.

Edit Extensions Dialog
This dialog allows you to access the properties dialog for an extension template associated with the
current procedure.

In cases where "extra" prompts or controls do not default to the Procedure Properties dialog, you can
access them through this dialog.

Select an extension template from the list, then press the Properties button.

Edit Control Templates Dialog
This dialog allows you to access the prompts dialog for an control template associated with the current
procedure.

This is equivalent to selecting the control template in the Window Formatter, then selecting Actions. If,
however, additional prompts from field templates, such as the actions for a button when pressed, apply,
those are only available through the Window Formatter.

Select a control template from the list, then press the Properties button.

Embedded Source Dialog
This dialog allows you to access Embed points from the Procedure Properties dialog. You can limit the list
displayed by selecting the Filled Embeds tab.

As you add procedures to your application, the Application Generator incorporates the default procedure
definitions from the registry into the .APP file. It then incorporates the customizations you make to the
procedures. At code generation time, it again uses the template registry, this time processing and
converting the template symbols to generated executable source code, including all customizations.

The Application Generator thus handles much of the "dirty work" of building procedures from groups of
executable statements. Typically, you only need to embed executable statements at key points within the
procedure.

By adding embedded source code to a procedure, you gain powerful customization capability. You can
specify or create code to execute before, during and after the procedure. You can write your own code, or
follow the code template prompts which help write the code for you. The Application Generator adds your
code to the code it generates, at precisely the point at which you specify you want to place it.

The procedure templates determine the basic points within the generated source code for these embed
points. For example, any procedure with a window includes points for embedding code immediately
before, and immediately after opening the window.

This dialog lists all the available embed points, as defined by the procedure. Following the button
explanations, you'll find sample generated code below. Each embed point, as defined in the generic
window procedure, appears as a comment in the code.

Tip: If you're unsure at what point in generated code your embedded source will execute, add a
source code embed consisting only of a comment--such as the "name" of the embed
point. Generate the code, then examine the source code file. It will indicate exactly where
the embedded source code will execute.

These buttons appear in this dialog:

Add Opens the Select Embed Type dialog, which allows you to add handwritten
source code, call a procedure, and/or choose a code template.

Properties Allows you to edit the embedded code. If it is hand written code, then the Text
Editor appears. If it's a code template, the prompts dialog for the code template
appears.

Delete Allows you to delete embedded code you previously added.

Up Moves the embedded code item up above another. Each executes in the order
they appear at an embed point.

Down Moves the embedded code item down below another. Each executes in the order
they appear at an embed point.

See also:

How to Add and Customize a Procedure

How to Add Embedded Source Code

Edit Default Procedures Dialog
The template registry allows for multiple starting points for a procedure template. For example, you could
have two browses, one of which you wish to use most of the time, and the other, some of the time.

This dialog allows you to set the default. It also allows you to add an alternate procedure.

Add Allows you to name the alternate, then set its properties in the Procedure
Properties dialog.

Properties Opens the Procedure Properties dialog for the selected procedure.

Delete Deletes the selected procedure.

Template Registry Dialog
Template files (*.TPL) drive the Application Generator. Each procedure template contains generic or
"model" code. The templates are interactive--they process the information you specify when you design
the application within the IDE. Clarion evaluates the template file twice:

Before creating your application, Clarion pre-processes the template file and stores the
information in the REGISTRY.TRF file. Pre-processing occurs only when the Application Generator
detects a new or changed template.

When it pre-processes the template file, the Application Generator stores a list of all the
information you must provide each procedure. It also determines the points at which you can
embed your own Clarion source code to customize a procedure. The registry file contains the
default windows, dialogs, menus, report designs, default data, and formulas. In the design
process, you customize these defaults.

At code generation time, the Application Generator evaluates the information you provide in the
design process--from the data dictionary, and the .APP file--then processes it along with the template
language statements and symbols in the REGISTRY.TRF file to generate your source code.
Each template can contain multiple types of procedure templates from which you select to create the
procedures in your application. Before you can use a template it must be in the Template Registry.

The Template Registry dialog provides command buttons for file maintenance options for the registry:

Register Calls the Open File dialog, which allows you to register a template (.TPL) file.

UnRegister This button deletes the currently highlighted template class from REGISTRY.TRF.

Enable This button enables the currently highlighted template class or procedure (if you
had previously disabled it).

Disable This button disables the currently highlighted template class or procedure, which
makes it unavailable to your application.

ReGenerate This button regenerates the .TPL file for the currently highlighted template class.

The Template Registry works two ways. Besides allowing you to add procedures
to your applications, you can customize the procedures in the template. For
example, you can add more default window types to the a template. See the
following button description, Properties, for instructions on how to edit the
template.

When you change the properties for the your template, the changes are stored in
your REGISTRY.TRF file. The ReGenerate button reads the file, then rewrites
the .TPL file which contained the original template language code. This allows
you to customize a template, then give a copy of the changed .TPL file to another
programmer to register.

Properties This button accesses the Template Procedure dialog. Press the Defaults button
to edit default global data or structures contained in the procedure template.

View Definition This button displays the Template code (the .TPL) in a text window. You may not
edit the code in this window.

If the currently highlighted item in the Template Registry tree is a module, the text
window opens to the first line of the MODULE definition. If a procedure, it opens
to the first line of the PROCEDURE.

Control Prompts Dialogs
The Clarion template language allows the template author to create custom dialogs. When no custom
help is available for a control's Actions, this help topic appears.

To access help for a template-created dialog, press the Help button instead of F1.

The name of the dialog takes the form "Prompts for" plus the field equate label, as in "Prompts for ?
MyButton." The following sections will substitute the control type for the field equate label, helping
you to find the section you need more easily.

Project Tree Dialog
The Project Tree dialog organizes all the components, and provides access to the dialogs that choose
additional options.

The Project file tracks all the components that make up the final executable file. It also sets the compiler
options ranging from whether to include debug code or not, to setting a preferred optimization method.

If you use the Application Generator to create your source code, the only thing you will probably use the
Project System for is to set debugging options.

Tree List The Tree List itemizes the file level elements which comprise your project,
including source code files, file drivers, other projects to compile, external
libraries and resources, and other programs to execute as part of the make
process.

Properties Calls a dialog allowing you to specify compile options for the selected item, or the
entire project. The particular dialog which appears depends on the currently
selected item.

When you select a "folder level" item (such the project itself), the Global Options
dialog appears. This allows you to set compile options for the project.

When you select a source code file, the Compile Options dialog appears. This
provides the same options as the Global Options dialog; however, the selections
apply only to the selected file.

Add File Calls the Open File dialog, allowing you to add a file, such as a source code file,
below the currently selected item.

By inserting a .PRJ file after the Projects to Include item, you can specify that
the other project should be built in the course of building the current project.

For hand coded applications, you can insert new .CLW files after the External
Source Files item.

By inserting a.LIB file after the Library and Object Files item, you specify that
the Project System should link it in to the project. By inserting a .DLL file, you
specify that the application dynamically calls external functions from the file at run
time. See also: Using DLLs not created in Clarion for Windows

You can also add external resources, such as .CUR, or .ICO files if they were not
explicitly named as attributes in your source code. For example, if you specify
variable naming a bitmap file in an IMAGE control (such as !MyBMP.BMP), you
can link it in by adding it to the Project Tree below this item.

By inserting an executable file (*.exe, *.com, *.bat, or *.pif) after the Programs to
execute item, you can run another application upon completion of the compile.
This can be useful, for example, in network operations where you need to remap
a drive after the compile, but before running the compiled application.

Remove File Allows you to remove the currently selected item from the Project Tree. This does
not physically remove the file from disk.

Edit For hand-coded projects, if a source code file is selected, calls the Text Editor
and loads it into a source code document window.

Make Statistics Dialog
This dialog displays the creation statistics of your latest compile.

For each object file created, it lists the object file name, source code file, size of the code and data
segments, and the current date for each.

New Project File Dialog
This dialog allows you to type in the basic information the Project System needs to create a new project
file (.PRJ) for you.

Project Title Allows you to type in a short text description which displays at the top of the Tree
List in the Project Tree dialog.

Main File Type in (or select with the Open File dialog after pressing the ellipsis button) the
name of the main source code file.

Target File Type in (or select with the Open File dialog after pressing the ellipsis button) the
name of the target file (such as MyFile.EXE).

Project File Type in (or select with the Open File dialog after pressing the ellipsis button) the
name of the project file.

If you want to specify a working directory other than the one with which you
started up the development environment, navigate the directory tree using the
Open File dialog. When you've selected the directory you wish, type the project
file name in the File Name box in the Open File dialog.

The Project File must be in the same directory as the main source file.

Target Type Specify .EXE, .LIB or .DLL from the drop down list. The target file name will
automatically add the correct extension.

Global Options /Compile Options Dialogs

Click on a TAB to see its help

These dialogs allow you to set compile options for the project, or its components. The options vary
according to the item selected in the Project Tree dialog at the time you press the Properties button.

When you select a "folder level" item (such the project itself), the Global Options dialog appears. This
allows you to set compile options for the project.

When you select a source code file, the Compile Options dialog appears. This provides the same
options as the Global Options dialog; however, the selections apply only to the selected file. The
Compile Options dialog also does not allow you to select the Build Mode, since that applies to the entire
project.

The Global Options and Compile Options dialog contain the following options.

Global

Title A short text description of the project. The Project System will list the description
next to the Project name in the Project Tree list.

Target Type Specify the type of executable file: choose .EXE, .LIB, or .DLL from the Target
Type drop down list.

Target OS Identify the type of operating system the application will run under: choose
Windows 16 bit or Windows 32 bit from the Target OS drop down list.

Note: You can compile and link 32-bit executables with Windows 3.1 if you have Win32S
installed, but you must have Windows 95 or Windows NT to run them.

Memory Model Not implemented in this release, accept the default.

Run-Time Library Specifies how the runtime library is called by the target file: choose Standalone,
Local, or External from the Run-Time Library drop down list.

Standalone Uses the CWRUNxx.DLL runtime library (and
database driver(s) .DLLs). In 16-Bit mode, it is
called CWRUN16.DLL; in 32-bit mode it is called
CWRUN32.DLL.

Local Links the runtime library and any database drivers
into your executable using Smart Method Linking
(only the necessary portions are linked in). This
creates a "one-piece" executable.

External Specifies that another External DLL contains the
runtime libraries and database drivers. The calls to
this DLL must be exported.

Build Release System
To create an executable for release, check this box. To create an executable for
use with the Debugger, uncheck this box.

Debug

Debug Mode Specifies the level of debug capability, choose Off, Min, or Full from the Mode
drop down list.

Line Numbers Builds line numbers into the object file. This is not necessary for the Clarion
debugger, but may be helpful when using other debuggers.

Stack Overflow Enables stack overflow warnings at runtime.

NIL-Pointer Allows compiler warnings when dereferencing null pointers.

Array Index Enables "array index larger than the array size" warnings at runtime.

Optimize

CPU Specify optimization by microprocessor type: choose from 286, 386, 486, or
Pentium.

Optimize for Speed
To favor program speed over creating a smaller executable file, check the
Optimize for Speed box.

Defines

Defines To define a switch, or switches, for use with the COMPILE and OMIT compiler
directives, type a list of valid Clarion labels separated by commas. Each label
defines a separate switch.

For example, type 'Demo' in the Defines field. The Project System will create a
switch called Demo and turn it "on." Now you can use the switch in conditional
COMPILE and OMIT statements within your source code. For example:

COMPILE('END COMPILE',DEMO=ON)
IF TODAY() > FirstRunDate + 30
#ReturnCode = MESSAGE('Beta period expired')
RETURN

END
END COMPILE
Link

Create Map File Creates a map file, which contains information about segment sizes and public
functions. The map file may be used with third party debuggers.

Pack Segments To pack the data and program segments in the .EXE file, check this box.

Stack Size To specify the stack size, type a value in Kilobytes in the Stack Size field.

Create New Project
This dialog allows you to create a new project file. Mark the radio button for the type of project you wish to
create.

Quick Start Calls the Quick Start Wizard.

Application Generator Calls the Application Properties dialog.

Hand Coded Project Calls the New Project dialog.

Working Directory Allows you to specify the directory where the new project will be created.

Formula Dialog
This dialog lists all formulas already created for a procedure, along with their template classes. It allows
you to add or edit formulas.

If any formulas already exist for the procedure, this dialog appears when you push the Formulas button in
the Procedure Properties dialog.

Select Loads the currently selected formula into the Formula Editor for editing.

New Loads the Formula Editor, ready to create a new formula.

Delete Deletes the currently selected formula.

Formula Lists all existing formulas within the procedure.

Class Lists the template class associated with the formula. A formula's class determines
when its calculation is performed. Each template has its own set of classes. For
example, in the Form Procedure Template there is a class called "After Lookups"
which tells the Application Generator to compute the formula after all lookups to
secondary files are completed for the procedure.

Description A short text description of the formula.

See also:

How to Create a Simple Assignment Expression

How to Create a Complex Assignment Expression

Formula Editor Dialog
The Formula Editor dialog provides access to fields defined in the file schematic, as well as global or
local variables, and facilitates creating syntactically correct expressions.
To create an expression, you press buttons to add components to the Statement line. You can also type
in your expression, and check the syntax upon completion.

Name A descriptive label for the function.

Class A formula's class determines when its calculation is performed. Each template
has its own set of classes. For example, in the Form Procedure Template there is
a class called "After Lookups" which tells the Application Generator to compute
the formula after all lookups to secondary files are completed for the procedure.

Press the ellipsis (...) button next to the field to view the list of available template
classes in the Template Classes dialog.

Description A short text description for the formula.

Result The variable to which the value of the expression is assigned at run time.

Press the ellipsis (...) button next to the field to view the File Schematic
Definition dialog, in which you can select a previously defined variable.

Statement The actual expression under construction.

Check Tests and validates the expression under construction. A check box appears if the
expression is syntactically correct. An "X" appears if not.

Information Describes the currently selected component in the Statements box.

Operators Provides buttons for inserting logical and bitwise operators into the expression.
You can also type them in directly.

Data Accesses the File Schematic Definition dialog, so that you can utilize a
previously defined variable or field as an operand within the expression.

Functions Access a list of built-in Clarion functions in the Functions dialog.

User Accesses user defined functions within the application under development,
displaying them in the User Function dialog.

Conditionals Accesses the Conditional Dialog, which allows you to create a conditional
expression.

See also:

See also:

How to Create a Simple Assignment Expression

How to Create a Complex Assignment Expression

Conditional Dialog
A conditional field is a computed field with multiple possible expressions. There are two types of
conditional fields--IF structures and CASE structures. The assignment statement executed depends on
the evaluation of the IF or CASE condition. For example, an IF structure conditional field called Tax
could be 0 if Taxable is FALSE, or Price times TaxRate if Taxable is TRUE.

The Formula Editor allows you to create a conditional expression whose result can then be assigned to a
variable. Name your conditional formula in the Formula Editor dialog, then press the Conditionals
button to open this dialog.
Each portion of the expression is edited separately. The components appear in the Structure list in the
lower portion of the dialog box. Select a component, then edit it in the Statement box. You can add and/or
nest IF and CASE structures by pressing the IF THEN and CASE OF buttons.

Statement A currently selected component (displayed in the Structure list) of the actual
expression under construction.

Information Describes the currently selected component in the Statements box.

Check Tests and validates currently selected component of the expression under
construction. A check box appears if it is syntactically correct. An "X" appears if
not.

Accept Adds the currently selected component of the expression to the Structure list.

Structure Lists the components of the expression in a hierarchical list. Each item selected
can be edited separately.

Operators Provides buttons for inserting logical and bitwise operators into the expression.
You can also type them in directly.

Data Accesses the File Schematic Definition dialog, so that you can utilize a
previously defined variable or field as an operand within the expression.

Functions Access a list of built-in Clarion functions in the Functions dialog.

User Accesses user defined functions within the application under development,
displaying them in the User Function dialog.

IF THEN Adds and/or nests and IF THEN structure to the expression.

CASE OF Adds and/or nests a CASE OF structure to the expression.

See Also:

See also:

How to Create a Simple Assignment Expression

How to Create a Complex Assignment Expression

Template Classes

Procedure Setup --Upon Entry into the Procedure
This point occurs immediately after the CODE statement, allowing you to initialize values upon
entering a procedure.

Before Lookups--Refresh Window ROUTINE, before lookups
This occurs before any lookups to related records, allowing you to prime any key values needed
to perform the lookups.

After Lookups--Refresh Window ROUTINE, after lookups
This occurs immediately after looking up related records, allowing you to use values retrieved
from related records in your computation.

Procedure Exit--Before Leaving the Procedure
This allows you to assign values before returning to the calling procedure.

Prime Fields--Prime Fields of the Primary File record at beginning of Insert
Available when a Save Button control template is used, this allows you to pre-assign values to
fields when inserting a new record.

Before Filter Check--In Validate Record ROUTINE, Before Filter Code
Available when a BrowseBox control template is used, this allows you to create a formula to be
used in the filter expression.

Before Range Check--In Validate Record ROUTINE, Before Range Limit Code
Available when a BrowseBox control template is used, this allows you to assign values before
range limits checks are made.

Format Browse--Format a variable in the Browse Box
Available when a BrowseBox control template is used, this allows you to compute values to
display in the list box.

Before Print Detail--Before Printing Report Detail
Available only when the Report template is used, this allows you to compute values before a
sending a detail structure to a report.

Quick Start Wizard and Quick Load Wizard
Using the Quick Start Wizard, you can create a data dictionary and a working application with no coding
required.

Simply define a data file, and the Quick Start Wizard creates a complete Windows application--in about
five minutes if you're a fast typist! Your application has a form procedure for updating the file, and as
many view windows and reports as the data file has keys.

Just define the fields for a single file. For each field, you provide a name, display format picture, and key
information. This creates a data dictionary. The Quick Start Wizard creates the application based on this
dictionary. Once you've specified all options, the OK button generates the .APP file, and loads the
procedures into the Application Tree dialog.

The Quick Load Wizard is similar to the Quick Start Wizard; the only difference is that its function is
exclusively to create a data file definition as an addition to an existing data dictionary. After creating the
file definition, you can use one of the Procedure Wizards to create procedures using the file.

You can call the Quick Load Wizard by pressing the Add File button in the Dictionary dialog. Once
you've specified all the options, the OK button adds a new file definition to the Dictionary dialog,
complete with Field/Key Definitions.

Application Name Type a legal DOS file name for the .APP file. The Quick Start Wizard will use the
same file name (with the .DCT extension) for the data dictionary file.

Optionally press the ellipsis button (...) to change the directory, and type a file
name in the Open File dialog box. The working directory, in which all source code
files will be generated, depends on where the .APP file resides.

Because the Quick Load Wizard does not create the .APP file, this control is not
present in the Quick Load Wizard.

Data File Name Type a legal DOS file name (no extension necessary) for the data file.

Prefix This box automatically fills in with the first three letters of the name of the data file
when you TAB away from the Data File Name box. Optionally specify up to three
letters of your choice in this field.

The prefix allows your application to distinguish between similar variable names
occurring in different file structures. A field called Invoice may exist in one data
file called Orders and another called Sales. By establishing a unique prefix for
Orders (ORD) and Sales (SAL), the application may distinguish the two fields as
ORD:INVOICE and SAL:INVOICE.

File Driver Specify the data file type. When using the Application Generator, Clarion for
Windows automatically links in the correct database file driver library. See the
Database Drivers topic for a discussion of the relative advantages of each driver.

Remember that individual file drivers may vary in their support of some of the
attributes which you add to the FILE structure in this dialog box.

Field Name To name each field, type a valid Clarion label in the Name field. Valid field names
may vary slightly according to the file driver.

The Quick Start Wizard allows you to name each field, one by one, by pressing
the DOWN ARROW to add a new item to the list. Before naming the next field,
specify the Picture and Key options for the current key.

Picture Specify a default picture token by typing it in the Picture field. The picture token,
together with the selected File Driver, determine the data type which the Quick
Start Wizard uses for the field. When the Application Generator creates window
and report controls for the field, this also serves as the default picture for the
control.

The Quick Start Wizard allows you to name each field, one by one, by pressing
the DOWN ARROW to add a new item to the list. Before naming the next field,
specify the Key option for the current key.

Key This specifies whether to create a key using this field as a component, and if so,
the type of key. By specifying Unique, your application will ensure that each
record has a distinct number. Duplicate specifies a key that allows more than
one record with the same value in the key component.

The Quick Start Wizard creates a multi-keyed browse procedure and reports for
every key you specify.

The Quick Start Wizard allows you to name each field, one by one, by pressing
the down arrow to add a new item to the list. Press the DOWN ARROW, or TAB, to
define the next field.

Insert This button allows you to insert a new, blank field, above the currently selected
field.

Delete This button allows you to delete the currently selected field.

Move Up This button allows you to move the currently selected field up one position in the
fields list.

Move Down This button allows you to move the currently selected field down one position in
the fields list

Pick File Dialog
The Pick dialog is a specialized Most Recently Used Files list. As you begin using Clarion for multiple
projects, you'll appreciate this dialog because it quickly locates the files you need for any given project.

The Database Manager's Pick dialog lists the data files most recently opened for "browsing."

When you choose any of these options, a pick list dialog appears, listing up to twenty of the most recently
used files of that type:

The Pick dialog provides the following buttons:

Select Opens the currently selected file.

Remove Removes the currently selected file from the Pick list.

New Allows you to create a file.

Open Allows you to open a file not on the Pick list.

Type Allows you to change the type of files listed in the Pick dialog.

Field Picture Dialog
This dialog allows you to specify a new picture token for the currently selected field.

This reformats the way the data displays on screen. This does not alter the data in any way, only the
manner in which it is displayed.

Justify Dialog
This dialog allows you to specify a new justification style for the currently selected field. This reformats the
way the data displays on screen.

Choose the style from the drop down list. Depending upon the field selected, you may choose from Left,
Center, Right and Decimal. This does not alter the data in any way, only the manner in which it is
displayed.

Reformat Fields Dialog
This dialog allows you to change the field order in the window, and to hide or unhide fields from view.

The Shown list, on the left, lists the fields in the current view. the Hidden list, on the right, shows fields
not in the view. After selecting the fields to hide, show, or move, then pressing the OK button, the view
window displays the fields you want, in the order you want.

Up Moves the selected field one position up the Shown list. This rearranges the view
window, moving the field one column left.

Down Moves the selected field one position down the Shown list. This rearranges the
view window, moving the field one column left.

Hide All Hides all fields, moving them from the Shown list to the Hidden list.

Show Moves the selected field from the Hidden list to the Shown list.

Show All Moves all fields in the Hidden list to the Shown list.

Query by Example Dialog
This dialog allows you to filter the data file, then display only the records that meet the criteria you specify
by entering example values or expressions in this dialog.

Type the example value in the list box at the top of the dialog, in the column you wish to test. For
example, if you want to show all the records where the value of the "Apples" field equals "1," type "1"
directly below the "Apples" column header.

To create a query that has the effect of using the AND operator, type a second test value in another field
in the same row as the first test value. If, for example, you type "2" directly below the "Cherries" column
header, you show all records where the values of the "Apples" field equals "1," and the "Cherries" field
equals "2."

To create a query that has the effect of using the OR operator, type a second test value in another row. If
for example, you type "3" in the "Apples" column, one row below the "1" in the first query (with no value
specified for "Cherries"), you show all records where the values of the "Apples" field equals "1" or "3."

The actual filter expression displays in the group box below the listbox as you enter values or logical
expressions in the listbox. For example, to find all records with an ID number between 10 and 100, with
a last name of Smith or Smythe, you create a query:

IDNumber FirstName LastName

>10&<100 ='Smith'

>10&<100 ='Smythe'

Use the ampersand character (&) to represent the AND operator and the vertical bar (|) to represent the
OR operator when used in the same field. The example above can also be represented in this fashion:

IDNumber FirstName LastName

>10&<100 ='Smith' | ='Smythe'

Both examples produce a filter expression of (IDNumber > 10 OR IDNumber < 100) AND (LastName =
'Smith' OR LastName = 'Smythe'). The expression displays in the Filter Expression group box.

Tip: Although the expression created in a query is not optimized, the runtime evaluator
performs its own optimization.

Press the OK button to execute the query and display the filtered records in the view window.

Send Driver String Dialog
This allows you to execute a SEND command to the file driver. Type the driver string in the edit box, and
press OK.

See Database Drivers for complete information on the SEND commands for each driver.

Edit Memo Dialog
This dialog allows you to edit a memo in ASCII Text. If the file has more than one memo field, you must
first select the memo you wish to edit from a list box.

Edit the memo in the text box, then press the OK button to return to the view window.

Hex Edit Memo Dialog
This dialog allows you to edit a memo in Hexadecimal format. This is necessary for editing binary format
memos. If the file has more than one memo field, you must first select the memo you wish to edit from a
list box.

Each character value appears in Hexadecimal format in its own edit box inside the list box. CLICK on the
character you wish to change, and type in a new value.

Press the OK button to return to the view window.

Export File Dialog
This dialog allows you to save a FILE definition for the current data file. You can copy the definition into
your source code.

File Label Type a valid Clarion label for the FILE structure.

Source Filename Type a DOS file name to save the definition to.

File Convert Dialog
This dialog allows you to convert the records in an existing data file to a new file format. When you
modify a data dictionary and application, you can use the conversion utility to convert your existing data to
the modified format.

The method you use to call the file conversion utility affects its behavior. If you open the converter through
the Dictionary Editor (with the appropriate .DCT file open) the converter uses all the information in the
dictionary. If start you open a file from any other area, only the information stored in the file header is
available. This offers maximum flexibility--allowing you to browse a file without the need for a .DCT.

The information stored in a file header varies according to the file driver.

There are two methods of converting a file--immediate conversion and Generate Source. Immediate
conversion converts the file once. Generate Source creates a source code file, allowing you to make any
desired modifications before compiling. Generating and compiling source also creates an executable file
that you can ship to end users.

Before conversion, the utility makes backup copies of the data file and its associated index and memo
files. If the conversion process is interrupted, these backup files are renamed to their original names. If
you specify a target filename that differs from the original, then the original files are not renamed and are
left in place.

The items you specify in this dialog's entry fields controls the conversion.

Source Filename Specifies the file to convert. This defaults to the file opened by the Database
Manager.

Source Dictionary Specifies the dictionary which contains the file definition for the source data file. If
the file conversion utility was invoked from a data dictionary, this defaults to the
current dictionary. A Source Dictionary is not required.

Source Structure Specifies the structure (within the dictionary) which defines the source file. If the
file conversion utility was invoked from a data dictionary, this defaults to the
current file definition. A Source Structure is not required.

Target Filename Specifies the name of the new file. This defaults to the current filename.

Target Dictionary Specifies the dictionary which contains the file definition to which to convert. A
Target Dictionary is required.

Target Structure Specifies the structure (within the dictionary) of the target file. The Target
Structure is required.

Generated Source The filename for the source code which will create an executable file to change
the database. When converting a file, if you want to make any field assignments
edit the source code before compiling and executing.

Tip: If you change the name of a field, generate source code, and edit the source code to
make the field assignments. Otherwise, your data will be lost. See How to Make a Field
Assignment .

For immediate file conversion, without generating source code, see How to Convert a File (without
generating source) .

Select File Order Dialog
Once a file is open, you can change the sort order by specifying a different key. This dialog displays a list
of available keys, and allows you to change the active key.

Select the key which matches the desired sort order (or Record Order) from the key list, then press the
OK button.

The file is displayed in the selected sort order, and ready for any Database Manager operation.

File Statistics Dialog
This dialog allows you to examine the file statistics, but not to change them.

Filename The DOS filename and PATH for the data file.

File Driver The database driver the file uses.

File Attributes CREATE, RECLAIM, and ENCRYPT attributes.

Record Length The size of each record.

Total Number Records The total number of records in the file (including deleted records).

Number Active Records The total number of active records.

Deleted Records The total number of deleted records.

Fields and Field Layout The number of fields in the file. Pressing the ellipsis (...) button displays the field
layout.

Keys and Components The number of keys in the file. Pressing the ellipsis (...) button displays the key
components.

Memos and Layout The number of memos in the file. Pressing the ellipsis (...) button displays the
memo field layout.

Indexes & Components The number of indexes in the file. Pressing the ellipsis (...) button displays the
index components.

Field List Dialog
This dialog allows you view the basic data for all fields in the data file. You can view the data, but not
change it.

The information includes the field label, data type, size, digits, places, and whether the OVER attribute is
specified.

Search Dialog
This dialog allows you to search for the first record containing a value you specify. You may limit the
search to one field, or all fields.

Search Type the search value.

Exact match Searches for values that match the specified search string exactly.

Starts With Searches for values that begin with the specified search string.

Contains Searches for values that contain the specified search string.

Ends With Searches for values that end with the specified search string.

Case Sensitive Specifies case sensitive search testing.

All Fields Specifies searching all fields in the data file. If not specified, the search is on the
currently selected field.

Locate Dialog
This dialog allows you to search for the first record containing the value you specify in the key field(s).
This is only possible when the data file is displayed in a keyed sequence, not in Record Number order.

This command only searches fields which are components of the selected key. To search other fields, use
the Search command.

Print Dialog
This dialog allows you to print a record or records.

Current Record Prints only the currently highlighted record.

Current Page Prints only the records currently displayed on screen.

All Records Prints all records in the file.

Use Filter Prints only those records which match the filter created in the Query-by-
Example dialog.

Columnar Mode Prints the records in a "spreadsheet" type of format in which each field in the
record is a separate column.

Specify the number of records to print side by side in the Columns box.

Tabular Mode Prints the records in a "form" type of format in which each field in the record is on
its own separate print line.

Specify the maximum width of each field in the Table Width box.

Print Header Specifies whether to print column headers in the report.

Select Driver Dialog
When first loading a file, the Database Manager prompts you to name the driver used to read the file.
Select a previously installed Clarion for Windows database driver from the list.

See also: Supported File Systems

Select Memo Dialog
If your data file has more than one MEMO, this dialog appears to allow you to select the MEMO to edit.

Highlight the desired MEMO, then press the Select button.

Select Control Template
This dialog allows you to choose a control template, adding functionality to a procedure.

CLICK on a control template from the list, then press the Select button.

If you add third party, or your own customized templates to the Template Registry, they appear in the list.
The following lists the control templates which ship with Clarion for Windows:

Accept Button This control template provides a convenient way to close a procedure.

ASCII Box This control template adds a list box in which you can display an ASCII (text) file.

ASCII Print Button This control template adds a button to print an ASCII (text) file.

ASCII Search Button This control template adds two buttons (Find and Find Next) to search an ASCII
(text) file.

Browse Box This control template places a LIST control in a window.

Browse Select button This control template provides a quick way to return a value from a list box called
to request a record.

Browse Update buttons This control template provides a quick way to manage records in a list box.

Cancel Button This control template provides a convenient way to close a browse procedure
and cancel a record request.

Close Button This control template adds a single button control marked Close which closes
down the current window.

DOS File Lookup This control template adds an ellipsis (...) button which leads the end user to a
standard Open File dialog.

Field Lookup Button This control template adds an ellipsis (...) button to call a lookup procedure
specified for an entry control.

File Drop This control template adds a drop down list showing the contents of a selected
field of a file listed in the data dictionary.

File Drop Combo This control template adds a Combo Box with drop down list showing the
contents of a selected field of a file listed in the data dictionary. It also allows
updates to the file.

RelationTree control template This control template places a LIST control formatted as a tree in a
window.

Relation Tree Update Buttons control template Adds buttons to a window which call the appropriate
update procedures for levels in a Relation Tree.

Save Button This control template adds an OK button to close a window and save the action.

Select Code Template
Code templates generate executable code. The purpose is to make customizationadding embedded
source code fragments that do exactly what you want it toeasier. Each Code template has one well-
defined task. For example, the Initiate Thread Code template simply starts a new execution thread, and
no more. Typically, the Code template provides a dialog box with options and instructions.

CLICK on a code template from the list, then press the Select button.

If you add third party, or your own customized templates to the Template Registry, they appear in the list.
The following lists the code templates which ship with Clarion for Windows:

Initiate Thread This code template initiates an execution thread when opening an MDI window.

Call Procedure As Lookup
This code template allows you to call a procedure, usually a Browse, with a
request to make a selection.

Control Value Validation
This code template validates the value of an entry control (ENTRY, LIST,
COMBO, or SPIN). You can add this code template to a field event on a control;
at the Accepted or Selected embed point.

Lookup Up Non-Related Record
This code template is used to perform a lookup of a value based on a relationship
not defined in the Data Dictionary (ad hoc relations). You can add this code
template to the Lookup Up Related Records embed point.

Close Current Window This code template simply posts an EVENT:CloseWindow, which tells the
currently active window to close.

Select Utility Dialog
A Utility template allows you to produce output from your application. These templates can provide
extensible supplimental utilities for such things as wizards, program documentation, or a tree diagram of
procedure calls.

Highlight the desired utility template, then press the Select button.

Clarion for Windows provides WIZARDSpowerful utility templates that enable you to create a Browse,
Form, or Report procedure by merely answering a few quick questions. You can even use a wizard to
create an entire Application from an existing dictionary!

Options you specify in advance in the Data Dictionary provide additional control over the procedures the
wizards create. See Using Wizard Options for more information.

Application Wizard utility template Creates a complete application from an existing dictionary.

Browse Wizard utility template Creates a multi-keyed browse procedure from an existing
dictionary file.

Form Wizard utility template Creates an update procedure from an existing dictionary file.

Report Wizard utility template Creates multi-keyed report procedures from an existing
dictionary file.

Select Procedure Template
This dialog allows you to choose a procedure template, adding functionality to any new or "To Do"
procedure in the Application Tree .

CLICK on a procedure template from the list, then press the Select button. Once you select a procedure
type, you can customize it using its Procedure Properties dialog.

If you add third party, or your own customized templates to the Template Registry, they appear in the list.
The following lists the procedure templates which ship with Clarion for Windows:

Browse Browse fields in a page-loaded list box

Form View/edit a record from file

Frame Multiple document main menu

Menu Single document menu

Process Sequential record processor

Report Generic reporting procedure

Source Source procedure

Viewer View an ASCII text file

Window Generic window handler

External A procedure contained in an external library (*.LIB only) or object file

Select Extension Template
Extension templates add functionality to procedures, but are not bound to a control or embed point. Each
Extension template has one well-defined task. For example, the Date Time Display enables you to display
the date and a running clock.

If you add third party, or your own customized templates to the Template Registry, they appear in the list.

From a Procedure Properties dialog, add an Extension template by pressing the Extensions button.
CLICK on an extension template from the list, then press the Select button.

Clarion for Windows contains the following Extension templates:

Date Time Display This extension adds a "live" date and/or time (updated every second) display to
the procedure

Record Validation This extension enables enforcement of dictionary-defined field value validation

Select Application Template
If you've added third party or your own templates to the template registry, and they include a new
Application template, this allows you to choose which template set controls source code generation.

CLICK on an item from the list, then press the Select button.

Select Program Template
If you've added third party or your own templates to the template registry, and they include a new default
program template, this allows you to choose which template class controls source code generation.

CLICK on an item from the list, then press the Select button.

Select Module Template
If you've added third party or your own templates to the template registry, and they include a new default
module template, this allows you to choose a module template.

CLICK on an item from the list, then press the Select button.

Generated Source Source File created in Application Generator

External LIB External Library Module

External OBJ External Object Module

External DLL

Control Value Validation code template
This code template gets the value of the control and matches it against the value in the key.. You can add
this code template on an ENTRY, SPIN, LIST, or COMBO control; at the Accepted or Selected embed
point. The code generated by this code template gets the value in the control, then matches it against the
value in the key.

It can also call a lookup procedure, to let the end user select a value. You can check whether the end user
has successfully completed the lookup procedure by checking the value of the LocalResponse variable.

See also: Request and Response

InitiateThread code template
When opening an MDI window from an Application Frame, you must initiate an execution thread. This
Code template provides an easy way to initiate a thread (see START).

In the Prompts for Initiate Thread dialog, simply name the procedure that opens the MDI window.

You can optionally add a line of code to execute if the application was unable to open the thread. Type in
the edit box labelled Error Handling. For example,
BEEP; MESSAGE(Could not Start Thread,Error,ICON:HAND)
would beep and display a message box with the halt (hand) icon, if the thread failed to start.

You can add a procedure name to call upon an error by typing the name of the procedure in the Error
Handling box. You would then add the procedure to the Application Tree with the Insert Procedure
command.

Lookup Non-Related Record code template
This Code template is used to perform a lookup of a value based on a relationship, whether it is or is not
defined in the data dictionary (Ad hoc relation). You can add this Code template to the Lookup Up Related
Records embed point.

Lookup Key Type in the key name or press the ellipsis (...) button to select the key from the
File Schematic.

The lookup key is used to perform the lookup into the lookup file. This must be a
unique key. If the key is a multicomponent key, the other key elements must be
primed before executing this Code template.

Lookup Field Type in the field name or press the ellipsis (...) button to select the field from the
Component list.

The Lookup Field must be a component of the Lookup Key. This is the unique
value within the lookup file.

Related Field Type in the related field or press the ellipsis (...) button to select it from the File
Schematic.

The Related Field provides the unique value used to perform the lookup.

This code template generates the following code:
LookUpField = RelatedField ! Move value for lookup
GET(LookUpFile,LookUpKey) ! Get value from file
IF ERRORCODE() ! IF record not found

CLEAR(LookupfileRecord) ! Clear the record buffer
END ! END (IF record not found)

See also:

Refresh Window routine

Call Procedure As Lookup code template
This Code template calls a procedure to select a record. It sets a variable called RequestCompleted to
advise whether the lookup was successful.

Lookup Procedure
Specifies the procedure to call.

Code before Type in any executable code to execute before performing the lookup. Multiple
statements can be used if separated by a semicolon.

Code After, Completed
Type in any executable code to execute after completing a lookup. Multiple
statements can be used if separated by a semicolon.

Code After, Canceled
Type in any executable code to execute if the lookup is canceled. Multiple
statements can be used if separated by a semicolon.

Close Current Window code template
This code template simply posts an EVENT:CloseWindow, which tells the currently active window to
close. There are no prompts to fill in.

ASCII Box control template
This Control template adds a list box in which you can display an ASCII (text) file. If you wish to view the
same ASCII file all the time, you can specify a file name in the Prompts dialog.

The Actions tab contains the following:

Description Allows you to add a description and to display in the progress window which
displays when opening the file.

File Name to View Specifies the path and name of the file to view, or a variable preceded by an
exclamation point (!).

Display Number of Bytes Read
Check this box if you want to display the files size in the progress dialog.

Warn the user if the file cannot be found?
Check this box if you want to display a message at runtime if the specified file
cannot be found.

See also:

ASCII Print Button

ASCII Search Button

ASCII Print Button control template
This Control template adds a button named Print, and the underlying code necessary for printing an ASCII
(text) file. Use this control template together with the ASCII Box control template.

Edit the Actions only if you wish to add another, separate action to take place after printing. All the code
necessary for managing the print job itself is handled automatically.

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons.Normally, when using a Control template,
these prompts are not used.

ASCII Search Button control template
This Control template adds two buttons named Find and Find Next, and the underlying code necessary
for a modal search dialog, allowing the end user to find text in an ASCII (text) file. Use this control
template together with the ASCII Box control template.

Edit the Actions only if you wish to add another, separate action to take place after the search. All the
code necessary for managing the search itself is handled automatically.

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons (see Setting Control Properties).
Normally, when using a Control template, these prompts are not used.

Browse Box control template

Click on a TAB to see its help

This Control template places a LIST control in a window. The LIST controls popup menu takes you to the
List Box Formatter, so that you can choose which fields or variables populate the list, and define how
they appear in the list box (including enabling colorization and Icon display). The Actions tab on the List
Properties provides the template prompts which allows you to define the browse boxs functionality,
including record filters, range limits, totaling, scroll bar behavior, and locator behavior.

You can place the BrowseBox Control template in a window by clicking on the template control tool, then
selecting BrowseBox - Browse List Box in the Select Control template dialog. Then CLICK in the
window to place the actual list box control.

Properties

After placing the LIST control, RIGHT-CLICK on the LIST control and choose Properties from the popup
menu to view the List Properties dialog. See the Setting Control Properties chapter for full information
about the options available in this dialog. This section describes only the options directly affected by the
BrowseBox Control template.

To enable colorization, Check the Color Cells box in List Field Properties.

To enable Icon display, Check the Icons box in List Field Properties.

The template automatically defines the FROM attribute for the LIST control, which names the source (a
QUEUE) for the data in the list. The standard templates name the QUEUE as Queue:Browse. The
template contains a group (a template routine) that checks to see if youve applied range limits, or are
using the list as a lookup. If so, it locates the correct record. The template then loads as many records
into the QUEUE as will fit in the list. The QUEUE is filled from a VIEW which gets the values from fields in
data files on disk.

RIGHT-CLICK on the LIST control and choose List Box Format from the popup menu to access the List
Box Formatter to choose the fields and variables to fill the list box, and define their appearance.

The Populate button allows you to add a field or variable to the list box, one field or variable at a time.
The Select Field dialog presents the file schematic. Within the schematic, each browse control appears,
with a tree control marked To Do beneath it. To add a field from a data file defined in the dictionary:

Select the To Do item.

Press the Insert button

Select the file from the Insert File dialog. The Browse Control item displays the name of the file.

If you want to use a Key, press the Key button to select the key from the Key Access dialog. If
you do not select a Key, the list is displayed in record order, which also disables the ability to set
Range Limits.

Select a field from the Fields list, which appears in the right side of the Select Field dialog.

Repeat this for each field you want to add to the list box.

To add a variable to the list box, select Global Data or Local Data from the Select Field dialog, select
the desired variable from the Fields list, then press the Select button.

After you select the file, key and field (or variable) the List Field Properties dialog appears. This allows
you to precisely define its appearance. The Using the List Box Formatter chapter fully describes the
options available in this dialog.

Actions

The Actions tab of the List Properties dialog (accessed by the Actions... command on the popup menu
you see when you right-click the control) displays the template prompts which allows you to specify
numerous template options, as well as add custom embedded source code for standard list box events,
such as when the end user moves the selection bar. The dialog contains the following options:

Default Behavior
This tab contains the prompts that control the default behavior of the Browse Box Control.

Quick-Scan Records
Specifies buffered access behavior for ODBC, ASCII, DOS, or BASIC files. These
file drivers read a buffer at a time (not a record), allowing for fast access. In a
multi-user environment these buffers are not 100% trustworthy for subsequent
access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable
the reread, enable QUICKSCAN.

Locator A locator is a screen entry field that updates a component of the primary file
access key. When the end user types a character(s) in the entry box, then
presses TAB, the list box updates to show the closest matching record. This is
disabled when browsing a file in Record Order (without specifying a KEY in the
File Schematic).

Choose Step for a list box which, when the user types in a character, advances
the selection to the nearest match in the key field.

Choose Entry for an entry box to hold the value for the locator. When the end
user places a value in the entry box, TAB or reselecting the list box will move the
selection to the nearest matching record.

Choose Incremental for a locator which accepts multiple characters and moves
the selection to the nearest matching record.

Entry/Incremental Locator-Override default locator control
If you use the same field more than once as a locator, you must override the
default locator. For example, if you have a multi-keyed browse which has an
ascending key and a descending key on the same field. To use a separate
controls (as on separate TABs) for each condition, check the override box and
select the second instance from the drop-down list.

Choose None for no locator.

Record Filter Type an expression to limit the contents of the browse list to only those records
matching the filter expression. The filter is loops through all displayable records
to select those that meet the filter.

You must BIND any file field that is used in a filter expression. The Hot Fields tab
enables you to BIND fields.

Range Limit Field In conjunction with the Range Limit Type, specifies a record or group of records

for inclusion in the list box. Choose a field by pressing the ellipsis (...) button. The
range limit is key-dependent; the generated source code uses the SET statement
to find the first valid record. This is enabled only after you specify a Key for the
file associated with this control.

Range Limit Type When a field is selected for Range Limit Field, specifies a record or group of
records for inclusion in the list box.

Current Value signifies the current value of Range Limit Field.

Single Value allows you to limit the list to a single value. Specify the variable
containing that value in the Range Limit Value box which appears.

Range of Values allows you to specify upper and lower limits. Specify the
variable containing the values in the Low Limit and High Limit Value boxes.

File Relationship allows you to choose a range limiting file from a 1:MANY
relationship. This limits the browse to display only those child records matching
the current record in the Parent file. For example, if your browse was a list of
Orders, you could limit the display to only those orders for the current Customer
(in the Customer file).

See also: Using Range Limits and Filters

Reset Fields button

Pressing this button displays a list box allowing you to add Reset Fields. If the
value of any field in the Reset Fields list changes the Browse Box is refreshed.

Scroll Bar Behavior button
Pressing this button displays a dialog where you can define the way a scroll bar
works.

Scroll Bar Behavior
Specifies the manner the scroll bar works. Choose Fixed
Thumb or Movable Thumb from the drop down list.

Key Distribution This specifies the distribution of the points of the scroll
bar. Choose one of the two predefined distributions
(Alpha or Last Names), or Custom, or Runtime from the
drop down list.

Alpha defines 100 evenly distributed points
alphabetically.

Last Names defines 100 points distributed as last
names are commonly found in the United States. If the
access key is sorted on numeric data, you should a
custom or runtime distribution.

Custom allows you to define your own points.

Runtime reads the first and last record and computes
the values for 100 evenly distributed break points in
between.

Custom Key Distribution
Allows you to specify the break points for distribution
along the scroll bar (useful when you have data with a
skewed distribution). Insert the values for each point in
the list. String constants should be in single quotes (' ').

Runtime Distribution Parameters
Allows you to specify the type of characters considered
when determining the distribution points. This is only
appropriate when the Free Key Element is a STRING or
CSTRING. Check the boxes for the types of characters
you wish to include for consideration.

Conditional Behavior
This tab contains a list box that allows you to define specific behavior based on conditions. Add conditions
to the list by pressing the Insert button. This displays a dialog where you define the Condition and the
desired behavior when that condition is true.

At runtime these conditions are evaluated, and the behavior for the first true condition in the list is used.

In this dialog you can specify:

Condition Any valid expression.

Key to Use Optionally, the Key to use to determine the sort order of the browse box when
this condition is true.

The remaining fields and buttons are the same as the Default behavior tab.

Hot Fields
When you select the Hot Fields tab, you can select a field (or fields) to keep live in the QUEUE. When
scrolling through the file, the generated source code reads the data for these fields from the QUEUE,
rather than from the disk. This speeds up list box updates.

Specifying "Hot" fields also allows you to place file field controls outside of the Browse Box that are
updated whenever a different record is selected in the list box. Elements of the Primary Key and the
current key are always included in the QUEUE, so they do not need to be inserted in the Hot Field list.

This dialog also enables you to BIND a field. You must BIND any file field that is used in a filter expression
or as a field to total.

Totaling
This tab contains a list box that allows you to define total fields for a browse box. Press the Insert button
to add total fields.

This displays a dialog where you can define total fields for a Browse Box Control.

Total Target Field The variable to store the total. This can be a local, module, or global variable.
You may also use a file field; however, you must write the code to update the
data file.

Total Type Choose Count, Sum, or Average from the drop down list. Count tallies the
number of records. Sum adds the values of the Field to Total. Average
determines the arithmetic mean of the Field to Total.

Field to Total The field to be summed or averaged. This box is disabled when the total field is a
Count Type.

Total Based On Choose Each Record Read or Specified Condition from the drop down list.
This specifies whether to consider every record or only those that meet a certain
filter criteria.

Total Condition The condition to meet when using a Total based on a specified condition. You can
use any valid expression.

Colors
This tab is only available if you check the Color Cells box in the List Box Formatter. It displays a list of the
fields which have been specified to allow colorization.

To specify colors, highlight the desired field and press the Properties button.

Customize Colors

This dialog allows you to specify the default colors for Normal Foreground and Background; and for the
Foreground and Background colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments list. To add a condition and
specify special colors to display for the field when the condition is true, press the BButton.

At runtime these conditions are evaluated, and the colors for the first true condition in the list are used.

Icons
This tab is only available if you check the Icons box in the List Box Formatter. It displays a list of the fields
which have been specified to allow Icon display.

To specify Icons, highlight the desired field and press the Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a standard Icon or an Icon (.ICO) file
on disk.

Conditional Icon Usage
Below the default Icon section, is the Conditional Icon Usage list. To add a
condition and specify special Icons to display when the condition is true, press
the Insert Button. At runtime these conditions are evaluated, and the Icon for the
first true condition in the list is used.

Browse Select button control template
This control template provides a quick way to process a record in a list box.

The generated source code gets the currently selected record from the list, closes down the browse, and
resets the value of LocalResponse to 'RequestCompleted' (See also: Request and Response). For the
end user, pressing the Select button is equivalent to doubleclicking an item in the list. You specify, on the
Actions tab, what happens next. The Properties dialog for the button is identical to the normal Button
Properties dialog.

The Action button leads to a dialog containing the following:

Hide Specifies that the control should be hidden if the procedure is not called to
request a record.

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

Browse Update buttons control template
This control templates provides a quick way to add standard functionality for managing the records in a
browse list box.

The BrowseUpdateButtons control template adds three button controls for acting upon records inside a
browse box. When pressed, the buttons retrieve the appropriate record and call the procedure specified in
the Update Procedure box. Pressing the Change, Insert, or Delete button sets the variable
GlobalRequest to 'ChangeRecord' , 'InsertRecord', or 'DeleteRecord', respectively. See also:Request and
Response

Optionally, you can also enable a popup menu to call the update procedure when the end user RIGHT-
CLICKs on the list box.

The Properties dialog for each button control is identical to the standard Button Properties dialog.

The Action buttons lead to dialogs allowing you to name the update procedure and specify special keys
for implementing the button actions.

Update Procedure Type a name or select from the drop down list. The Application Generator
automatically adds the update procedure to the Procedure tree.

Allow Edit via Popup Check this box to create a popup menu to call the update procedure when the
end user RIGHT-CLICKs on the list box.

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

Cancel Button control template
This control template primarily provides a convenient control to allow the user to close the browse
window, and for the developer to add code to "undo" while closing down the browse procedure.

The generated source code posts a close window event. Before closing the window, it sets the
LocalResponse variable to 'RequestCancelled'. See also:Request and Response .

You can insert the executable code you need to "clean up" at an embed point. The dialog includes the
following options:

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

Accept Button control template
This control template primarily provides a convenient control to allow the user to close the browse
window, and for the developer to add code to execute while closing down the browse procedure.

The generated source code posts a close window event. Before closing the window, it sets the
LocalResponse variable to 'RequestCompleted'. See also:Request and Response .

You can insert the executable code you need to "clean up" at an embed point. The dialog includes the
following options:

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

Close Button control template
This control template adds a single button control marked Close. The generated source code closes
down the current window. You specify, via the Action button, precisely what happens when the end user
presses the button.

The properties dialog for is identical to the normal Button Properties dialog.

The Action button leads to a dialog containing the following:

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

DOS File Lookup control template
This control template adds an ellipsis (...) button which leads the end user to a standard Open File dialog.
You can specify a file mask, and a return variable to hold the end user's choice.

The properties dialog for is identical to the normal Button Properties dialog.

The Action button leads to a dialog containing the following:

File Dialog Header Type the text for the caption of the Open File dialog.

DOS FileName Variable
Press the ellipsis button to view the File Schematic dialog, and choose a
variable to receive the end user's choice. You can also type the variable name
directly into the entry box.

Default Directory Allows you to specify a directory name where the Open File dialog will start.

Mask Description Type a file type description. The string appears in the drop down list in the Open
File dialog. You can add additional file masks by pressing the File Masks button

File Mask Type a file specification, such as "*.TXT." To use multiple patterns for this mask,
separate each with a semi-colon, such as "*.BMP;*.GIF"

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

Field Lookup Button control template
This control template allows you to trigger an entry control lookup. CLICK next to an entry control to place
the ellipsis (...) button that enables the end user to initiate the lookup procedure.

Once you place the field, RIGHT-CLICK the button, then choose Actions to access the Prompts dialog.

Control with Lookup Select the field equate label of the control to perform the look up for, by choosing
from the drop down list.

NOTE: The Control with Lookup must have an associated lookup
procedure. Once you place the field, RIGHT-CLICK on the control, then
choose Actions to access the Prompts dialog. For more details, see the
Control Prompts Dialog topic.

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

File Drop control template
This control template scrolls through a data file and assigns the value of the selected field to the Target
Field. This allows you to perform a lookups easily.

Use this control template when you want to lookup a single field from a file of less than 100 records,
where no range limit is needed. If you need a range limit, use an entry field with an associated Call
Procedure As Lookup code template .

General

Field to Fill From The field from the lookup file. This value is assigned to the Target Field.

Default to First entry if Use Variable empty
Automatically assign the value of the first field in the list to the ?USE variable.
The fields in the list are sorted alphabetically.

Target Field The field to which the value from the lookup file is assigned. This can be different
than the ?USE variable.

Record Filter Optionally, type an expression to limit the contents of the drop down list to only
those records which match the filter expression.

Sort Fields
This tab allows you to add fields by which the list is sorted. The sort order is independent of Keys. Press
the Insert button to add fields to the list. This sorts the list dynamically at runtime.

Range Limits
This tab appears only after you specify a Key for the file associated with this control.

Range Limit Field In conjunction with the Range Limit Type, specifies a record or group of records
for inclusion in the list box. Choose a field by pressing the ellipsis (...) button. The
range limit is key-dependent; the generated source code uses the SET statement
to find the first valid record.

Range Limit Type When a field is selected for Range Limit Field, specifies a record or group of
records for inclusion in the list box.

Current Value signifies the current value of Range Limit Field.

Single Value allows you to limit the list to a single value. Specify the variable
containing that value in the Range Limit Value box which appears.

Range of Values allows you to specify upper and lower limits. Specify the
variable containing the values in the Low Limit and High Limit Value boxes.

File Relationship allows you to choose a range limiting file from a 1:MANY
relationship. This limits the browse to display only those child records matching
the current record in the Parent file.

Colors
This tab is only available if you check the Color Cells box in the List Field Properties in the List Box
Formatter. It displays a list of the fields which have been specified to allow colorization.

To specify colors, highlight the desired field and press the Properties button.

Customize Colors

This dialog allows you to specify the default colors for Normal Foreground and Background; and for the
Foreground and Background colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments list. To add a condition and specify
special colors to display for the field when the condition is true, press the Insert Button.

At runtime these conditions are evaluated, and the colors for the first true condition in the list are used.

Icons
This tab is only available if you check the Icons box in the List Box Formatter. It displays a list of the fields
which have been specified to allow Icon display. To specify Icons, highlight the desired field and press the
Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a standard Icon or an Icon (.ICO) file
on disk.

Conditional Icon Usage
Below the default Icon section, is the Conditional Icon Usage list. To add a
condition and specify special Icons to display when the condition is true, press
the Insert Button. At runtime these conditions are evaluated, and the Icon for the
first true condition in the list is used.

Properties

The List Properties for this control are the same as a list ; however, the From entry requires some
explanation.

From: When placing a File Drop Control, this field is filled in with 'File|Drop'. You may
modify this, but a pipe character (|) must appear in the string.

You can use list box formatter to populate this control.

File Drop Combo control template

This control template scrolls through a data file and assigns the value of the selected field to the ?Use
variable. It also allows adding records by typing a new value in the entry portion of the combo box.

There are two different scenarios for which you can use this control template:
Storing and Displaying the same data and Displaying textual data and storing a code.

Storing and Displaying the same data
In this scenario you want to select a value from the lookup file and store it in the
Primary file. For example, A Product File with a field storing a color, with a lookup
file of colors.

In this case, complete the prompts as follows:

General
?Use The field to which the value is assigned from the field in the lookup file.

Field to Fill From The field from the lookup file. This value is assigned to the Target Field.

Remove Duplicates Check this box to remove duplicates from the list displayed.

Target Field The field to which the value is assigned from the field in the lookup file. In this
case this is the same as the ?USE variable.

Record Filter Optionally, type an expression to limit the contents of the drop down list to only
those records which match the filter expression.

Default to First entry if Use Variable empty
Automatically assign the value of the first field in the list to the ?USE variable.
The fields in the list are sorted alphabetically (unless you specify Sort Fields).

Update Behavior

In this scenario, a form is NOT needed to update the lookup file. Checking the Allow Updates box enables
updates directly from this control.

Sort Fields
This tab allows you to add fields by which the list is sorted. The sort order is independent of Keys. Press
the Insert button to add fields to the list. This sorts the list dynamically at runtime.

Range Limits
This tab appears only after you specify a Key for the file associated with this control.

Range Limit Field In conjunction with the Range Limit Type, specifies a record or group of records
for inclusion in the list box. Choose a field by pressing the ellipsis (...) button. The
range limit is key-dependent; the generated source code uses the SET statement
to find the first valid record.

Range Limit Type When a field is selected for Range Limit Field, specifies a record or group of

records for inclusion in the list box.

Current Value signifies the current value of Range Limit Field.

Single Value allows you to limit the list to a single value. Specify the variable
containing that value in the Range Limit Value box which appears.

Range of Values allows you to specify upper and lower limits. Specify the
variable containing the values in the Low Limit and High Limit Value boxes.

File Relationship allows you to choose a range limiting file from a 1:MANY
relationship. This limits the browse to display only those child records matching
the current record in the Parent file.

Colors
This tab is only available if you check the Color Cells box in the List Field Properties in the List Box
Formatter. It displays a list of the fields which have been specified to allow colorization.

To specify colors, highlight the desired field and press the Properties button.

Customize Colors

This dialog allows you to specify the default colors for Normal Foreground and Background; and for the
Foreground and Background colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments list. To add a condition and specify
special colors to display for the field when the condition is true, press the Insert Button.

At runtime these conditions are evaluated, and the colors for the first true condition in the list are used.

Icons
This tab is only available if you check the Icons box in the List Box Formatter. It displays a list of the fields
which have been specified to allow Icon display. To specify Icons, highlight the desired field and press the
Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a standard Icon or an Icon (.ICO) file
on disk.

Conditional Icon Usage
Below the default Icon section, is the Conditional Icon Usage list. To add a
condition and specify special Icons to display when the condition is true, press
the Insert Button. At runtime these conditions are evaluated, and the Icon for the
first true condition in the list is used.

Hot Fields
When you select the Hot Fields tab, you can select a field (or fields) to keep live in the QUEUE. When
scrolling through the file, the generated source code reads the data for these fields from the QUEUE,
rather than from the disk. This speeds up list box updates.

Specifying "Hot" fields also allows you to place file field controls outside of the Browse Box that are

updated whenever a different record is selected in the list box. Elements of the Primary Key and the
current key are always included in the QUEUE, so they do not need to be inserted in the Hot Field list.

This dialog also enables you to BIND a field. You must BIND any file field that is used in a filter expression
or as a field to total.

When you select the Hot Fields tab, you can select a field (or fields) to keep live in the QUEUE. When
scrolling through the file, the generated source code reads the data for these fields from the QUEUE,
rather than from the disk. This speeds up list box updates.

Specifying "Hot" fields also allows you to place file field controls outside of the Browse Box that are
updated whenever a different record is selected in the list box. Elements of the Primary Key and the
current key are always included in the QUEUE, so they do not need to be inserted in the Hot Field list.

This dialog also enables you to BIND a field. You must BIND any file field that is used in a filter expression
or as a field to total.

Displaying textual data and storing a code
In this scenario you want to select a value from a textual field in the lookup file
and store its associated code in the Primary file. For example, A Product File with
a field storing a Location Code, with a lookup file of Locations. You want the user
to select the Location from a list of descriptions, but store the Location Number in
the Product file.

In this case, complete the prompts as follows:

?Use Create a local variable that matches the textual field.

Using the List Box Formatter, populate the list with the textual field from the lookup file. It is automatically
be assigned to the ?Use variable.

Field to Fill From The code field from the lookup file. This value is assigned to the Target Field.

Remove Duplicates Check this box to remove duplicates from the list displayed.

Target Field The field to which the value is assigned from the field in the lookup file.

Record Filter Optionally, type an expression to limit the contents of the drop down list to only
those records which match the filter expression.

Default to First entry if Use Variable empty
Automatically assign the value of the first field in the list to the ?USE variable.
The fields in the list are sorted alphabetically (unless you specify Sort Fields).

Update Behavior

In this scenario, a form is needed to update the lookup file, if you want to allow updates, specify a form
procedure.

Properties

The List Properties for this control are the same as a list ; however, the From entry requires some
explanation.

From: When placing a File Drop Combo Control, this field is filled in with
Queue:FileDropCombo. You should not modify this.

You can use list box formatter to populate this control, but only the first populated is valid for the entry
portion of the control.

RelationTree control template

The tree control is actually a list box formatted to display as a tree.

Using the RelationTree Control template, you can specify multiple file levels to display on multiple levels
of a tree control. The Relation Tree control can display an unlimited number of related fileswith an
associated update procedure for each level. The provides an alternative for the Browse-Form paradigm. A
single RelationTree control can replace several Browse-Form pairs.

The RelationTree template employs a fully-loaded QUEUE for the root level. The child levels are demand-
loaded when a branch is expanded. This template is not appropriate for databases with a very large
primary file. You should use the BrowseBox Control template, which is page-loaded, instead.

To create a tree using the Relation Tree Control template:

1. Place a RelationTree Control template on a window.

The List Box Formatter appears. Do Not use the formatter to populate your tree.
2. If you want to enable colorization or icon display in your tree control, press the Properties button

on the List Box Formatter and check the appropriate boxes.

3. Press the OK button on the List Box Formatter.
4. RIGHT-CLICK on the Relation Tree Control template and choose Actions from the popup menu.

5. Press the Files button to specify the file schematic for the control.

6. Specify the File details:

Tree Heading Text An optional text heading at the top of the tree. Tree Heading Text is required to
enable the user to add a record at the root level.

Tree heading Icon An optional Icon at the top of the tree. Icons must be enabled in the List Box
Formatter for this prompt to be enabled.

Primary File

Display String The field name or text to display for the primary file level.

Update Procedure The Update Procedure to call for this level.

Secondary Files

Optionally, specify display strings and Update Procedures for any secondary files
by highlighting the secondary file and pressing the Properties button below the
Secondary Files list box.

Calling Update Procedures

One of the most powerful features of the Relation Tree Control template is the ability to call the update
procedure for the selected level of the tree (if an Update Procedure is specified for that level).

The Update Procedure is called to change a record when the user DOUBLE-CLICKS on a record.

A RIGHT-CLICK calls a popup menu to insert, change, or delete records. The menu displays the text

displayed on the associated RelationTreeUpdateButtons.

A third method to call a update procedures is to place a Relation Tree Update Buttons control template on
the window.

Colorized Tree controls
The List Box formatter now supports colorization of cells in a list box.

Specify colors by:

1) To enable colorization, Check the Color Cells box in List Field Properties.

2) Select the Colors tab in the Actions tab for the Relation Tree control.

3) Highlight the desired field and press the Properties button.

4) Specify the default colors for Normal Foreground, Normal background, Selected Foreground,
Selected background by pressing the ellipsis (...) button.

5) Optionally, specify conditional colors by pressing the Insert button below the Conditional Colors
list box. Specify a valid expression and the colors to use when that expression is true.

Icons in tree controls
The List Box formatter now supports Icon display in a list box.

Specify Icons by:

1) To enable Icon display, Check the Icons box in List Field Properties.

2) Select the Icons tab in the Actions tab for the control.

3) Highlight the desired field and press the Properties button.

4) Specify the default Icon.

5) Optionally, specify conditional Icons by pressing the Insert button below the Conditional Icons list
box. Specify a valid expression and the Icon to use when that expression is true.

Relation Tree Update Buttons control template
This Control template adds three buttons (Insert, Change, and Delete) which allow the user to call the
associated update procedure for the selected level of a Relation Tree (if an update procedure has been
specified) . There are no prompts for this control. The Update Procedure is specified for each level of the
Relation Tree control template. .

The Change and Delete buttons correspond to the currently highlighted record. The Insert button adds a
child record (the next level down the tree structure).

Save Button control template
This control template provides an OK button for your browse window. It also creates a local variable--
ActionMessage-- which allows you to display an action message for the end user.

The Properties dialog for the OK button is the standard Button Properties dialog.

The Actions button leads to the Prompts for ?OK dialog. It allows you to specify the update procedures
and action messages for the button action. It contains the following options:

Allow: Inserts, Changes, and Deletes
Checking the appropriate box enables the action. If a check box is cleared, the
user will not be allowed to perform the action.

When called for DeleteAllows to to select a method for deleting records. Standard Warning displays a
standard message box prompting for confirmation of the delete. Display Form
displays the form and sets the variable--ActionMessage to 'Record will be
Deleted' or the Delete message you specify. Automatic delete enables deletes
without a warning or prompt for confirmation.

Messages and Titles Allows you to specify the messages for Inserts, Changes, or Deletes, and the
location for the message.

Insert Message Specifies the text for the ActionMessage when the procedure is called to ADD a
record. The default text is "Record will be added." You must check the Allow
Inserts box.

Change Message Specifies the text for the ActionMessage when the procedure is called to modify
an existing record. The default text is "Record will be changed." You must check
the Allow Changes box.

Delete Message Specifies the text for the ActionMessage when the procedure is called to delete a
record. The default text is "Record will be deleted." You must check the Allow
Deletes box.

Location of Message Specifies where the action message appears. You can specify a window control,
the caption bar, or the status bar. If you specify the status bar, you may then
specify the section in the Status Bar Section box.

Display Record Identifier on the Title Bar
Allows you to append a string to the caption on the Title bar.

Record Identifier Specifies the string to append to the Title bar caption, which you can use to
identify the record. Type a string in the Record Identifier box. To use a variable
name, precede it with an exclamation point (!).

Field Priming "Field Priming" allows you to provide a default data value for fields in a new
record. This value supersedes any initial value specified in the data dictionary.
When you press the button, you can select a field and set an initial value in the
Field Priming dialog.

When Pressed The standard set of prompts for buttons Normally, when using a Control template,
these prompts are not used.

You may also access the embed points for the controls by pressing the Embeds button in this dialog.

Date Time Display extension template
This extension template adds to the functionality of a procedure template, allowing you to display the time
and/or date in the status bar, or a control.

The prompts for this template are accessible through the Procedure Properties dialog of a template
which includes this extension. A Date and Time Display button appears in the dialog of the procedure
template.

The options which appear in the Date and Time Display dialog are divided into two group boxes, Date
Display and Time Display:

Display in Window Check the box or boxes to add the display to your window.

Picture Choose a date and/or time display picture from the drop down list. The list
displays examples, such as "October 31, 1959," and "5:30P.M."

Other Picture Type in a picture of your choice, if the picture type you wish does not appear in
the list. See also: Date Picture Tokens.or Time Picture Tokens

Day of Week (Date only) Optionally displays the day of week.

Location Choose between displaying the date and/or time on the status bar, or in a control.

Status Bar Section When specifying the Date or Time should appear on the status bar, specify the
status bar section.

Display Control When specifying the Date or Time should appear in a control, choose the control
from a drop down list of field equate labels for the window.

Record Validation extension template
This Extension template adds functionality to a Procedure template by enforcing data dictionary-defined
control value validation. It also allows you to specify controls to exclude from validation.

The prompts for this template are accessible through the Procedure Properties dialog of a template
which includes this extension. A Record Validation group box appears in the dialog of the procedure
template.

Validate when the control is Accepted
Specifies that validity checking occurs when the control generates an
EVENT:Accepted, which occurs when the end user completes or moves the
focus from the field.

Validate during NonStop Select
Specifies that validity checking occurs when any control value changes if the
window is in AcceptAll (Non-Stop) mode and has focus.

Do Not Validate Opens the Do Not Validate dialog, which allows you to select fields from a drop
down list. The fields you choose will be excluded from validity checks.

Procedure Properties : Browse
The Browse Template consists of several control templates which add a Browse Box control
template ,Browse Update buttons control template , Browse Select button control template and a Close
Button control template to the default window. The control templates add the Browse Box and Update
Buttons prompts to the Procedure Properties dialog.

Additionally, the generated code includes a ROUTINE called RefreshWindow which keeps the data
displayed current.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the application.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the application .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's

access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report Button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

 After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the

procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Browse Box Behavior This button calls a dialog which allows you to define the behavior of the BrowseBox
Control template..

Select Button Prompts

The Hide Select button check box is controlled by the Select Button control template. Check this box to hide the
Select button when this procedure is not called to request a record.

Update Button Prompts

The Update Procedure entry control is controlled by the Update Button control template. Type in the Update
Procedure name, or select it from the drop down list.

Procedure Properties -- Form
The Form Template provides a predefined window, with update buttons, plus an action message text
control. The control templates add no prompts to the Procedure Properties dialog.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the application.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the application .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Save Button Prompts These prompts are controlled by the Save Button control template.

Allow specifies whether Inserts, Changes, or Deletes are allowed. Check the
appropriate boxes.

Field Priming on Insert allows you to assign values to fields in new records.

Messages and Titles allows you to specify messages and their locations.

Record Validation This group is controlled by the Record Validation extension template.

Validate when the control is Accepted specifies that validity checking occurs when
the control generates an EVENT:ACCEPTED, which occurs when the end user
completes or moves the focus from the field.

Validate during NonStop Select specifies that validity checking occurs when any
control value changes if the window is in AcceptAll (Non-Stop) mode and has
focus.

Do Not Validate opens the Do Not Validate dialog, which allows you to select
fields from a drop down list. The fields you choose will be excluded from validity
checks.

Procedure Properties--Window
This procedure template functions as a blank slate, upon which you can create your own window, of any
kind. Press the Window button in the Procedure Properties dialog to create your window. For the
controls/control templates you place, field templates add embed points to handle the events they
generate. The Embeds button allows you to attach appropriate code, after you place the controls.

The only "predefined" elements of the template, which you can access via the Procedure Properties
dialog, are local variables which the executable code produced by the template uses to pass data to and
from a calling procedure. These "manage" the window and procedure, keeping track of whether the
window is open, and whether the procedure needs to respond to a global event. See also: Request and
Response

The code generated by this template processes the window that you create. It contains an ACCEPT loop
for the window, and a CASE structure for handling any field or window events.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the application.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the application .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

 After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Procedure Properties--Process

The Process procedure template sequentially processes a data file. You can specify a filter or range of
on which records to perform the operation.. A predefined window contains a progress indicator to show
the end user what percentage of the operation is complete.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Message The title displayed in the Processing records dialog.

Action for Process The action to perform for each record processed.

No record action specifies no action to performed by the process template. Use
embedded source to handle the action.

PUT record specifies that a record will be added.

DELETE record specifies that each record processed will be deleted.

Quick-Scan Records Specifies buffered access behavior for ODBC, ASCII, DOS, or BASIC files. These
file drivers read a buffer at a time (not a record), allowing for fast access. In a
multi-user environment these buffers are not 100% trustworthy for subsequent
access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable
the reread, enable QUICKSCAN.

Range and Filter Pressing this button accesses the Range and Filter dialog.

Record Filter Type an expression to limit the contents of the browse list to only those records
which match the filter expression. This filters all displayable records. When a

Record filter is used in conjunction with a Range Limit, only those records within
the specified range are filtered. See also: Using Range Limits and Filters

Range Limit Field Type in the field name or press the ellipsis (...) button to select the field from the
Component list. The Range Limit Field must be a component of the Access Key
specified in the File Schematic dialog. The range limit is key-dependent; the
generated source code uses the SET statement to find the first valid record.

Approx. Record Count This number is displayed in the progress dialog which appears during the
process.

Range Limit Type When a field is selected for Range Limit Field, this specifies the method of
determining the records for inclusion in the list box.

Current Value -- Signifies the value contained in the key field at the beginning of
the ACCEPT loop. This is the value used for the range for the duration of the
procedure.

Single Value -- Specifies a variable containing the limiting value. Only records
matching the variable are included. Enter a variable in the Range Limit Value
box which appears, or press the ellipses (...) button to select the variable from the
File Schematic.

Range of Values -- Allows you to specify upper and lower limits. Enter a variable
in the Low Limit and High Limit Value boxes which appears, or press the
ellipses (...) button to select the variables from the File Schematic.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window The Window button is disabled for this procedure type.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific

event or window related action, then add executable source code to customize
how the procedure will handle it.

 After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Procedure Properties--Menu
This template provides an SDI (Single Document Interface) window.

The predefined window contains only a single menu (File), containing a single command (Exit).

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the application.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the application .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

 After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control

templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Procedure Properties--Frame
This template provides an MDI (Multiple Document Interface) parent frame, containing a predefined shell
menu. The menu provides useful items such as an Exit command, plus the standard editing and window
management commands.

When creating an MDI application, the Frame should be the main procedure. Use the Initiate Thread code
template to start new execution threads for each MDI child window which you want to appear inside the
frame.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the allpication.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the allpication's .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's

access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the
WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the

procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Procedure Properties--External
The External Procedure Template declares a procedure is contained in an external library (*.LIB only) or
object file. The Application Generator writes no source code. The project system links in the external file
as a module.

After selecting the External template type from the Select Procedure Type dialog, choose OBJ or LIB
from the Select Module Type dialog.

Type the file name of the external library or object file in the Module Name field. Optionally type
parameter declarations in the Prototype field.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module. See also: See also: Using DLLs not created in Clarion for Windows

The MODULE name for an External procedure should not be modified. (901)

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Files This button is not valid for this procedure type.

Window The Window button is disabled for this procedure type.

Report The Report button is disabled for this procedure type.

Data This button is not valid for this procedure type.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds This button is not valid for this procedure type.

Formulas This button is not valid for this procedure type.

Extensions This button is not valid for this procedure type.

Procedure Properties--Viewer
The Viewer procedure template provides a prepopulated window which allows you to view, search, and
print an ASCII (text) file.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Operation Mode
This option allow you to override the window settings specified in the Window
Properties dialog. This allows an additional access point to modify the window's
operation mode. See also: WINDOW.

Use WINDOW Setting specifies no overrides to the window settings

Normal specifies application modal operation mode. The user must respond
before moving to any other window in the application.

MDI specifies that the window conforms to standard MDI child behavior.

Modal specifies system modal operation. A system modal window takes complete
control until the window is closed.

INI File Settings Checking the Save and Restore Window Location specifies that a window's
location is stored in the application .INI file, and will open in that position the next
time the procedure is called. This is available only if you enable INI File settings
in the Global Properties dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window Calls the Window Formatter, to visually design the window. See also: How to
Customize Your Window

The ellipsis (...) button next to the Window button allows you to edit the

WINDOW or APPLICATION structure at the source code level. Clarion for
Windows allows you to easily switch back and forth between editing the window
graphically, and editing the source code that describes it.

Tip: Take care when hand-editing code for any WINDOW which contains a control template.
The Application Generator stores Template Language attributes which cannot be edited by
hand.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

See also:

ASCII Box

ASCII Search Button

ASCIIPrint Button

CloseButton

Procedure Properties--Source
The Source Procedure template provides an elegant and simple way to add hand code to your
application. It provides two points at which to embed your code: the data section, and the code section.

The template simply declares the procedure, handles any optional parameters, places the embedded
data declarations in the data section, begins the CODE section, then places any embedded executable
code in the CODE section:

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window The Window button is disabled for this procedure type.

Report The Report button is disabled for this procedure type.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

 After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas This button is not valid for this procedure type.

Extensions This button is not valid for this procedure type.

Procedure Properties--Report
This procedure enables you to create reports. Press the Report button in the Procedure Properties
dialog to create your report. The procedure template includes a window to show the progress of the report
processing. The Procedure Properties dialog also includes a checkbox to specify whether you wish to
generate a print preview function for your report.

Description A short text description for the procedure, which appears next to the procedure
name in the Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up to 1000 characters) description.

Prototype Allows you to optionally type a custom procedure prototype which the Application
Generator places in the MAP section.

Module Name The source code file to hold the code for the procedure. Select from the drop
down list. By default, the Application Generator names modules by taking the first
five characters of the .APP file name, then adding a three digit number for each
module.

Export Procedure Declares the procedure in the export file, enabling it to be called by another
aplication. Note:This checkbox is only available when the target file specified in
Application Properties as a Dynamic Link Library (.DLL).

Parameters Allows you to specify parameter names (an optional list of variables separated by
commas, with the entire list surrounded by parentheses) for your procedure,
which you can pass to it from a calling procedure. You must specify the
functionality for the parameters in embedded source code. See also: Procedure
and Function Calls.

Window Message The message to display in the progress dialog.

Files Accesses the File Schematic Definition dialog. You can define the procedure's
access to variables or other files through the dialog.

Window The Window button is disabled for this procedure type.

Report Press this button to call the Report Formatter to visually design the window. See
also: How to Use the Report Formatter -- An Overview

The ellipsis (...) button next to the Report button allows you to edit the REPORT
structure at the source code level. Clarion for Windows allows you to easily
switch back and forth between editing the report graphically, and editing the
source code that describes it.

Data Adds or edits local variables. Press this button and fill in the Local Data dialog.
Any variables defined are local to the procedure. Define global variables by
pressing the Global button in the Application Tree dialog.

The ellipsis (...) button next to the Data button allows you to view the memory
variable declarations at the source code level.

Procedures Calls procedure made in hand-coded, embedded source.

Press this button to access the Called Procedures dialog. To add a procedure,
press the Insert button, and type a procedure name in the next dialog.

If procedure calls already exist, the names appear in the Called Procedures
dialog. To add another, press the Add button. To delete one, press the Delete
button. Additional buttons allow you to change the order of any procedures listed.

Tip: The purpose of the Procedure button is to add procedures called in embedded source
code. The normal way to add template procedures to the Application Tree is to create a
menu or toolbar command, add the procedure name via its Actions button, and let the
Application Generator automatically add it to the tree.

Embeds Displays the Embedded Source dialog. You can then select either a field specific
event or window related action, then add executable source code to customize
how the procedure will handle it.

After you choose an embed point in the Embedded Source dialog, you choose
the code to execute. You can specify a call procedure, which is then added to the
tree. You can write your own code with the text editor. Or, you can choose and
customize a code template, which is a combination of pre-written code and
prompts to "fill-in-the-blanks."

Embedded source gives you complete control over all the processing in your
procedures. It's one of the most powerful tools Clarion provides you. See also:
Adding Embedded Source Code.

Formulas Accesses the Formula Editor, which allows you to create computed and/or
conditional fields, which you can then reference in the controls you place in your
windows and reports.

Extensions Accesses extension and Control templates. Extensions, if applicable to the
procedure, can be added or modified from this dialog. If any Control templates
were placed in the window, this accesses the prompts for those Control
templates. Optionally, you can specify whether or not the prompts for an
extension or Control template should display on the procedure properties
window.

Print Preview Check this box to enable previewing of a report before printing.

Quick-Scan Records Specifies buffered access behavior for ODBC, ASCII, DOS, or BASIC files. These
file drivers read a buffer at a time (not a record), allowing for fast access. In a
multi-user environment these buffers are not 100% trustworthy for subsequent
access, because another user may change the file between accesses. As a
safeguard, the driver rereads the buffers before each record access. To disable
the reread, enable QUICKSCAN.

Access the following prompts by pressing the Range and Filter button.

Record Filter Type an expression to limit the contents of the browse list to only those records
which match the filter expression. This filters all displayable records. When a
Record filter is used in conjunction with a Range Limit, only those records within
the specified range are filtered. See also: Using Range Limits and Filters

Range Limit Field Type in the field name or press the ellipsis (...) button to select the field from the
Component list. The Range Limit Field must be a component of the report's Access
Key. The range limit is key-dependent; the generated source code uses the SET

statement to find the first valid record.

Range Limit Type When a field is selected for Range Limit Field, this specifies the method of
determining the records for inclusion in the list box.

Current Value -- Signifies the value contained in the key field at the beginning of
the ACCEPT loop. This is the value used for the range for the duration of the
procedure.

Single Value -- Specifies a variable containing the limiting value. Only records
matching the variable are included. Enter a variable in the Range Limit Value
box which appears, or press the ellipses (...) button to select the variable from the
File Schematic.

Range of Values -- Allows you to specify upper and lower limits. Enter a variable
in the Low Limit and High Limit Value boxes which appears, or press the
ellipses (...) button to select the variables from the File Schematic.

Request and Response

One of the biggest concerns of template design is inter-procedure communication. The added dimension
of multi-threading only serves to make the resolution of this problem more crucial.
In a generic template-driven system, it is impossible to require that parameters be supported in
templates. It's never certain if a Browse will be calling a Form, or if it calls a Report, etc. In fact, with
Control Templates, a form can also be a browse, and an ASCII viewer. To require users to know all of
the different parameters and their values is unreasonable. Further, building in support for functions
overcomplicates the templates to the point of unusability. Again, add in the complications of
multithreading and the system is unusable and unmaintainable.
Using global variables is acceptable, with the THREAD attribute insuring that the variable itself is safe
within a thread. Unfortunately, the value of any global variable must be called into question as soon as
any EMBED point is encountered, as the value could change with another procedure call, etc.
Any communications variable must therefore have as little happen from the time it is assigned a value and
the time that value is interpreted. This time is referred to as the Span of the variable. The shorter span,
the better the integrity of the system. The communications variable should also be considered suspect
as soon as possible. The amount of time that the variable is considered to have a valid value is referred
to as Live Time. If a variable has a short live time, its less likely to be subject to misinterpretation, and
again system integrity benefits.
To this end, we've implemented a Request and Response system in the Clarion for Windows templates.
This system was created to maintain the integrity of interprocedure communications in a fully generated
system. In other words, if no embedded source is used and no hand-coded modules are used,
confidence in system integrity is high.
There are three components to the Request and Response system:

Global Variables: GlobalRequest and GlobalResponse. In GENERATED code, there are no points
between the place that either variable is assigned a value and the place that that
value is interpreted. These variables are defined as:

GlobalRequest LONG,THREAD
GlobalResponse LONG,THREAD

NOTE: If you are creating an application that consists of more than one AppGen
created DLL, you MUST check the "Generate Internal Global Data as
EXTERNAL" check box for all DLLs except one. Likewise, you MUST check the
"Generate Internal Global Data as EXTERNAL" check box for each APP creating
an .EXE.

Local Variables: LocalRequest, LocalResponse, OriginalRequest. LocalRequest and
OriginalRequest are assigned value immediately after the CODE statement.
LocalResponse is assigned a value before a bit of code signals the exit of the
procedure. Right before the procedure RETURNs, GlobalResponse is assigned
the value of LocalResponse.

Enumerated EQUATEs:
These are primarily to increase readability of the code. The actual numbers
themselves are inconsequential, with one exception; Request values less than 0
are reverved for use in multi-page systems.

InsertRecord EQUATE (1) ! Add a record to table
ChangeRecord EQUATE (2) ! Change the current record
DeleteRecord EQUATE (3) ! Delete the current record
SelectRecord EQUATE (4) ! Select the current record
RequestCompleted EQUATE (1) ! Update Completed
RequestCancelled EQUATE (2) ! Update Aborted

Using Range Limits and Filters

There are many times that you will want to view, process, or report a sub-set of records from a file.
There are two ways to do this:

Range Limit
Filters

Each method has its tradeoffs. Range Limits are much faster to process, but they require that a
procedure or control use a limited key as the primary key. Filters are more flexible, since they don't
require any special key manipulation, but they are much slower. In any procedure that does sequential
processing, you can specify a Range Limit Field, and the type of Range Limit you want to use. The types
provided are:
Current Value -Value Limited Keyed Access
The key element specified in the Range Limit Field prompt is the final Fixed Key Element. With this kind
of Range Limit, the value of all Fixed Key Elements are saved when the procedure is initialized. These
values are used for the duration of the procedure.
Single Value-Value Limited Keyed Access
The key element specified in the Range Limit Field prompt is the final Fixed Key Element. With this kind
of Range Limit, the values of all Fixed Key Elements EXCEPT the final Fixed Key Element are saved
when the procedure is initialized. The final Fixed Key Element is assigned the value specified in the
Range Limit value prompt. This value can be either a variable or fixed value. This value is reevaluated
each time a page or entry is loaded or processed.
Range of Values -Ranged Key Access
The key element specified in the Range Limit Field prompt is the first Free Key Element. With this kind
of Range Limit, the values of all Fixed Key Elements except the final Fixed Key Element are saved when
the procedure is initialized. The Low Limit and High Limit Values are used to set the keys for sequential
access and to evaluate each record read to insure it is within the valid range. These values can be either
fixed values or variables. If variables are used, these variables are reevaluated each time a page or
entry is loaded or processed.
Browse Box Only - File Relationship - Value Limited Key Access
All Fixed Key Elements are assigned values as defined in a relationship in the data dictionary. With this
kind of Range Limit, it is possible to have multiple Browse Box control templates populated on a window,
and as long as the relationships are defined and used, when a parent Browse Box goes out of range, all
children (and grandchildren, etc.) Browse Boxes and Controls will automatically be reconstructed.

You must BIND any variables used in a filter expression. Add the variable to the Hot Fields list, and
check the Bind Field box.

Global Properties
This dialog specifies application level options for file processing, .INI file support, plus allows you to define
global variables.

This topic also provides help for two additional dialogs which you can access through the Global
Properties dialog. They help you to optionally manage the file controls individually, rather than globally,
and are explained below.

Program Author Allows you to add your own name, which is then added into the .APP file.

MSG The Use Field Description as MSG() When MSG() is Blank checkbox specifies
the Application Generator will fill the MSG field in the Field Properties dialogs with
the text you type in the Description field.

EXTERNAL The Generate Global Data as EXTERNAL checkbox specifies that any global
variables should automatically receive the EXTERNAL attribute. This setting is
most often used when creating an application that uses a dynamic link library
(.DLL) which already has the Global Data declared.

NOTE: If you are creating an application that consists of more than one AppGen
created DLL, you MUST check the "Generate Internal Global Data as
EXTERNAL" check box for all DLLs except one. Likewise, you MUST check the
"Generate Internal Global Data as EXTERNAL" check box for each APP creating
an .EXE.

Data Press the Data button to open the Global Data dialog, which allows you to
declare or edit global variables.

Embeds This provides access to the global data section, to the points at which the default
application opens all files, and at the point when processing errors in case of a
problem opening the files. The embed points include before opening the file,
immediately after opening a file with no error, opening the file with an error, upon
finding a bad key, and others.

To access the embed points, press the Embed button. As with any embed point,
you can write your own custom code, call a procedure, or use a code template.
The Application Generator, when generating code, places your code or calls your
procedure at the next source code line following the point you pick from the
Embedded Source dialog.

See also Adding Embedded Source Code, for more information on adding
embedded source code to the code generated by the Application Generator.

INI File Settings

Allows you to specify that the application should create and use a standard .INI
(initialization) file. This file is an ASCII file which stores variables for an
application between session.

Use .INI file to save and restore program settings
You can automatically specify, for example, that the program remember where
the end user placed the window(s) at the end of each session, by checking the
Use .INI File to Save and Restore Program Settings box.

.INI File to use Once you check the box, optionally specify the .INI file name. By default, the

application creates a .INI file with the same file name as your application. If you
wish to create a custom name, select the Other choice from the .INI File to Use
drop down list, then type in a file name in the Other File Name box.

File Control Flags

The File Control Flags dialog allows you to override some of the settings in your dictionary, as well as
define how procedures will access files. You can specify file attributes for all files, or individually.

Generate all File Declarations
Generates all file declarations in the dictionary, even if not specified in any
procedure's file schematic.

When Done Specifies whether the application automatically closes each file when a
procedure is finished.

Tip: One way in which you can design your application to be a "well-behaved" Windows
application is not to hog system resources. One limited resource is file handles. You can
"give back" file handles not in use with the Close Unused Files checkbox.

Enclose RI code in transaction frame
Enables rollback of data if an update fails.

Tip: If all files in a relation chain are using the same file system, and the file system supports
transaction framing, and you do not want transaction framing around the RI code, you must
clear the check box for each file in Individual File Overrides and in Global Settings. (0003)

LOGOUT() When your data dictionary includes a file driver which does not support the
LOGOUT() function, which is used in the Referential Integrity checking routines,
this enables a warning at compile time.

You should be sure that the Issue Template Warning if LOGOUT() is Not
Allowed check box is unchecked for drivers such as dBase III. See also:
Database Drivers .

File Attributes

Threaded Specifies whether your application should add the THREAD attribute to the
FILE structure.

This is required for multiple-thread MDI access for browse and form procedure, to
prevent record buffer conflicts when the end user changes focus from one thread
to another.

You can use the file setting, as defined in the data dictionary, or optionally specify
that all files be threaded, or none.

Create Specifies whether your application should allow the creation of a data file should
it not exist, choose

You can use the file setting, as defined in the data dictionary, or optionally specify
that all files be created, or none.

External Adds the EXTERNAL attribute. This is useful when working with dynamic link
libraries. You can additionally specify which module should contain the
declarations

File Access

Open Mode To specify that your application always open a file in share mode, choose Share
from the File Open Mode drop down box. To disable Shared mode access,
choose Open.

Choose Other to specify exactly how the end user of your application accesses
the file.

In the Other Open Mode options, which then appear, you can specify that your
application opens the file in read only mode, write only, or read and write.

You can specify that other users, when your application has a file open, are
denied write access, read access, read and write access, or are not denied any
access.

Individual File Overrides

The Individual File Overrides button allows you to change the settings of the
files you select. These include the file attributes, open mode, and what to do
when done with the file.

Press the button to open a dialog which helps you to manage the overrides.
Select a file, then press the Edit button. In the dialog which then opens, you can
set File Control Flags for just that file.

Free Key Element
Any Element of a key whose value is fluid for the duration of a browse or report. No Free key Element
may occur at any point in the key before the final Fixed Key Element.

Module Properties
This dialog allows you to specify settings for an individual source code document file. You must first view
the Application Tree in module view to access this dialog. To do so, you choose View Module View
from the IDE menu. Then press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Module Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

Module Properties
This dialog allows you to specify settings for an individual source code document file. You must first view
the Application Tree in module view to access this dialog. To do so, you choose View Module View
from the IDE menu. Then press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Module Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

Module Properties

This dialog allows you to specify settings for an individual source code document file. You must first view
the Application Tree in module view to access this dialog. To do so, you choose View Module View
from the IDE menu. Then press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Module Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

Module Properties
Use this Module template when inserting an External Dynamic Link Library. This add the DLL() attribute to
exported procedures.

This dialog allows you to specify the settings for an External .DLL file. You must first view the Application
Tree in module view to access this dialog. To do so, you select the Module tab from the IDE menu. Then
press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Module Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

Program Properties
This dialog allows you to specify settings for an individual source code document file. You must first view
the Application Tree in module view to access this dialog. To do so, you choose View Module View
from the IDE menu. Then press the Properties button to open this dialog.

Name Allows you to specify the file name for the module.

Description Allows you to add a short description, which appears in the Application Tree
when in Module View.

Type Allows you to choose from the Select Program Type dialog.

Allow Repopulate Specifies the Application Generator may move procedures from this and other
modules.

Map Include File Allows you to specify a source code file to include in the data declarations section
of the module.

Refresh Window routine
The Refresh Window routine is used by the templates to keep the values displayed current. This routine is
called whenever a control's value is modified, or in the case of a list box, a different record is highlighted.
The routine reevaluates the display conditions for all window controls, and displays the correct value.

Alpha distribution
The Alpha distribution divides the scroll bar into 26 segments--one for each letter of the alphabet. Moving
the thumb to a segment displays the first record beginning with the segment corresponding letter. For
example, moving the thumb to the third segment displays the first record beginning with the letter c. If no
records begin with c, the record with the closest higher value is highlighted.

Last Names distribution
The Last Names distribution divides the scroll bar into 100 segments. Each of these segments is
assigned a value based on the distribution of names in an average U.S. telephone book. Each segment is
assigned a value and positioning the thumb at that segment displays the first record matching that value.
If no records begin with the value, the record with the next closest higher value is highlighted.
The pre-defined Last name distribution is a more accurate method than Alpha when displaying names
because names are not evenly distributed alphabetically.
For example, the Browse Box control template uses these values
<null>
ALB
AME
ARN
BAK
BAT
BEN
...

Positioning the thumb on the third segment, highlights the first record beginning with the letters AME. If no
records match, the next highest next closest higher value is highlighted.

Fixed Thumb
A fixed thumb positions the thumb (or elevator bar) in the center of the scroll bar. Clicking in the scroll bar
above the thumb moves up one page at a time. Clicking in the scroll bar below the thumb moves down
one page at a time.

Movable Thumb
A movable thumb positions the thumb (or elevator bar) at the top of the scroll bar when the browse box is
initialized. Clicking in the scroll bar above the thumb moves up one page at a time. Clicking in the scroll
bar below the thumb moves down one page at a time. Draging the the thumb up or down to a position,
highlights the closest matching record for that position in the scroll bar. This is dependant on the type of
vertical scroll bar behavior you specify.
See Alpha, Last Names, Custom, or Runtime.

Custom
This allows you to specify the break points for distribution along the scroll bar. This is useful when you
have data with a skewed distribution. Insert the values for each point in the list. This divides the length of
the scroll bar into segments. Each value you insert in the list creates a segment. For example, if you
specify ten values, the scroll bar is divided into ten segments. Positioning the thumb on the third segment,
highlights the first record beginning with the value of the value of the third item you've inserted in the list.
If no records match, the next highest next closest higher value is highlighted.
You can use numeric or string constants, or variables. String constants should be enclosed in single
quotes (').

Runtime
The Browse Box is initialized and computes the values for 100 break points based on the first and last
record in the Range.The distribution points are determined only when the file is opened, therefore there is
no performance penalty. The lowest value in the key is subtracted from the highest value to estimate the
range of numbers, 100 evenly distributed points in that range are determined and used to control the
vertical scroll bar behavior.

Step
The user types in a single character to advance the cursor bar in the list box to the record that contains
the nearest match in the key field. Use this type of locator only when the first Free Key Element is a
STRING, CSTRING, or PSTRING. If no free key element is available, the application generator converts
a step locator to None.

Entry Locator
 An entry box holds the value for the locator. When the end user places a value in the entry box, pressing
TAB or reselecting the list box moves the selection to the nearest matching record. If an entry control is
not placed in the window, the application generator converts an Entry locator to a Step locator.

If you use the same field more than once as a locator, you must override the default locator. For example,
if you have a multi-keyed browse which has an ascending key and a descending key on the same field.
To use a separate controls (as on separate TABs) for each condition, check the override box and select
the second instance from the drop-down list.

Incremental Locator
When the end user types one or more characters, the list box moves the selection to the nearest
matching record. Backspace clears the characters, one-by-one, moving the highlight bar to the nearest
matching record of the remaining characters. If a STRING control is placed in the window, the characters
display, allowing the user to see the characters as they are entered or cleared. If an ENTRY control is
placed in the window, the locator works like an Entry Locator when the entry control has focus.

If you use the same field more than once as a locator, you must override the default locator. For example,
if you have a multi-keyed browse which has an ascending key and a descending key on the same field.
To use a separate controls (as on separate TABs) for each condition, check the override box and select
the second instance from the drop-down list.

Current Value
Signifies the value contained in the key field at the beginning of the ACCEPT loop. This is the value used
for the range for the duration of the procedure.

Single Value
Specifies a variable containing the limiting value. Only records matching the variable are included. The
variable is reevaluated whenever the window is refreshed (See also: Refresh Window routine). Enter a
variable in the Range Limit Value box which appears, or press the ellipses (...) button to select the
variable from the File Schematic.

Range of Values
Allows you to specify upper and lower limits. Enter a variable in the Low Limit and High Limit Value boxes
which appears, or press the ellipses (...) button to select the variables from the File Schematic.

File Relationship
Allows you to choose a range limiting file from a 1:MANY relationship. The Range Limiting field must be
the "One" side of a One-to-Many Relationship with the Browse Box's Primary File. The relation's linking
key must be the same as the Access Key for the Browse Box. Enter a file in the Related File box, or
press the ellipses (...) button to select it from the File Schematic.

Fixed Key Element
An element of a KEY which has a fixed value for th displayable records. For example, when setting a
range limit of a single value, all key components up to and including the range limit field have a fixed
value. Any key components following the Fixed Key Elements are Free Key Elements.

Application Wizard utility template
This wizard creates a complete application from an existing dictionary. It creates a Frame containing a
menu with options calling all procedures it creates. It also creates Browse and Report procedures each
specified file, with associated Form (Update) procedures.

To use the Application Wizard:

1. Optionally, in File Manager, choose File Create Directory, type a subdirectory name and
press OK.

Or else, use the DOS prompt, and the MkDir command.

2. Choose File New (or press the
 button on the toolbar).

The New file dialog appears.

3. Choose Application by CLICKING on the tab.

4. Type a name for the .APP file in the Application File field. If you want to use the Quick Start
wizard, check the box below the file list. See Using the Quick Start Wizard.

Type a legal DOS filename. Clarion automatically adds the .APP extension.

The Application Properties dialog appears. This dialog allows you to define the essential files for the
application.

5. Name the .DCT file the application will use in the Dictionary File field, or press the ellipsis (...)
button to select the file in the Select Dictionary dialog.

See How to Create a Data Dictionary for information on creating your application's data dictionary. The
Select Dictionary dialog is a standard Open File dialog.

The Application Generator does not require a data dictionary to generate an application, if you uncheck
the Require a dictionary box in the Application Options dialog.

6. Do Not rename the first procedure from MAIN.

7. Choose the Destination Type from the drop down list.

This defines the type of target file for your application. Choose from Executable (.EXE), Library
(.LIB), or Dynamic Link Library (.DLL).

8. Optionally, type a name for the application's .HLP file in the Help File field, or use the ellipsis (...)
button to select the file in the Open File dialog.

The Application Generator does not require that the .HLP file exist at this point. You can leave the field
blank for now, then fill in the field at a later time.

The Application Generator allows you to name the help topics in your application without determining that
the help file exists. You are responsible for creating a .HLP file that contains the context strings and
keywords that you optionally enter as HLP attributes for the various controls and dialogs.

9. Accept the default Clarion template in the Application Template field.

The selected application template controls code generation.

10. Check the Application Wizard box to use the wizard to create a complete application based on
the selected dictionary and a few answers you specify.

11. Press the OK button.

The Application Wizard dialogs appear.

12. Answer the question(s) in each dialog, then press the Next button. On the last dialog, the Finish

button is enabled. If you are satisfied with your answers, press the Finish button.

The Application Wizard creates the .APP file based on the dictionary and the answers you provided, then
displays the Application Tree dialog for your new application.

You can control some of the wizard options in the Data Dictionary by specifying Options for Files, Fields,
Keys, or relations. See Using Wizard Options for more information.

Browse Procedure Wizard utility template
This wizard creates a multi-keyed Browse Procedure from an existing dictionary file definition. It also
creates associated Form (Update) procedures, if you specify that updates are allowed.

To use the Browse Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press enter.

The Select Procedure dialog appears.

2. Select Browse from the list of Procedure templates.

3. Check the Procedure Wizard box to use the wizard to create the procedure based on the
selected dictionary file and a few answers you specify.

4. Press the Select button.

The Procedure Wizard dialogs appear.

5. Answer the question(s) in each dialog, then press the Next button. On the last dialog, the Finish
button is enabled. If you are satisfied with your answers, press the Finish button.

The Procedure Wizard creates the procedure(s) based on the dictionary file and the answers you
provided, then displays the Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by specifying Options for Files, Fields,
Keys, or relations. See Using Wizard Options for more information.

Form Wizard utility template
This wizard creates an update Form Procedure from an existing dictionary file definition.

To use the Form Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press enter.

The Select Procedure dialog appears.

2. Select Form from the list of Procedure templates.

3. Check the Procedure Wizard box to use the wizard to create the procedure based on the
selected dictionary file and a few answers you specify.

4. Press the Select button.

The Procedure Wizard dialogs appear.

5. Answer the question(s) in each dialog, then press the Next button. On the last dialog, the Finish
button is enabled. If you are satisfied with your answers, press the Finish button.

The Procedure Wizard creates the procedure based on the dictionary file and the answers you provided,
then displays the Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by specifying Options for Files, Fields,
Keys, or relations. See Using Wizard Options for more information.

Report Wizard utility template
This wizard creates a Report Procedure from an existing dictionary file definition.

To use the Report Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press enter.

The Select Procedure dialog appears.

2. Select Report from the list of Procedure templates.

3. Check the Procedure Wizard box to use the wizard to create the procedure based on the
selected dictionary file and a few answers you specify.

4. Press the Select button.

The Procedure Wizard dialogs appear.

5. Answer the question(s) in each dialog, then press the Next button. On the last dialog, the Finish
button is enabled. If you are satisfied with your answers, press the Finish button.

The Procedure Wizard creates the procedure based on the dictionary file and the answers you provided,
then displays the Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by specifying Options for Files, Fields,
Keys, or relations. See Using Wizard Options for more information.

Menus
Dictionary Editor
Application Generator
Text Editor
Window Formatter
Report Formatter
Database Manager

Dictionary Editor Menu Commands

The Data Dictionary is the central repository information concerning your application's data. The
Dictionary file--.DCT--stores file names, file structures, file relations, file aliases and views, field names,
lengths, and data types, field validity checks, field entry pictures, keys, indexes, plus much more such as
status bar help messages by field and default prompt values by field.

The Application Generator uses the Data Dictionary to generate source code, such as file declarations,
which it places in the data section of the generated source code files. It also uses the dictionary to
provide, for example, entry pictures when formatting entry dialogs for the end user.

The following lists the menu commands available from within the Dictionary Editor. Many dialog also
have Help buttons which you can press to view a help topic specifically about that dialog (the F1 key
calls the same topic when the dialog is open).

See also: How to Create a Data Dictionary

Note that some of the commands, most notably on the Project and Setup menus, do not specifically
reference Dictionary Editor functions. Because the Project System and the Registries are always active,
their menu commands must be accessible.

File Menu
New Opens the New dialog, which allows you to create a new dictionary or other type

of file.

Open Calls the Open File dialog, allowing you to open a Dictionary file.

See also: Opening a Clarion Database Developer 3.0 Data Dictionary

Pick Calls the Pick dialog, listing the most recently used files in a list box.

Close Closes the currently active Dictionary.

Save Saves the currently active Dictionary.

Save As Saves the currently active Dictionary under a new name which you specify.

Save All Saves all the currently open Dictionaries.

Print Prints the currently active document, if for example, a text document is open.

Print Setup Calls the Printer Setup dialog, allowing you to configure your printer.

Import File Allows you to add a file definition from an existing data file to the current
dictionary. Just choose the file and driver, in the Import File dialog which this
command opens.

Tip: To import a file definition for an ODBC source
which stores multiple tables in the same file
(such as Microsoft Access), be sure the Data
Source is correctly specified in the ODBC.INI file.
Then select the Data Source and the table in the
dialogs that appear. The import will add all fields
except memos., and you must also manually
define the keys.

Import Text Allows you to import a dictionary stored in .TXD (text) format. This is provided for
compatibility with Clarion for DOS.

Export Text Allows you to export a dictionary stored in .TXD (text) format. This is provided for
compatibility with Clarion for DOS.

Browse file Loads the Database Manager to browse the currently selected file.

Browse Database Loads the Database Manager

Exit Quits the program.

Edit Menu
Cut Deletes the currently selected file definition, field, or key from the dictionary and

places it in the clipboard.

Copy Places a copy of the currently selected field, or key from the dictionary into the
clipboard.

Paste Pastes the previously copied file definition, field, or key from the dictionary from
the clipboard into the currently active dictionary.

Add File Adds a new file to the currently active dictionary.

Add Alias Adds a new alias to the currently active dictionary.

Add View Adds a new view to the currently active dictionary.

Properties Depending on the dialog, calls the Properties dialog for the selected file, alias,
field, key, etc., from the currently active dictionary.

Fields/Keys Calls the Field/Key Definitions dialog for the currently selected file.

Delete... Depending on the dialog, deletes the selected file, alias, field, key, etc., from the
currently active dictionary. The actual commands vary according to the buttons in
the active dialog which "delete" something to a list in the dialog.

Add Relation Adds a new file relation to the currently active dictionary.

Relation Properties Calls the Properties dialog for the selected file relation.

Delete Relation Deletes the selected file relation from the currently active dictionary.

Dictionary Properties Opens the Dictionary Properties dialog for the active dictionary.

Version Menu
Checkpoint Adds one revision step to the current dictionary.

The Dictionary Editor automatically places an internal version number in your
dictionary file. A new dictionary automatically starts with version 1.0. You can see
the version number/revision number on the caption bar of the Dictionary dialog.
The Dictionary Properties dialog also displays the original creation date and
time, and the last modified date and time.

You should increase the version number, manually, whenever you make
significant changes to a dictionary; for example, when you're working on version
#2 of your application. The revision number (r. #) on the caption bar increases by
one.

Revert Rolls back to a previous version. Choose the revision to revert to by selecting it
with the spin control in the Previous Revision dialog.

Project Menu
Set Calls the Open File dialog, allowing you to change the active .APP or .PRJ.

New Calls the New Project File dialog, allowing you to create a new project.

Load Opens the Project Tree dialog for hand coded projects, or Application Tree

dialog for generated projects.

Edit Opens the Project Tree dialog, allowing you to add or edit component files in the
current project.

Make Compiles and links the currently active application or project, which is named on
the caption bar.

Run Executes the currently active application or project, which is named on the
caption bar.

Debug Loads the Debugger and prepares the active application or project, listed on the
caption bar, for debugging.

Make Statistics Calls the Make Statistics dialog. Allows you to view a statistical profile of the
most recent make. Data on the size of each module size, including code and data
size, will appear in the dialog.

Auto Make Before RunToggles the Project System setting which forces a recompile each time you
choose the Run command.

File Save Before Run Toggles the Project System setting which saves the source code file each time
you choose the Run command.

Minimize on Run Toggles the Project System setting which minimizes CW before displaying the
application each time you choose the Run command.

Wait for Termination on Run
Toggles the Project System setting which suspends CW until after you terminate
the application upon executing it with the Run command.

Setup Menu
Editor Options Calls the Editor Options dialog, which allows you to customize the appearance

and behavior of the Text Editor.

Dictionary Options Calls the Dictionary Options dialog, which allows you to specify default settings
for the Dictionary Editor.

Application Options Calls the Application Options dialog, which allows you to specify default
settings for the Application Generator.

Template Registry Calls the Template Registry dialog, which allows you to register and manage
templates.

Database Driver Registry
Calls the Database Driver Registry, which allows you to register database
drivers.

VBX Custom Control Registry
Calls the VBX Custom Control Registry dialog, which allows you to register
VBX controls.

Edit Redirection File Loads the Redirection File in a document window, ready for editing.

Window Menu
Tile Vertically Arranges open document windows side by side in a vertical orientation.

Tile Horizontally Arranges open document windows side by side in a horizontal orientation.

Cascade Arranges open document windows in overlapped fashion so that all caption bars
are visible

Arrange Icons Arranges iconized windows along the bottom of the Clarion for Windows
Application frame.

(Window List) Lists all open document windows by their caption bar text according to the order
they were opened. Choosing a window from the list brings the window to the top.

Help Menu
Contents Opens the Windows Help application and displays a list of main topics.

Search for Help On Opens the Search dialog in the Windows Help application, allowing you to
search for help topics containing a specific keyword.

How to Use Help Opens the Windows Help application and displays instructions for using the Help
system.

About Clarion Displays the program name, version, registration, and copyright information.

Application Generator Menu Commands

The Application Generator generates your application's code based on the predefined templates you
choose from the template registry.

The following lists the menu commands available from the Application Generator. Many dialogs also
have Help buttons which you can press to view a help topic specifically about that dialog (the F1 key
calls the same topic when the dialog is open).

Note that some of the commands, most notably on the Project and Setup menus, do not specifically
reference Application Generator functions. Because the Project System and the Registries are always
active, their menu commands must be accessible.

File Menu
New Opens the New dialog, which allows you to create a new application file, a new

dictionary file, a new source file, or other type of file. You cannot create a
new .APP file until you close the current one. You may invoke the Quick Start
Wizard to help create a new .APP.

Open Calls the Open File dialog, allowing you to open another application, dictionary,
source or other file (you must first close the current .APP before opening
another).

Pick Calls the Pick dialog, listing the most recently used files by category.

Close Closes the currently active .APP file.

Save Saves the currently active .APP file.

Save As Saves the currently active Application under a new name which you specify.

Save All Saves all the currently open files.

Print Prints the currently active document, if for example, a text document is open.

Print Setup Calls the Printer Setup dialog, allowing you to configure your printer.

Import From Application
Allows you to import a procedure from another .APP file. Select the file from the
Open File dialog. Then choose a procedure (or procedures) from the Select
Items to Import dialog.

You can select an item by DOUBLE-CLICKING on it. A check mark appears to
indicate the item is selected. Select additional items DOUBLE-CLICKING. De-select
an item by DOUBLE-CLICKING a previously selected item. Note: Both applications
must use the same dictionary.

Warning: When importing, CW1.5 converts the
incoming .APP to CW1.5 format, consequently it
can no longer be opened using an older version
of CW.

See also: TXA Import Considerations

Import Text Imports the procedures defined in a .TXA (text) file, created with the Export Text
(see below) command.

Export Text Allows you to create a .TXA (text) file from the current application.

Selective Export Allows you to create a .TXA (text) file containing only the selected procedure.

Browse Database Allows you to browse and edit a database file defined in the current dictionary.
Select the file from the Pick file dialog, or the Open File dialog after specifying a
database driver.

Exit Quits the program.

Edit Menu
Properties Calls the currently selected procedure's Procedure Properties dialog.

Equivalent to the Properties button.

Window Calls the Window Formatter to visually design a window for the selected
procedure.

Report Calls the Report Formatter to visually design a report for the selected
procedure.

Data Calls the Local Data dialog to manage memory variables local to the selected
procedure. Press the Properties or Insert button to define variables using the
Data Dictionary's Field Properties dialog.

Embeds Calls the Embedded Source dialog to manage embedded source code for the
selected procedure.

Extensions Calls the Extension and Control Templates dialog to manage template
generated code added to the selected procedure.

Find Allows you to search for a procedure by name. This can be very useful in a large
application with dozens of procedures. Type a string to search for in the Search
for Procedure dialog.

Find Next Allows you to search for another procedure, using the same search string as the
previous search. If you did not search previously, the Search for Procedure
dialog appears.

Edit by Name Allows you to type the name of a procedure in the Edit Procedure by Name
dialog, then opens the Procedure Properties dialog of the procedure you typed
in. This can be very useful in a large application with many procedures.

Delete Equivalent to the Delete button. Deletes the currently selected procedure, leaving
it as a ToDo item in your Application Tree. To remove it completely, remove the
statement that calls the procedure.

Application Menu
Properties Displays the Application Properties dialog for specifying changes to the .APP

file.

Global Properties Displays the Global Properties dialog. Equivalent to using the Global button in
the Application Tree dialog. Set file handling and other application defaults.

Change Dictionary Allows you to name a new data dictionary for the application. Type a file name in
the Select New Dictionary dialog, or press the ellipsis (...) button to choose a
new dictionary file from the Open File dialog.

If your procedures already reference fields in one dictionary, the Application
Generator can only match fields from the new dictionary if both the FILE structure
prefix and the RECORD fields are exactly the same. The New Dictionary dialog
provides a warning message.

Insert Module Specifies a new MODULE for generated source code. You can also specify an
external .LIB or .OBJ file to add to the project

Template Utility Calls add-in utilities, including CW Wizards. Write your own or install third-party
utilities. A simple example is provided in the Template Language Reference.

Redistribute Procedures
Allows you to change the number of procedures per module. Specify the new
number in the Select Procedures per Module dialog. The Application Generator
then redistributes the procedures among the modules, according to the new
procedures per module number.

Repopulate Modules Allows you to change the number of procedures per module, but still keep related
procedures together in the same module. Specify the new number in the Select
Procedures per Module dialog. The Application Generator then redistributes the
procedures among the modules, according to the new procedures per module
number. Your application may execute slightly faster if you group procedures
which commonly execute together in the same module

Renumber Modules Renumbers the modules created by the Application Generator. This is useful for
large projects from which procedures have been deleted.

Delete Empty Modules
Removes empty generated source code modules from the project. This is useful
for large projects from which procedures have been deleted.

Delete Empty Libraries
Removes empty external source code modules, .LIB files, and .OBJ files from the
project. This is useful for large projects from which procedures have been
deleted.

Procedure Menu
New Adds a procedure not connected to the procedure tree.

Rename Allows you to change the name of the currently selected procedure. Type a new
name in the Rename dialog box. Don't forget to change the calling statement too.

Copy Copies the currently selected procedure to a new procedure, which you name.

Change Module Allows you to move the currently selected procedure from one source module to
another. Select the destination in the Select Destination Module dialog. Your
application may execute slightly faster if you group procedures which commonly
execute together in the same module.

Change Template Type
Allows you to change the procedure type for the currently selected procedure.
Select a new procedure template in the Select Procedure Type dialog.

Project Menu
Set Calls the Open File dialog, allowing you to change the active .APP or .PRJ.

New Calls the New Project File dialog, allowing you to create a new project.

Load Opens the Project Tree dialog for hand coded projects, or Application Tree
dialog for generated projects.

Edit Opens the Project Tree dialog, allowing you to add or edit component files in the
current project.

Make Compiles and links the currently active application or project, which is named on
the caption bar.

Run Executes the currently active application or project, which is named on the
caption bar.

Debug Loads the Debugger and prepares the active application or project, listed on the
caption bar, for debugging.

Make Statistics Calls the Make Statistics dialog. Allows you to view a statistical profile of the

most recent make. Data on the size of each module size, including code and data
size, will appear in the dialog.

Auto Make Before Run
Toggles the Project System setting which forces a recompile each time you
choose the Run command.

File Save Before Run Toggles the Project System setting which saves the source code file each time
you choose the Run command.

Minimize on Run Toggles the Project System setting which minimizes CW before displaying the
application each time you choose the Run command.

Wait for Termination on Run
Toggles the Project System setting which suspends CW until after you terminate
the application upon executing it with the Run command.

Generate Generates code for all modules that have changed since last code generation.

Generate All Generates code for all modules.

Note: If you use the DOS command line, or File Manager to delete one of
the .CLW files in the current project, please execute this command to regenerate
the file. When executing a Make, the Application Generator attempts to
regenerate only those source code files which were changed within the
Application Generator. (1351)

Properties Opens the Project Tree dialog, allowing you to add or edit component files in the
current project.

Setup Menu
Editor Options Calls the Editor Options dialog, which allows you to customize the appearance

and behavior of the Text Editor.

Dictionary Options Calls the Dictionary Options dialog, which allows you to specify default settings
for the Dictionary Editor.

Application Options Calls the Application Options dialog, which allows you to specify default
settings for the Application Generator.

Template Registry Calls the Template Registry dialog, which allows you to register and manage
templates.

Database Driver Registry Calls the Database Driver Registry dialog, which allows you to register
database drivers.

VBX Custom Control Registry Calls the VBX Custom Control Registry dialog, which allows you to
register VBX controls.

Edit Redirection File Loads the Redirection File in a document window, ready for editing.

Window Menu
Tile Vertically Arranges open document windows side by side in a vertical orientation.

Tile Horizontally Arranges open document windows side by side in a horizontal orientation.

Cascade Arranges open document windows in overlapped fashion so that all caption bars
are visible

Arrange Icons Arranges iconized windows along the bottom of the Clarion for Windows
Application frame.

(Window List) Lists all open document windows by their caption bar text according to the order
they were opened. Choosing a window from the list brings the window to the top.

Help Menu
Contents Opens the Windows Help application and displays a list of main topics.

Search for Help On Opens the Search dialog in the Windows Help application, allowing you to
search for help topics containing a specific keyword.

How to Use Help Opens the Windows Help application and displays instructions for using the Help
system.

About Clarion Displays the program name, version, registration, and copyright information.

Window Formatter Menu Commands

The Window Formatter helps you visually design Window elements--windows and controls--on screen.
The Window Formatter automatically generates and places the language structures and source code
that describe these elements in your .APP file or source code document. See also: How to Customize
Your Window

Exit!
Exits the Window Formatter. You are prompted to save or discard any changes.

Edit Menu
Undo Reverses the most recent editing action.

Redo Reverses the most recent undo action.

Properties Opens the Properties dialog for the currently selected window or control.

Embeds Opens the Embedded Source dialog for the currently selected window or
control. Allows you to manage embedded source at embed points associated
with the window or control.

Font Opens the Select Font dialog for the selected window or control. Choose
typeface, size, style, color, etc. from standard drop down lists.

Key Opens the Input Key dialog for the selected control. Establish a hot key, or key
combination, that gives immediate focus to the control, or for buttons, initiates the
button's action.

Alert Opens the Alert Keys dialog for the selected control. Add or delete one or more
keys, or key combinations, that will generate an event:ALERT when the control
has focus.

Position Opens the Properties dialog to the Position tab for the selected window or
control. Specify default positioning, size, and/or exact x and y coordinates.

List Box Format Opens the List Box Formatter for the selected list box control. Add, delete,
resize, and reorder the fields in the list box. Format the fields or groups of fields.

Actions Opens the Properties dialog to the Actions tab for the selected control. Specify
a variety code options depending on the type of control and the template
associated with the control.

Delete Deletes the currently selected window or control.

Duplicate Places a copy of the currently selected control or controls in the window under
construction. Only the control is duplicated, associated template code is not
duplicated.

Set Tab Order Opens the Ordering Type dialog, which allows you to visually specify the tab-
stop order of the controls in the window.

Manual - Select this radio button, then press the OK button to specify the tab-
stop order by CLICK on the controls. A small box with a number inside appears on
each control, indicating the current order. CLICK on the controls to change the
order to the order you wish.

Automatic - Select this radio button, then press the OK button to specify that the
Window Formatter should set the tab-stop order based on the position of the
controls. Choose Horizontally or Vertically from the options below.

Reselect the Set Tab Order menu command to toggle back to normal editing

mode.

Control Templates Opens the Edit Control Templates dialog, which allows you to access the
Prompts dialogs of any control templates in the window. This is equivalent to
RIGHT-CLICKING a control template, then choosing Actions from the popup menu.

Set Control Order Opens the Order Controls dialog for the window. Allows you to move controls
between tabs, and specify the tab-stop order of the controls in the window by
reordering a list of controls.

Control Menu
Push Button Allows you to place a BUTTON control on the window under construction. See

also the Button Properties dialog.

Radio Button Allows you to place a RADIO control on the window under construction. See also
the Radio Button Properties dialog.

Check Box Allows you to place a CHECKBOX control on the window under construction.
See also the Check Box Properties dialog.

Entry Field Allows you to place an ENTRY control on the window under construction. See
also the Entry Properties dialog.

Text Field Allows you to place a TEXT control on the window under construction. See also
the Text Properties dialog.

Spin Box Allows you to place a SPIN control on the window under construction. See also
the Spin Properties dialog.

String Allows you to place a STRING control on the window under construction. See
also the String Properties dialog.

Prompt Allows you to place a PROMPT control on the window under construction. See
also the Prompt Properties dialog.

Group Box Allows you to place a GROUP control (group box) on the window under
construction. See also the Group Properties dialog.

Option Box Allows you to place an OPTION control (OPTION structure, which appears as a
group box with radio buttons) on the window under construction. See also the
Option Properties dialog.

List Box Allows you to place a LIST control (list box, or drop down list box) on the window
under construction. See also the List Properties dialog.

Combo Box Allows you to place a COMBO control (combo box, or drop down combo box) on
the window under construction. See also the Combo Properties dialog.

Ellipse Allows you to place an ELLIPSE control on the window under construction. See
also the Ellipse Properties dialog.

Line
Rectangle Allows you to place a BOX control on the window under construction. See also

the Box Properties dialog.

Image Allows you to place an IMAGE control (graphic image) on the window under
construction. See also the Image Properties dialog.

Region Allows you to place a REGION control on the window under construction. See
also the Region Properties dialog.

Progress Bar Allows you to place a PROGRESS control on the window under construction.
See also the Progress Properties dialog.

Property Sheet Allows you to place a SHEET control on the window under construction. See also

the Sheet Properties dialog.

Tab Control Allows you to place a TAB control on the window under construction. See also
the Tab Properties dialog.

Custom Control Allows you to place a CUSTOM control (Visual Basic custom control) on the
window under construction. See also the Custom Control Properties dialog.

Alignment Menu
The Alignment menu provides commands for spacing and sizing the controls within the window. You
may place two or more controls so that their 'edges' match up with each other. You may also spread the
controls out, or make all of them the same size.

To do so, first select two or more controls. Select the first by clicking on it. Select the second and
subsequent controls by pressing the CTRL key, then clicking on the second control while the shift key
remains pressed. Lasso multiple controls by CTRL+CLICK+DRAGGING to form a box around the controls.

Align Left Aligns the left borders of the selected controls with the left border of the last
control selected (red handles).

Align Right Aligns the right borders of the selected controls with the right border of the last
control selected (red handles).

Align Top Aligns the top borders of the selected controls with the top border of the last
control selected (red handles).

Align Bottom Aligns the bottom borders of the selected controls with the bottom border of the
last control selected (red handles).

Align Horizontally Along a horizontal axis, aligns the centers of the selected controls with the center
of the last control selected (red handles).

Align Vertically Along a vertical axis, aligns the centers of the selected controls with the center of
the last control selected (red handles).

Spread Horizontally Equalizes the horizontal spaces between the selected controls.

Spread Vertically Equalizes the vertical spaces between the selected controls.

Make Same Size Makes all selected controls the same height and width as the last control
selected (red handles).

Make Same Height Makes all selected controls the same height as the last control selected (red
handles).

Center Horizontally As a group (relative positions of selected controls don't change), centers the
selected controls vertically within the window.

Center Vertically As a group (relative positions of selected controls don't change), centers the
selected controls horizontally within the window.

Menu Menu
New Menu Calls the Menu Editor, allowing you to create a menu for the window under

construction. See also: How to Create a New Menu

Menu Editor Calls the Menu Editor, allowing you to edit an existing menu for the window under
construction.

Delete Menu Allows you to delete an existing menu for the window under construction.

Toolbar Menu
New Toolbar Adds a tool bar to the window under construction. See also the Toolbar

Properties dialog. See also: How to Add a Tool Bar

Delete Toolbar Deletes the existing tool bar for the window under construction.

Populate Menu
Field Places an entry control for a data dictionary field or memory variable, and an

associated prompt. When you CHOOSE Populate ä Field, the File Schematic
Definition dialog appears. Select a field or variable, then CLICK in the window.

The CLICK places the prompt for the control as well as the control. If you pre-
formatted the field, on the Window tab of the Field Properties dialog (for
example, specifying a spin control), the control you specified appears, rather than
an entry box.

Multiple Fields Places an entry control for a data dictionary field or memory variable, and an
associated prompt. When you CHOOSE Populate ä Field, the File Schematic
Definition dialog appears. Select a field or variable, then CLICK in the window.

The CLICK places the prompt for the control as well as the control. If you pre-
formatted the field, on the Window tab of the Field Properties dialog (for
example, specifying a spin control), the control you specified appears, rather than
an entry box.

After placing the first field, the File Schematic Definition dialog appears again,
ready for you to select another field. When all fields are placed, press the Cancel
button in this dialog to return to normal editing.

Control Template Allows you to add a control template to the window under construction. Select
one from the Select a Control Template dialog.

A control template adds a control or controls to the window, plus the code to
maintain them. For example, the Browse Box control template places a list box in
the window, allows you to choose the fields for the list, and adds all the
executable code for managing the list box.

Once the control template is placed, you can specify its properties and actions by
RIGHT-CLICKING and selecting Properties or Actions from the popup menu, or
pressing the respective buttons on the Window Formatter toolbar.

Options Menu
Show Toolbox Toggles display of the Controls tool box, which allows you to choose a control

type and place it in a window. The tool icons available match those on the (see
also)Controls menu and the (see also)Populate menus, described above.

Show Alignbox Toggles display of the Align tool box, which provides tool buttons for executing
the align commands which appear on the (see also)Alignment menu, described
above.

Show Propertybox Toggles display of the Property tool box, which provides tools for setting some
common control properties such as caption text, field equate label/use variable,
and font.

Show Fieldsbox Toggles display of the Fields tool box, which places an entry control and prompt
for a data dictionary field, when you DOUBLE-CLICK the field in the list box. The list
contains all the data dictionary fields defined in the File Schematic for this
procedure.

Grid Settings Opens the Grid Settings dialog, which allows you to toggle the Snap to Grid
function as well as set the size of the grid on the sample window.

VBX Control Registry Opens the VBX Custom Control Registry dialog, which allows you to make
manage the VBX control libraries available for use in the Window Formatter.

Preview!

Allows you to display an active window identical to the one the end user sees.
This allows you to see how the window behaves, and how, for example, it looks
with the 3D option set.

To exit Preview! mode, press ESC, or press any DEFAULT button control in the
previewed window.

Report Formatter Menu Commands

The Report Formatter helps you visually design report elements--variable strings and other controls--
on screen. The Report Formatter automatically generates and places the language structures and
source code that describe these elements in your .APP file or source code document.

See also (see also)How to Use the Report Formatter -- An Overview

(see also)How the Print Engine Processes Report Sections at Runtime

Exit!
Exits the Report Formatter. You are prompted to save or discard any changes.

Edit Menu
Next Band Moves focus to the next report band.

Delete Band Deletes the selected report band and all controls in it.

Report Properties Opens the Report Properties dialog to set paper size, orientation, measurement
units, etc.

Selected Properties Opens the Properties dialog for the selected control or report band.

Font Opens the Select Font dialog to specify font, size, style, script, and color from
drop down list boxes. Shows you a sample of the text design you have chosen.

Position Opens the Properties dialog to the Position tab to set default position, width, and
height, or specific x and y coordinates for the selected control or band.

List Box Format Opens the List Box Formatter for the selected list box. Add, delete, resize,
reorder and format the fields in the list box.

Delete Control To delete a control, select it and choose the Delete Control command, or select
it and press the DELETE key.

Duplicate Not implemented in this release.

Set Control Order Opens the Order Control dialog, which displays all controls on the report in a
hierarchical list. Reorder the controls by selecting a control and pressing the and
¯ buttons to move the control up or down within the list.

Controls Menu
Check Box Allows you to place a CHECKBOX control in the selected band. See also the

Check Box Properties dialog.

Radio Button Allows you to place a RADIO control in the selected band. See also the Radio
Button Properties dialog.

Text Field Allows you to place a TEXT control on the selected band. See also the Text
Properties dialog.

String Allows you to place a STRING control on the selected band. See also the String
Properties dialog.

Group Box Allows you to place a GROUP control (group box) in the selected band. See also
the Group Properties dialog.

Option Box Allows you to place an OPTION control (OPTION structure, which appears as a
group box with radio buttons) in the selected band. See also the Option
Properties dialog.

List Box Allows you to place a LIST control (list box) in the selected band. See also the
List Properties dialog.

Ellipse Allows you to place an ELLIPSE control in the selected band. See also the
Ellipse Properties dialog.

Line Allows you to place a LINE control in the selected band. See also the Line
Properties dialog.

Rectangle Allows you to place a BOX control in the selected band. See also the Box
Properties dialog.

Image Allows you to place an IMAGE control (graphic image) in the selected band. See
also the Image Properties dialog.

Custom Control Allows you to place a CUSTOM control (Visual Basic custom control) in the
selected band. See also the Custom Control Properties dialog.

Alignment Menu
The Alignment menu provides commands for spacing and sizing the controls within the report. You may
place two or more controls so that their 'edges' match up with each other. You may also spread the
controls out, or make all of them the same size.

To do so, first select two or more controls. Select the first by clicking on it. Select the second and
subsequent controls by pressing the CTRL key, then clicking on the second control while the shift key
remains pressed.

Align Left Aligns the left borders of the selected controls with the left border of the last
control selected (red handles).

Align Right Aligns the right borders of the selected controls with the right border of the last
control selected (red handles).

Align Top Aligns the top borders of the selected controls with the top border of the last
control selected (red handles).

Align Bottom Aligns the bottom borders of the selected controls with the bottom border of the
last control selected (red handles).

Align Horizontally Along a horizontal axis, aligns the centers of the selected controls with the center
of the last control selected (red handles).

Align Vertically Along a vertical axis, aligns the centers of the selected controls with the center of
the last control selected (red handles).

Spread Horizontally Equalizes the horizontal spaces between the selected controls.

Spread Vertically Equalizes the vertical spaces between the selected controls.

Make Same Size Makes all selected controls the same height and width as the last control
selected (red handles).

Make Same Height Makes all selected controls the same height as the last control selected (red
handles).

Center Horizontally Centers the selected controls horizontally in the band.

Center Vertically Centers the selected controls vertically in the band.

Bands Menu
Page Header Adds a header band to your report.

The HEADER structure traditionally prints at the top of each page of the report.
Typically, you place the report title, graphics and other "introductory" elements in
the HEADER.

Page Footer Adds a footer band to your report.

The FOOTER structure traditionally prints at the bottom of the report. Typically,
you place a page number, or totals in the FOOTER.

Page Form Adds a form band to your report.

The FORM structure prints as a "background layer." Typically, you may display
"overlays" such as graphics and field labels in the FORM layer, then print the
actual foreground data in the DETAIL. The FORM remains constant from page to
page.

Detail Adds a detail band to your report..

The DETAIL structure is the "body" of the report. It contains the basic data, either
in table or record format.

Break Group Adds a new detail, break, group header and group footer bands. See also the
(see also)Break Properties dialog. Place the crosshair where you want the new
group of bands to appear, and CLICK. The Break Properties dialog appears.
Specify the variable to break on and press OK.
A Group BREAK structure can have nested BREAK structures, each with their
own HEADER, DETAIL, and FOOTER structures. See (see also) How to Set
Report Group Breaks, (see also) How to Sort Reports.

Group Header Adds a new Group Header band to the currently selected break section.

Group Footer Adds a new Group Footer band to the currently selected break section.

Surrounding Break Adds a break group around an existing detail. Place the crosshair on the detail
you want to break on, and CLICK. The (see also)Break Properties dialog
appears. Specify the variable to break on and press OK

View Menu
Page Layout View Allows you to reposition and resize your report bands by dragging handles. All

bands display together on a representation of the page.

Band View Allows you to edit your report and place controls separately, in each individual
band.

Expand Bands Expands or contracts all report bands at once.

Populate Menu
Dictionary Field Allows you to place a string variable control tied to a data dictionary field or

memory variable. The Select Field dialog appears. Select a field or variable,
then CLICK in the window.

Multiple Fields Allows you to place a string variable control tied to a data dictionary field or
memory variable. The Select Field dialog appears. Select a field or variable,
then CLICK in the window.

After placing the first field, the Select Field dialog appears again, ready for you
to place another field. When all fields are placed, press the Cancel button in this
dialog to return to normal editing.

Control Template Allows you to add a control template to the window under construction, if any are
available. Select one from the Select a Control Template dialog.

Once the control template is placed, you can specify its properties and actions by

RIGHT-CLICKING and selecting Properties or Actions from the popup menu.

Option Menu
Zoom In Magnifies the "view" in (see also)Preview! mode.

Zoom Out Reduces the "view" in Preview! mode.

Snap to Grid Toggles the setting which forces new controls to align with the report grid.

Grid Size Opens the Grid Settings dialog, which allows you to set the size of the grid
which helps align the controls you place in the window.

Show Toolbox Toggles display of the (see also)Controls toolbox, which allows you to choose a
control type and place it in the report. The tool icons available match those on the
(see also)Controls menu and the (see also)Populate menu, described above.

Show Alignbox Toggles display of the (see also)Align toolbox, which provides tool buttons for
executing the align commands which appear on the (see also)Alignment menu,
described above.

Show Propertybox Toggles display of the (see also)Property toolbox, which provides tools for setting
some common control properties such as caption text, field equate label/use
variable, and font.

Show Fieldsbox Toggles display of the (see also)Fields toolbox, which places a control for a data
dictionary field in the currently selected report band, when you DOUBLE-CLICK the
field name in the list box. The list contains all the data dictionary fields defined in
the File Schematic for this procedure.

Preview!
Opens the (see also)Preview Print Details dialog which lets you generate "filler"
data for your report. The data have no values, but serve as placeholders, so you
can get a feel for the appearance of your finished report. Fonts, sizes, colors, and
positions of report controls are all displayed

You can quickly "preview" alternative layouts for DETAILs, HEADERs, and
FOOTERs, and you can see the effects of the (see also)page breaking options
you have chosen, all without actually compiling or running your report. See also:
Using Print Preview.

Text Editor Menu Commands

The Text Editor is a full function programmer's editor featuring Multiple Document Interface support,
auto-indent, search-and-replace, and color coded syntax highlighting.

The following lists all menu commands available from within the Text Editor.

You can also get help for a keyword within a document window by placing the insertion point at
the keyword, and pressing the F1 key. This allows you to quickly look up help for a Clarion language
statement, function or attribute.

Note that some of the commands, most notably on the Project and Setup menus, do not specifically
reference Text Editor functions. Because the Project System and the Registries are always active, their
menu commands must be accessible.

File Menu
New Opens the New dialog, which allows you to create a new source code or other

type of file.

Open Calls the Open File dialog, allowing you to open a source code document.

Pick Calls the Pick dialog, listing the most recently used files in a list box.

Close Closes the currently active source code document.

Save Saves the currently active source code document.

Save As Saves the currently active source code document under a new name which you
specify.

Save All Saves all the currently open source code documents.

Print Prints the currently active source code document.

Print Setup Calls the Printer Setup dialog, allowing you to configure your printer.

Import File Calls the Open File dialog, allowing you to insert the contents of a file into the
currently active source code document, at the insertion point.

Export Block Saves the currently selected text in a new source code document under a new
name which you specify.

Browse Database Allows you to browse and edit a database file defined in the current dictionary.
Select the file from the Pick file dialog, or the Open File dialog after specifying a
database driver.

Exit Quits the program.

Edit Menu
Undo Reverses the most recent editing action.

Cut Deletes the currently selected text from the document and places it in the
clipboard.

Copy Places a copy of the currently selected text from the document into the clipboard.

Paste Pastes text from the clipboard into the currently active document, at the insertion
point.

Select All Selects all text in the currently active document.

Goto Line Calls the GoTo Line dialog, in which you can enter a line number. After pressing

the OK button, the cursor moves to the beginning of the line you specify.

Goto Next Error Moves the insertion point to the next compiler error. The error appears at the
bottom of the window. This command is disabled except following a compile
which generated errors.

Goto Previous Error Moves the insertion point to the previous compiler error. The error appears at the
bottom of the window. This command is disabled except following a compile
which generated errors.

Set/Clear Tabstop Places a custom tab stop at the insertion point.

Duplicate Line Places a copy of the current line at the line immediately following it. You do not
need to select the entire line. The insertion point merely needs to be anywhere
within the line you wish to copy.

Toggle Case Changes the case of the next character following the insertion point.

Delete Line Deletes the entire line at which the insertion point is located.

Delete Word Deletes a current word at which the insertion point is located.

Format Structure Calls the Window Formatter allowing you to edit or create a structure.

Search Menu
Find Calls the Find dialog. It allows you to type in a word, then find the next

occurrence forwards or backwards from the current position of the insertion point.
The keyboard accelerator is ALT+F3.

Type the word or phrase to search for in the Find What box. Optionally indicate
whether you wish the search to Match Whole Word Only, and/or Match Case.
Choose a forward search (Down) or backwards search (Up), then press the Find
Next button.

The Find dialog is modeless. This means that the dialog will remain on screen so
that you may easily search again. This makes it easy to repeat a search several
times quickly, using the Find Next button.

Replace Calls the Replace dialog, which allows you to change specific text to something
else. You may make the changes one at a time, throughout a selected text block,
or throughout the entire document.

Type the original word or phrase to replace in the Find What box. Type the
replacement text in the Replace With box. Optionally indicate whether you wish
the search to Match Whole Word Only, and/or Match Case.

Press the Find Next button to find the next occurrence of the word or phrase.
Press the Replace button to replace it, once found. Press the Replace All button
to replace all instances within the document.

The Replace dialog is modeless. This means that the dialog will remain on
screen so that you may easily "replace" again. This makes it easy to repeat an
operation several times quickly, using the Find Next button.

Find Next Searches for the text most recently searched for, moving toward the top of the
document.

Find Previous Searches for the text most recently searched for, moving toward the beginning of
the document.

Find Marked Text Finds the next occurrence of the currently selected text. This is equivalent to
executing the Find command, typing the currently selected text in the Find What
box, and specifying a forward search.

Project Menu
Set Calls the Open File dialog, allowing you to change the active .APP or .PRJ.

New Calls the New Project File dialog, allowing you to create a new project.

Load Opens the Project Tree dialog for hand coded projects, or Application Tree
dialog for generated projects.

Edit Opens the Project Tree dialog, allowing you to add or edit component files in the
current project.

Make Compiles and links the currently active application or project, which is named on
the caption bar.

Run Executes the currently active application or project, which is named on the
caption bar.

Debug Loads the Debugger and prepares the active application or project, listed on the
caption bar, for debugging.

Make Statistics Calls the Make Statistics dialog. Allows you to view a statistical profile of the
most recent make. Data on the size of each module size, including code and data
size, will appear in the dialog.

Auto Make Before RunToggles the Project System setting which forces a recompile each time you
choose the Run command.

File Save Before Run Toggles the Project System setting which saves the source code file each time
you choose the Run command.

Minimize on Run Toggles the Project System setting which minimizes CW before displaying the
application each time you choose the Run command.

Wait for Termination on Run Toggles the Project System setting which suspends CW until after you
terminate the application upon executing it with the Run command.

Setup Menu
Editor Options Calls the Editor Options dialog, which allows you to customize the appearance

and behavior of the Text Editor.

Dictionary Options Calls the Dictionary Options dialog, which allows you to specify default settings
for the Dictionary Editor.

Application Options Calls the Application Options dialog, which allows you to specify default
settings for the Application Generator.

Template Registry Calls the Template Registry dialog, which allows you to register and manage
templates.

Database Driver Registry Calls the Database Driver Registry, which allows you to register
database drivers.

VBX Custom Control Registry Calls the VBX Custom Control Registry dialog, which allows you to
register VBX controls.

Edit Redirection File Loads the Redirection File in a document window, ready for editing.

Window Menu
Tile Vertically Arranges open document windows side by side in a vertical orientation.

Tile Horizontally Arranges open document windows side by side in a horizontal orientation.

Cascade Arranges open document windows in overlapped fashion so that all caption bars
are visible

Arrange Icons Arranges iconized windows along the bottom of the Clarion for Windows
Application frame.

(Window List) Lists all open document windows by their caption bar text according to the order
they were opened. Choosing a window from the list brings the window to the top.

Help Menu
Contents Opens the Windows Help application and displays a list of main topics.

Search for Help On Opens the Search dialog in the Windows Help application, allowing you to
search for help topics containing a specific keyword.

How to Use Help Opens the Windows Help application and displays instructions for using the Help
system.

About Clarion Displays the program name, version, registration, and copyright information.

Database Manager Menu Commands

The Database Manager allows you direct access to data files without requiring you to create an
application. Database Manager thus allows you free access to your data files. The only entry constraint
is the picture assigned to a column. For example, if a field has a @n3 picture token, only numbers can
be entered. If the picture is changed to @s3, then any character can be entered. This allows you to
create files for testing purposes.

The Database Manager offers neither data Validity Checking nor Referential Integrity Constraints. This is
a programmer's tool; there are no controls to prevent you from making changes that could compromise
the integrity of the database.

The following lists the menu commands available from within the Database Manager. Many dialogs also
have Help buttons which you can press to view a help topic specifically about that dialog (the F1 key
calls the same topic when the dialog is open).

Note that some of the commands, most notably on the Project and Setup menus, do not specifically
reference Database Manager functions. Because the Project System and the Registries are always
active, their menu commands must be accessible.

File Menu
New Opens the New dialog, which allows you to create a new application file, a new

dictionary file, a new source file, or other type of file. You cannot create a
new .APP file until you close the current one. You may invoke the Quick Start
Wizard to help create a new .APP.

Open Calls the Open File dialog, allowing you to open another application, dictionary,
source or other file (you must first close the current .APP before opening
another).

Pick Calls the Pick dialog, listing the most recently used files by category.

Close Closes the currently active data file.

Save Saves the currently active data file.

Save As Saves the currently active data file under a new name which you specify.

Save All Saves all currently open files.

Print Prints the currently active document, if for example, a text document is open.

Print Setup Calls the Printer Setup dialog, allowing you to configure your printer.

Save As Source Allows you to create a source code document containing a FILE declaration for
the current database file.

Convert File Opens the Convert File dialog, which creates source code, and a project file for
creating an application to convert the data file from one format to another.

File Statistics Opens the File Statistics dialog, which provides information about the data file.

Browse Database Allows you to browse and edit a database file. Select the file from the Pick file
dialog, or the Open File dialog after specifying a database driver.

Exit Quits the program.

Browse Menu
Order Opens the Select File Order dialog, which allows you to choose the active key.

Query by Example Opens the Query by Example dialog, which allows you to filter the data file, then
display only the records that meet the criteria you specify by entering example
values or expressions in this dialog.

Send Driver String Opens the Send Driver String dialog, which allows you to execute a SEND
command to the file driver.

Edit Menu
Change Activates an edit control which appears at the currently selected field and record

Insert Inserts a blank record at the end of the file, and then activates an edit control
which appears in the first field.

Delete Deletes the current record, first requesting confirmation.

Undelete Undeletes a record.

Hold Places a HOLD on the current record.

Release RELEASEs the previously held record.

Search Opens the Search dialog, which allows you to search for the first record
containing a value you specify. You may limit the search to one field, or all fields,

Find Next Repeats the most recent search.

Locate Opens the Locate dialog, which allows you to search for the first record
containing the value you specify in the key field(s).

Edit Memo Opens the Edit Memo dialog, which allows you to edit a memo in ASCII Text.

Hex Edit Memo Opens the Hex Edit Memo dialog, which allows you to edit a memo in
Hexadecimal format.

OEM Conversion Specifies string data is converted from OEM ASCII to ANSI when read from disk
and ANSI to OEM ASCII before writing to disk.

Column Menu
Hide Hides the currently selected column.

Show Re-displays a previously hidden column.

Picture Opens the Picture of Field (fieldname) dialog, which allows you to specify a
different display picture for the current column.

Justify Opens the Justify Field (fieldname) dialog, which allows you to select a
different justification style for the text in the current column.

Reformat Opens the Reformat Fields dialog, which allows you to change the field order in
the window, and to hide or unhide fields from view..

Header Opens the Header Type dialog, which allows you to specify the contents of the
header line for the browse window. You can specify, for example, the field label,
or the field picture.

Project Menu
Set Calls the Open File dialog, allowing you to change the active .APP or .PRJ.

New Calls the New Project File dialog, allowing you to create a new project.

Load Opens the Project Tree dialog for hand coded projects, or Application Tree
dialog for generated projects.

Edit Opens the Project Tree dialog, allowing you to add or edit component files in the
current project.

Make Compiles and links the currently active application or project, which is named on
the caption bar.

Run Executes the currently active application or project, which is named on the
caption bar.

Debug Loads the Debugger and prepares the active application or project, listed on the
caption bar, for debugging.

Make Statistics Calls the Make Statistics dialog. Allows you to view a statistical profile of the
most recent make. Data on the size of each module size, including code and data
size, will appear in the dialog.

Auto Make Before RunToggles the Project System setting which forces a recompile each time you
choose the Run command.

File Save Before Run Toggles the Project System setting which saves the source code file each time
you choose the Run command.

Minimize on Run Toggles the Project System setting which minimizes CW before displaying the
application each time you choose the Run command.

Wait for Termination on Run Toggles the Project System setting which suspends CW until after you
terminate the application upon executing it with the Run command.

Setup Menu
Editor Options Calls the Editor Options dialog, which allows you to customize the appearance

and behavior of the Text Editor.

Dictionary Options Calls the Dictionary Options dialog, which allows you to specify default settings
for the Dictionary Editor.

Application Options Calls the Application Options dialog, which allows you to specify default
settings for the Application Generator.

Template Registry Calls the Template Registry dialog, which allows you to register and manage
templates.

Database Driver Registry Calls the Database Driver Registry, which allows you to register
database drivers.

VBX Custom Control Registry Calls the VBX Custom Control Registry dialog, which allows you to
register VBX controls.

Edit Redirection File Loads the Redirection File in a document window, ready for editing.

Window Menu
Tile Vertically Arranges open document windows side by side in a vertical orientation.

Tile Horizontally Arranges open document windows side by side in a horizontal orientation.

Cascade Arranges open document windows in overlapped fashion so that all caption bars
are visible

Arrange Icons Arranges iconized windows along the bottom of the Clarion for Windows
Application frame.

Show Headers Hides or displays column headers above database fields.

Show Deleted Hides or displays database records marked for deletion.

Use QBE This menu toggle allows you to enable or disable your QBE filter. When checked,
the records displayed match the filter criteria.

(Window List) Lists all open document windows by their caption bar text according to the order

they were opened. Choosing a window from the list brings the window to the top.

Help Menu
Contents Opens the Windows Help application and displays a list of main topics.

Search for Help On Opens the Search dialog in the Windows Help application, allowing you to
search for help topics containing a specific keyword.

How to Use Help Opens the Windows Help application and displays instructions for using the Help
system.

About Clarion Displays the program name, version, registration, and copyright information.

Glossary

All definitions should be considered general terms, except where otherwise indicated. The context for
definitions marked (Clarion) pertain to the Clarion language or the Clarion for Windows IDE. Likewise for
(SQL), which applies to generalized Structured Query Language usage.

-A-
ANSI character set
API
append
applet
application
application generator
application tree
application window
array
ASCII character set
assignment statement
attribute
auto-increment field

-B-
background priority
binary memo
bind
bitmap
Boolean
Border or Line Color
break field
breakpoint
BringWindowToTop
Browse
built-in
button

-C-
calculated field
cascading menu
case sensitive
case structure
character string
check box
child window
Clarion standard date
click
Client Server Architecture
clipboard
Close
code section
color dialog
column
combo box

command
comment
commit
common file dialog
compiler directive
concatenate
concurrency checking
conditional statement
constant
control
control alignment
control menu
control properties
cool switch
criteria
current directory
current record
cursor

-D-
data dictionary
data file
data section
data type
data validation
database
database administrator
database definition file
database design
database driver
database integrity
dBase format
DBMS
DDE
debug
deep assignment
default
default button
default window position
delimiter
dependent entity
desktop
DETAIL structure
dialog box
dialog unit
disabled
document
DOS buffer
double-click
drag
drag and drop
drop-down list
dynamic link library

-E-

embedded source
enabled
encryption
equi-join
event
event driven programming
Excel format
exclusive access
executable
expand
expression
extension
external name
external procedure

-F-
field
field equate label
field event
file handle
fill color
filter
focus
font
font dialog
font style
foreground priority
foreign key
form letter
form report style
format string
formatter
function

-G-
GIF image
global variable
graph
Graphical User Interface
grayed
grid snap
group
groupbox

-H-
handle
help context string
help system
help topic
help compiler
hide

-I-
I-beam

icon
identifier
implicit variable
include file
independent entity
index file
INI file
insertion point
interface
ISAM

-J-
join
JPG image

-K-
key
key-in template picture
keyboard accelerator
keyword

-L-
label
library file
license file
listbox
literal
local data
lock
locked field or record
logical operator
lookup table
LOOP structure

-M-
many-to-many relationship
many-to-one relationship
MASK
maximize box
Media Control Interface
memo
menu
message box
message queue
metafile
minimize box
mnemonic access key
modal window
modeless dialog
module
multi-tasking
multiple selection
multilevel index
Multiple Document Interface

multi-user database

-N-
natural join
nested queries
nesting
non-Windows application
normalization
null value

-O-
ODBC
ODBC Administrator
ODBC Control Panel applet
ODBC driver
one-to-many relationship
one-to-one relationship
option structure
origin
orphan
outer join
overlay

-P-
page footer
page header
page overflow
palette
parameter
PCX image
pel
pen
picture token
pixel
point size
pointer
prefix
primary key
print job
print structure
printer driver
printer font
procedure
program MAP
project system
prompt
property assignment syntax
prototype
PUT statement

-Q-
query
Query by Example
queue

-R-
radio button
range constraint
raster font
read only
RECORD
redirection file
reference variable
referential integrity
region
registry
relationship
report form
resource file
restore button
rich text format (RTF)
ROLLBACK
ROUTINE
run time library

-S-
schema
scope
scroll bar
select
selected event
sequential access
server
SET statement
SHARE.EXE
sort
source code file
spin control
SQL
stack memory
statement
static text
static variable
status bar
standard behavior
stream mode
swap file
syntax
system colors
system date

-T-
tab order
table
tabular report
tag
target file
task
template procedure

text control
text file
text justification
third normal form
thread
thumb
timer
token
toolbar
transaction
tree control

-U-
untyped parameter
USE variable

-V-
validity check
VBX control
VCR controls
vector font
vector graphic
view
virtual table

-W-
watch variable
widow
window frame
window pane
WinExec

-X-
X axis

-Y-
Y axis

-Z-

ACCEPT loop
(Clarion) An event handling loop beginning with the ACCEPT statement. The loop transparently
processes the Windows messages and related events which affect the application's window. A single
ACCEPT loop automatically gets end user input for all controls within a given window.

accepted event
(Clarion) An event generated when an end user interacts with a window control, such as when moving the
focus to a field, that results in the event being reported in the ACCEPT look.

access key
(Clarion) A specified key or index to set the order for processing records in a procedure.

active window
The document or active window which currently has the focus; Windows sends the next keyboard or
mouse action to the ACCEPT loop of the active window.

alias
An alternate name for a data file, which allows multiple, independent operations on it. Clarion provides a
separate record buffer for each alias, increasing the performance of the separate operations.

 ANSI character set
Character set standardized by the American National Standards Institute. Many ANSI characters are
different then the corresponding ASCII character set. The ANSI set contains more non-English characters.
The standard Microsoft Windows character set is the ANSI character set.

 API
Application Programming Interface; generally refers to the Windows API. Allows applications to
dynamically link function calls to the three main Windows libraries (USER.EXE, GDI.EXE, and
KERNEL.EXE), plus the external libraries such as MMSYSTEM.DLL. Just about everything that every
Windows program does is accomplished via the API.

 append
Add a record to a data file, usually without updating a key or index.

 applet
A small, single purpose application; applets are not necessarily stand alone executable programs. The
"programs" managed by the Windows Control Panel, for example, are called applets, though they are
actually dynamic link libraries with specialized entry points. The accessories which ship with Windows are
also known as applets.

 application
A computer program designed for a specific type of work; the terms "application" and "program" are
interchangeable. In general, when referring to a Windows program, "application" is the preferable term.

 application generator
A program which combines prewritten, generalized executable code modules or fragments to create an
application.

(Clarion) The part of the IDE which manages pre-written template procedures, obtains customizations
from the developer, and generates Clarion language source code files.

 application tree
(Clarion) An Application Generator dialog which graphically depicts the hierarchy of procedures for an
application.

 application window
In a Multiple Document Interface application, the parent window, usually containing no controls, in which
all child document windows appear.

 array
A ordered series or group of dimensioned values or data items.

 ASCII character set
Character set standardized as the American Standard Code for Information Interchange. The standard
IBM PC character set.

 assignment statement
A statement placing a value in a variable; for example, A = 6 places the value 6 in variable "A."

 attribute
(Clarion) A modifier to a data declaration which specifies an optional property.

 auto-increment field
(Clarion) A key field which stores a value which increases with each successive record, and is generally
not available to the end user. The application places the value in the field immediately upon appending
the record.

 background priority
A measure, expressed in a ratio, for the amount of CPU processing time allocated to a program or task
which does not currently have system focus. In the Windows 16-bit environment, all multitasking is
cooperative; therefore, all background processing is dependent on all executing applications properly
yielding at regular intervals.

band view
(Clarion) A specialized layout mode within the Report Formatter. Displays the contents of each part of the
report structure in separate panes.

 binary memo
(Clarion) A memo field suitable for holding non-ASCII contents, such as images.

 bind
(Clarion) A statement which allows a variable name to be used in a dynamic expression which is
assembled and processed at runtime.

 bitmap
A binary file representation of a graphic or picture; raster format defines the image by absolute pixels.
Popular bitmap formats supported by Clarion for Windows include .BMP, .GIF, .ICO, .PCX, .JPG.
Sometimes refers specifically to the .BMP file format, an uncompressed, but widely supported file format.

 Boolean
A logical expression which evaluates to true or false, one or zero.

 Border or Line Color
The color designated for the outside line of a graphical control.

 break field
(Clarion) A field or variable monitored when processing a report structure. When the value in the field
changes while sequentially processing records, the print engine processes the next element in the report
structure (usually the group footer).

 breakpoint
A debugger stopping point, relative to a source or disassembly code statement. The application executes
up to the breakpoint, then halts and turns execution over to the debugger, which can then examine
variables and expressions to search for bugs.

 BringWindowToTop
Windows API function for forcing a window to always display on top of all other windows on the desktop.
Implemented in Clarion for Windows by the TOOLBAR attribute.

 Browse
A specialized listbox procedure dedicated to displaying database records arranged in columns and rows.

 built-in
(Clarion) Default map definitions, as provided in source code format in the BUILTINS.CLW file.

 button
A control that initiates a command, or selects an option. An end user chooses a button by clicking with the
mouse.

 calculated field
A field created via an expression which may include one or more database fields.

 cascading menu
A hierarchical submenu, sometimes called a child menu. Parent menus that lead to cascading menus
usually have a right-pointing triangle at the right side of the menu item, to cue the user to the submenu.

 case sensitive
A characteristic indicating whether a command treats text typed with capital (uppercase) letters differently
than those typed with lower case, or a combination of both.

 case structure
A control structure which branches execution to a statement (or group of statements) based upon a single
condition or expression.

 character string
An alphanumeric data type.

 check box
A control consisting of a small square or diamond, in which an end user indicates a on/off, yes/no, or
true/false choice.

 child window
An MDI document window displaying a document or view within the main application window.

 Clarion standard date
(Clarion) The number of days elapsed since December 28, 1800; the valid range is from Jan. 1, 1801
through Dec. 31, 2099.

 click
To place the mouse pointer on a control or window, then press and release the left mouse button.

 Client Server Architecture
A network configuration by which linked workstations request services from a dedicated program running
on a server.

 clipboard
A temporary storage area in memory for holding data, maintained by Windows.

 Close
To normally terminate processing of a window or file.

 code section
(Clarion) The portion of source code containing executable code statements.

 color dialog
Standard Windows dialog for choosing color.

 column
(SQL) Generally refers to a list of database field contents arranged by records.

 combo box
A window control consisting of a synchronized edit box and list box.

 command
An executable code statement or program instruction.

 comment
Text inserted in a source code file to annotate or explain the code. Clarion language comments begin with
the exclamation point (!) character. Each comment terminates at the end of the line it appears on.

 commit
Terminates a successful transaction and commits it to disk.

 common file dialog
A standard Windows dialog for displaying drives, directories, and file names. The Clarion FILEDIALOG
function displays the dialog and returns a file name to the calling application.

 compiler directive
An instruction directing a compiler to build an application to meet a certain condition.

 concatenate
Append two string data elements to form a longer string comprised of both.

 concurrency checking
The process of guarding against two users updating the same record at the same time. Usually consists
of checking the record on disk still contains the same values as when it was first retrieved for updating.

 conditional statement
An IF statement which branches subsequent execution based on a logical condition.

 constant
A static value.

 control
A window or report object which displays data and/or processes user input.

 control alignment
The "Snap-To" behavior, as found in the Window and Report Formatters, by which you may "line up"
window and report elements.

 control menu
Contains commands for resizing, repositioning, or closing a window.

 control properties
(Clarion) Attributes which determine the appearance and functionality of a window or report control.

 cool switch
The Windows procedure for switching between active applications by holding down the ALT key and
pressing the TAB key.

 criteria
(SQL) An expression containing a condition which limits the records for processing.

 current directory
The default DOS subdirectory, in which Windows or DOS searches for files not identified with a fully
qualified file name.

 current record
(Clarion) The current database record in the record buffer.

 cursor
The mouse pointer. Changing the cursor "shape" can indicate the type of action or selection the end user
can effect on a given control or window.

 data dictionary
(Clarion) ASCII file describing the individual data files which comprise the database, their structure, keys,
relations, and other information describing how an application will process the contents of the database.

 data file
Generally, a collection of data elements in an organized format, usually arranged by records (rows) and
fields (columns).

 data section
(Clarion) The section of source code containing variable and data structure declarations, such as FILE,
WINDOW, REPORT, and QUEUE.

 data type
A physical description of the type of storage supported by a variable; what sort of values it can hold.

 data validation
An expression or the process of checking data against a condition prior to accepting the data for entry into
the database.

 database
A structured collection of data, contained in one or more data files, plus the key files and other information
which describes the order and relations of the data elements.

 database administrator
(DBA) A person responsible for designing and maintaining a multi-user database system.

 database definition file
(*.DDF). A Btrieve file, separate from the data file, containing the database structure. Equivalent to the
header contained internally in most other PC database file formats.

 database design
The process of planning and describing the most efficient application or system for storing and managing
data for a specific project.

 database driver
A collection of functions and procedures contained in a dynamic link library, supporting low level access to
a specific database file format.

 database integrity
Under the relational model, database integrity consists of two general rules:

1.

Each database file or table must have a primary key serving as a unique identifier for all records.

2.

When a table has a foreign key matching the primary key of another table, each value in the foreign key
must either equal a value in the primary key of the other table, or be null.

 dBase format
PC database file format popularized by dBase III.

 DBMS
Database Management System: generic term for a program that enables a system to perform all the
functions associated with managing a database.

DDE
Dynamic Data Exchange: a message protocol for exchanging data between Windows applications.

 debug
To test, diagnose and (hopefully) solve software bugs. The Clarion debugger offers two general modes:

1.

Hard mode debugging, in which all keyboard and mouse input goes to the debugger first, before being
sent to the application. This effectively suspends all other applications which may have been running prior
to starting the debugger in hard mode.

2.

Soft mode debugging, in which the debuggee runs as a normal windows application.

 deep assignment
(Clarion) Automatically assigns multiple components from one data structure to another, between
elements with the same labels (but different prefixes).

 default
An assumed state or action, which the end user accepts or executes with little or no action.

 default button
A command button which is activated by default when the user presses the enter button.

 default window position
The default location at which a new window appears unless a position is specified. The top left corner of
the new window is usually below and to the right of the top left corner of the last window, when it first
appeared.

 delimiter
A character marking the boundaries of one database field from another.

 dependent entity
(SQL) A set of data elements dependent on other related entities in the database to identify them..

 desktop
The screen area in which all windows, dialog boxes, and icons appear.

 DETAIL structure
(Clarion) The portion of a report structure which usually conveys the main data within the printed report.
The application loops through, updates, and prints the detail band controls with the contents of all the
records being processed.

 dialog box
A window, usually not resizeable, which usually requires additional information to be input by the user.

 dialog unit
Special fractional measurement units, based on the system font. Windows automatically calculates the
horizontal measurement unit in fourths of the average system character width, and the vertical in eighths
of character height. The net effect supports a proportional placement of dialog box elements regardless of
the resolution Windows is running in.

 disabled
A window, menu, or control visible but prevented from gaining focus.

 document
Any file which stores data associated with an application.

 DOS buffer
A (normally) small amount of memory maintained by the operating system for short-term storage of data
transferred to/from a disk drive. The size is set by the BUFFERS setting in the CONFIG.SYS file, where
one unit equals 512 bytes.

 double-click
To press and release the left mouse button twice, quickly. Executes the default action on a selection.

 drag
To press the left mouse button, then move the mouse while continuing to hold the button down. Usually a
visual cue indicates a process such as moving a selected object, or rubber-banding a region. Releasing
the button completes the action.

 drag and drop
To select an object in a window or dialog box, press down the left mouse button, move the mouse while
continuing to hold the button down, then release the button when the pointer is on top of another object.
When drag and drop is supported by the program(s), the action generally indicates the dropped object is
to be processed in some way by the recipient object.

 drop-down list
A listbox control which only displays only the current selection when closed. When the user opens the list
box, it expands to include additional choices.

 dynamic link library
An external file containing functions and procedures which the application may call at runtime, also
referred to as a .DLL. When an application calls a .DLL without specifying a path to the file, Windows
automatically attempts to load the file from the current directory, the Windows\System directory, and
directories listed in the PATH environment variable.

 embedded source
(Clarion) Executable code statements, written by the developer, and inserted into generated source at
predefined points within a procedure generated by the Application Generator.

 enabled
Normal window, menu. or control state allowing focus and/or user input.

 encryption
The storage on disk of data in scrambled or encrypted form, such that an unauthorized user may not
access the data in an intelligible format.

 equi-join
(SQL) A join which takes two database files (or tables) and creates a new, wider table consisting of all
possible concatenated records (or rows), where there are matching values in the join fields.

 event
An action which triggers a Windows message to the application's message queue. Clarion for Windows
handles most of the actual messages internally.

 event driven programming
A programming paradigm which describes how an application will respond to possible actions selected
and defined by the end user.

 Excel format
File format used by the Microsoft Excel spreadsheet application. Note: an ODBC driver exists for this
format, and is available in the Microsoft ODBC 2.0 Software Development Kit.

 exclusive access
Opening a DOS file so that no other user in a multi-user environment may update the same file.

 executable
A standard .EXE application file capable of being launched by the Microsoft Windows shell.

 expand
To decompress, usually for installation purposes, a compressed file.

 expression
A mathematical formula containing any valid combination of variables, functions, operators, and
constants.

 extension
A file name suffix; up to three characters in the DOS file system. Windows 3.1 matches document files to
their application via the [Extensions] section in the WIN.INI file.

 external name
(Clarion) An attribute which holds the native format name (such as a DOS file name) for a given data
element. The Clarion source code refers to the file by the Clarion label.

 external procedure
(Clarion) A procedure contained in an external library, such as a library file linked at the time the
application is built, or a .DLL, linked at run time.

 field
A basic data element or category which names all the values in a column of data within a database file or
table.

 field equate label
(Clarion) A symbolic constant which references an integer, which references a window control.

 field event
(Clarion) An event generated and processed within an ACCEPT loop, specific to a control in a window
structure.

 file handle
An operating system pointer to a file. The "FILES=" line in the CONFIG.SYS file sets the system limit on
the total number of allowable open files at one time.

 fill color
The color designated for the inside of a graphical control.

 filter
An expression which isolates a subset of records for an operation.

 focus
A visual cue indicating the window control which will receive the next action resulting from user input.

 font
The family name of related type face files. For example, "Times New Roman" is the font name, and
"Times New Roman plain," "Times New Roman Italic," "Times New Roman Bold," and "Times New
Roman Bold Italic" are the styles, which are stored in separate files.

 font dialog
A standard Windows dialog for picking a typeface, style, size, and optionally, the text color.

 font style
Character formatting applied to a font face, such as bold, italic, or bold italic.

 foreground priority
A measure, expressed in a ratio, for the amount of CPU processing time allocated to a program or task
which currently has system focus.

 foreign key
(SQL) A key in one table (database file) whose values match the primary key of another table.

 form letter
A mailmerge document containing "boiler-plate" text, in which controls reference fields from which to
obtain information when creating letters to individuals.

 form report style
A report format generally containing one record per page, with field labels and values arranged in a
vertical format.

 format string
(Clarion) A string specifying the display format for a list box or drop down list box control.

 formatter
(Clarion) A specialized window which allows you to visually define the formatting for a data structure in
"WYSIWYG" fashion.

 function
(Clarion) A specialized procedure which returns a value. The function declaration may optionally define
parameters which are passed when calling the function. A function may be used within computed or
conditional fields.

GDI

Abbreviation for Graphics Device Interface, the Microsoft Windows dynamic link library responsible for
outputting text and images to the screen and printer.

 GIF image
Graphics Interchange File format; an image format popularized by CompuServe. Generally acknowledged
to offer the best compression ration for 256 color or less images. Attention: should you utilize the word
"GIF" anywhere within an application or program, you must add a trademark notice: "GIF (Graphics
Interchange Format) is a trademark of CompuServe Information Services."

 global variable
(Clarion) A variable accessible from all levels of a program. Global variables are allocated memory that is
not released until the entire program finishes execution.

 graph
A graphical representation of related data elements, on screen or paper.

 Graphical User Interface
(GUI) An operating system or program environment relying heavily on images to present information to
the user and to gather the user's input.

 grayed
A visual cue to the user that the window, menu, or control is unavailable or disabled.

 grid snap
A series of coordinates, represented by dots, such as those used by the Clarion Window and Report
Formatters, to force controls to exact positioning.

 group
(Clarion) A compound data structure which allows you to reference its component variables with a single
label.

 groupbox
A rectangular line frame with a label at upper left, used to define related controls.

 handle
In Windows, an integer serving as a pointer to the memory location for a given object, most commonly a
handle to a window (HWND). The handle has approximately the same importance to most API functions
as the zip code on a first class letter. In Clarion, its functionality is implemented via field equate labels.
You can obtain the actual handle to a window or control by examining PROP:handle. The property is read
only.

 help context string
A unique identifier for a topic or page in a help file, which can be passed to the help engine.

 help system
Comprised of the Windows help application (WINHELP.EXE) and a help document (*.HLP) distributed by
individual applications. When displaying help, both the application which called it, and WINHELP.EXE are
running.

 help topic
A page in a Windows help document.

 help compiler
A utility available from Microsoft for converting a Rich-Text-Format (.RTF) document into a Windows help
(.HLP) document.

 hide
Prevent a control or window from displaying on screen; the control exists but is not seen by the end user.

 I-beam
A special cursor usually indicating the end user can type text into an edit control.

I/O

Input/Output. The process of moving information into and out of the system.

 icon
A graphical representation of a physical object in the system, such as a printer. Also, any small image
representing an action, concept or program, as when an icon appears on a command button. The normal
icon file format carries the .ICO extension; one of its main features is built-in support for transparency.
This enables you to display a small picture without obliterating the background.

IDE
Integrated Development Environment; a complete compiler product which includes tools for producing
source code, creating resources, compiling, linking, and debugging an application.

 identifier
A label uniquely identifying a variable or other program element.

 implicit variable
(Clarion) A specialized variable not declared within the data structure of an application, nor defined before
its first use. The compiler creates them when it first encounters them (usually within executable code) and
automatically initializes them to zero.

 include file
An external source file read and preprocessed at compile time. In Clarion for Windows, the Equates and
other files in the LIBSRC subdirectory are the default include files.

 independent entity
(SQL) A set of data elements sharing a set of properties independent of other related entities in the
database. Independent entities have unique identifiers, and therefore, primary keys.

 index file
An external key file ordered according to the contents of a specified field or expression. An index file
usually must be manually updated when adding, deleting, or changing records.

 INI file
A Windows Initialization file in ASCII format. The .INI file is divided into sections separated by an identifier
enclosed in square brackets. Variables and their values follow, each pair separated by a carriage return,
with an equal sign between the variable name and its value. Values may be stored as strings or integers.

 insertion point
The point in a document at which the next characters typed by the end user will appear.

 interface
The communication between the computer and the user; it presents information to the user and accepts
the user's input.

 ISAM
Indexed Sequential Access Method; a database organization in which data files are ordered by keys, and
may be retrieved in the sequence of the keys.

 join
A join takes two database files (or tables) and creates a new, wider table consisting of all possible
concatenated records (or rows).

 JPG image
A true-color graphics file format featuring 24-bit color storage. It usually provides for adjustable lossy
compression, which allows for greater compression but loss of some resolution.

 key
An indexed file ordered according to the contents of a specified field or fields. Keys are usually
dynamically updated whenever the value in a key field changes.

 key-in template picture
(Clarion) A formatting option, which when combined with the MASK attribute, restricts and verifies end
user keyboard input according to a specified character pattern applied upon a variable.

 keyboard accelerator
A hot-key combination which directly executes a command.

 keyword
A reserved word or Clarion language statement.

 label
(Clarion) A unique identifier for a variable, procedure, function, routine, or data structure.

 library file
A precompiled file (.LIB) containing procedures or functions which may be statically linked to the
executable and utilized by a program.

 license file
A proprietary key file distributed by a VBX vendor only to a licensed user of the VBX library. The license
file allows an IDE to incorporate the VBX control within a window or dialog box. This file is not
redistributable to the end user.

 listbox
A window control presenting data arranged in rows, and optionally, columns.

 literal
A constant referred to in source code by its value. For example, the literal "MyString" refers to a seven
byte data item containing ASCII codes for the letters in "MyString."

 local data
Data created by, residing in memory specific to, and accessible only to a specific procedure or function.

 lock
A concurrency control mechanism to prevent more than one user from updating the same record at the
same time. Within Clarion, the HOLD statement arms record locking.

 locked field or record
A field or record currently being updated by one user within a multi-user database, such that an attempt
by another user to update the same record at the same time will fail.

 logical operator
A true/false or bitwise comparison of two values; logical operators are: =, >, <, <>, >=, <+, NOT, AND, OR,
and XOR.

 lookup table
A database file on one side of a one to many relation, upon which a variable is searched for, and a
corresponding field in the related table is returned.

 LOOP structure
(Clarion) A control structure which repeats the execution of the statements it encloses for a specified
count.

 many-to-many relationship
A connection between two data entities in which there may exist many corresponding values in the foreign
key in one database file or table, to many corresponding values in the foreign key of another table.
Usually implemented via a "join" file breaking them into two 1:Many relations.

 many-to-one relationship
A connection between two data entities in which there may exist many corresponding values in the foreign
key in one database file or table, to only one value in the primary key of another "look-up" table. The
relationship implicitly describes the direction of the relation. For example, the relation of cities to states
implies many cities may belong to the same state. Also called a child-parent relation.

 MASK
(Clarion) Specifies pattern editing of user input, converting data to a predefined format. The pattern is
specified for an individual control, and enabled when the MASK attribute is added to the window in which
the control appears.

 maximize box
A window control which resizes a window to full size of the desktop, or if a child window, to the full size of
the client area of the application window.

 Media Control Interface
The multimedia API support component of Microsoft Windows. Managed by the MMSYSTEM.DLL library
and related driver files; abbreviated as MCI.

 memo
A free-form, variable length text field, suitable for storing very long strings. In most PC file formats, the
memo is stored in a file separate from the fixed-length database fields. A binary memo field is a
specialized type of memo field suitable for storing binary information such as graphics.

 menu
An element of the user interface listing available actions which the end user may effect upon a document
or selected portion of a document.

 message box
A standard windows element, usually consisting of a short message string, an OK button, often a
standard icon such as "stop" or "information." It may optionally contain additional buttons such as
"Cancel," and "Retry."

 message queue
The "place" in which Windows holds all messages for an application, which the application checks on a
regular basis. The messages consist of everything the application needs to know regarding the user
interface--keyboard, mouse and menu events; the system--shutdown messages, and all the other
operations which may affect the application. Clarion processes the entire messaging process
transparently in the ACCEPT loop.

 metafile
In Windows, the representation of a graphic or line art in vector format; defines the image as a series of
lines and curves, allowing for smooth resizing. Clarion for Windows supports the .WMF (Windows
Metafile) vector format. The metafile is actually a stored collection of the commands which instruct the
GDI (Windows Graphics Device Interface) to display the graphic on the output device.

 minimize box
A window control which resizes a window to iconic size, usually at the bottom of the desktop, or if a child
window, to iconic size, usually at the bottom of the application window.

 mnemonic access key
The underlined letter in the command names on Microsoft Windows menus. When a user activates a
pulldown menu, the key executes the command.

 modal window
A dialog or window which prevents the end user from activating controls from any other of the
application's windows (or of any other application, if system modal), until processing of the modal window
is completed and the window closed.

 modeless dialog
A dialog which remains open even while the user "works" in another of the application's document
windows. The modeless dialog remains available, so that the user can utilize its functionality; as in a
Search dialog, as practiced by most applications.

 module
(Clarion) A source or library file for a given project.

 multi-tasking
The capability of an operating system to execute multiple programs at the same time. Pre-emptive multi-
tasking allots percentages of CPU time to each individual task, with the operating system automatically
switching to the next task at the end of its time allotment. Cooperative multi-tasking, supported by
Windows 3.1, relies upon the currently executing program to finish a task, or part of one, then yield to the
next program. See also Thread.

 multiple selection
An extended listbox selection, signifying the user has marked more than one item for a subsequent
action.

 multilevel index
To speed up access to a rage table or data file, a multilevel index functions as an index to an index. For
example, index level one could contain pointers to four subindexes which respectively index entries
beginning with A-E, F-L, M-R, and S-Z. This example describes a classic B-TREE index structure.

 Multiple Document Interface
(MDI) A Windows programming convention which allows an application to manage several documents, or
views of documents, each in its own child window, all in an application frame window.

 multi-user database
A database system designed so that more than one user can access a file or record at the same time.
The system requires concurrency checking so that two users don't attempt to update the same record at
the same time.

 natural join
(SQL) A join which takes two database files (or tables) and creates a new, wider table consisting of all
possible concatenated records (or rows), where the new table contains two identical columns, one of
which is dropped.

 nested queries
(SQL) A single query consisting of both an outer and inner query. Allows for more efficient retrieval of data
from large tables by combining multiple operations into one.

 nesting
Placing one operation inside another, such as nesting a function within another by specifying the nested
function as a parameter of the first.

 non-Windows application
Any application which doesn't require the Windows environment. Typically, a DOS program.

 normalization
The representation of data entities in their simplest forms, for the purpose of quickest access and most
efficient storage. The normalization process includes the elimination of redundant data groups, and the
elimination of redundant data elements.

 null value
A zero or empty value.

 ODBC
The Open Database Connectivity standard supported by many Windows applications. Provides a
standard API for accessing multiple database file formats via replaceable file drivers, and Client/Server
support. The ODBC SDK is published by Microsoft.

 ODBC Administrator
A redistributable Microsoft application for adding, maintaining or deleting individual ODBC drivers within a
system. Usually located in the Windows\System directory, the executable file name is ODBCADM.EXE.

 ODBC Control Panel applet
A Windows Control Panel interface to the ODBC administrator.

 ODBC driver
A driver library containing the individual functions supporting standard ODBC calls for a particular file
format.

 one-to-many relationship
A connection between two data entities in which there may exist one corresponding value in the primary
key of one database file or table, to many identical values in the foreign key of another table. The
relationship implicitly describes the direction of the relation. For example, the relation of states to cities
implies a state may have many cities. Also called a parent-child relation.

 one-to-one relationship
A connection between two data entities in which there may exist one and only one corresponding value in
the primary key of one database file or table, to a single identical value in the foreign key of another
table. For example, the relation of customer name to internet address. The data is usually split into two
separate tables for storage savings; all customers have names, but only a minority have internet
addresses.

 option structure
(Clarion) A structure containing mutually exclusive controls, such as radio buttons.

 origin
The upper left corner of a window or control, expressed in x,y coordinates (0,0).

 orphan
A portion of text or data separated from its complementary preceding data by a page break.

 outer join
(SQL) A join which includes all records from one database file, and only those records from another in
which the values in a selected field (or fields) match those in the first.

 overlay
(Clarion) A variable or field sharing the same location as another. Acts as a data "re-declaration, and
provides more efficient storage. Most useful in "either/or" situations when a variable and its overlay are of
similar types but utilize different pictures.

 page footer
The section of a report composed after the detail.

 page header
The section of a report composed before the detail.

 page overflow
In Clarion, the point at which the report library composes enough data to complete a page; the library will
either send the page to the Windows spooler at that point, or first check to verify there are no "widows," if
the application so specifies.

 palette
The table of available colors which a given window may user for painting.

 parameter
An argument or optional variable passed to a procedure.

 PCX image
A standard graphics file format, offering moderate compression, originally developed by the Zsoft
corporation. The Windows Paintbrush accessory supports this format.

 pel
Equivalent to pixel; abbreviation for picture element. The smallest screen unit addressed in graphic mode;
a dot.

 pen
In Windows, the active drawing or painting element; you can set its color, size, etc.

 picture token
(Clarion) A formatting string, which specifies a specific "picture" or masking format for displaying and
editing variables. The picture token begins with the "@" character.

 pixel
Equivalent to pel; abbreviation for picture element. The smallest screen unit addressed in graphic mode; a
dot.

 point size
A measurement expressed in points; one point equals 1/72nd inch, or 1/28 centimeter.

 pointer
The mouse cursor. Or, an index entry which locates or "points" to the corresponding data record.

 prefix
(Clarion) A short identifying string for a data structure. Provides a method for resolving variable names
when, for example, two database files include fields whose names are the same.

 primary key
(SQL) A database field or expression which uniquely identifies each record in the table or database file.

 print job
One complete task sent to the Windows print spooler (accessible from Print Manager).

 print structure
(Clarion) The parts of a report structure, which include the group break structure, detail, header, footer,
and form.

 printer driver
An external library file containing low level instructions and functions by which the Windows GDI library
sends specific commands to the printer.

 printer font
A typeface resident in the printer's RAM.

 procedure
(Clarion) A set of executable statements which may be executed repeatedly.

 program MAP
(Clarion) The "layout" of modules, procedures and functions, which the compiler uses to logically
assemble the file. The MAP structure contains the prototypes which declare the functions, procedures,
and external source modules used in a PROGRAM or MEMBER module.

 project system
(Clarion) The IDE component which tracks the modules which comprise the application to be built,
including source code and external libraries. The Project System also stores the various pragma ,
compiler and linking options.

 prompt
A text label which normally appears near a screen control, to identify the control.

 property assignment syntax
(Clarion) Specific language format for setting or retrieving the value of a control property.

 prototype
To define the parameter(s) and return data types for a procedure or function. Within Clarion, prototypes
are defined within the MAP structure.

 PUT statement
(Clarion) A statement which executes an update to a given record, and writes it to disk.

 query
(SQL) An operation upon a database table which results in another table or subset of the first.

 Query by Example
A query built by "filling-in the blanks" in a form representing the fields in a database table. The end user
types in "example elements" which represent the possible answers to the query.

 queue
(Clarion) A specialized memory structure containing a doubly-linked list of values.

 radio button
A control for eliciting a mutually exclusive choice from an end user.

 range constraint
A bounds for a database operation limiting the operation to a set of records for which a given field falls
within specified starting and ending values.

 raster font
A bitmapped typeface, stored as a pattern of dots.

 read only
(Clarion) A field or variable which is displayed but not modified.

 RECORD
(Clarion) A data structure representing one row in a database table.

 redirection file
(Clarion) A list of alternate subdirectories to search for source code, object or library files.

 reference variable
(Clarion) An indirection to another data variable (the target). The reference variable label can substitute
for the target variable anyplace in executable code. Depending upon the target data type, the reference
variable may contain the address in memory of the target, or a more complex internal data structure.

 referential integrity
The process by which an application "follows through" on an update to a key field in one file, to check its
related record in another file. This maintains valid parent-child relationships within the database. The
Application Generator can automatically generate the executable code to support referential integrity
constraints when you select options in the Relate dialog.

 region
A specialized control whose sole function is to provide a reference for a screen area in x,y coordinates.

 registry
A specialized initialization file storing various values and parameters in binary format.

 relationship
A logical link between records in data files based upon a duplicate (linking) field.

 report form
(Clarion) A report element defined once, when first composing the report, then printed on all pages of the
report.

 resource file
An external file containing data for a window control, such as an icon file.

 restore button
A window control which resizes a window from a maximized state to the last size prior to maximizing.

 rich text format (RTF)
A common word processing file format, originally designed for transportability between word processing
systems across different operating systems. The default format for the source document for the Windows
help file format.

 ROLLBACK
(Clarion) To restore an earlier state of a database, undoing the effect of one or more active transactions.
Restores data held in a temporary file managed by the file driver.

 ROUTINE
(Clarion) A series of executable statements local to a procedure or function. Following execution of the
ROUTINE, program control returns to the calling procedure or function.

 run time library
A dynamic link library providing essential support for basic application functions. For example, the Clarion
runtime library provides all the "housekeeping" functions such as checking message queues, and
managing the allocation and deallocation of all device contexts (for windows and reports).

 schema
The map or catalog of a database describing its files or tables, fields, and relations.

 scope
A range of records selected for a given operation. Also, the "boundaries" beyond which a given variable is
unavailable to another procedure or function.

 scroll bar
Standard window control for changing the view of data within a window, displaying more of a document or
application controls than currently visible.

 select
To indicate to the system that the next command should act upon an on screen object, by placing the
mouse cursor over it and pressing the left mouse button.

SELECT statement
(SQL) A statement setting the fields and tables for viewing, and for subsequent operations.

(Clarion) Sets the next control to receive input focus.

 selected event
An event generated and sent to the ACCEPT loop when a control obtains focus.

 sequential access
The ability to manipulate all the records in a database file or table in the sequence defined by the key or
index.

 server
A remote computer providing data storage or services to other linked computers.

 SET statement
A Clarion language statement preparing a file for sequential processing upon a group of records.

 SHARE.EXE
The MS-DOS executable responsible for supporting multi-user access to a single file.

 sort
Physically rearrange all database records in a specified order, and store the results in a new database file
or table.

 source code file
(Clarion) A text file containing Clarion language statements in a structured format, which the compiler can
compile and link into an executable program.

 spin control
A specialized edit box control, with two "increaser" and "decreaser" controls, linked to an array of values.
When the end user increases or decreases the control, it updates to display the next value in the array.

 SQL
Structured Query Language; a database language for maintaining a relational database; most often
utilized in mainframe and client/server applications.

 stack memory
A portion of memory which usually stores the most recent parameter data utilized by procedures and
commands executed by a program or application.

 statement
A single executable command.

 static text
A window control which displays a string constant, and never receives focus; primarily used for labeling
other controls or displaying information and instructions.

 static variable
(Clarion) A persistent variable, which maintains its value from one use within a procedure to the next.

 status bar
An area of a window, usually found at the bottom, in which the program can display prompts and
information.

 standard behavior
(STD) (Clarion) A predefined set of operations associated with a menu command; the actions are
automatically supported by the run-time library, without requiring specific code on the part of the
application.

 stream mode
A special mode for several of the Clarion database drivers which optimizes file input/output.

 swap file
A system file maintained by Windows for maintaining virtual memory as required by the system.

 syntax
A rule specifying the specific format of a language statement.

 system colors
The default colors shared by all custom Windows palettes.

 system date
The date maintained by the system clock.

 tab order
The sequence in which each control in a window gains focus upon a TAB key press.

 table
(SQL) A structured collection of data, consisting of a row of fields or column headings plus zero or more
rows of data. Each row contains exactly one value for each of the fields. Within Clarion, the table
corresponds to a specific FILE, ALIAS, or VIEW structure.

 tabular report
A listing of data labels and their corresponding values, arranged in a row of column labels, followed by
additional rows of data arranged by column.

 tag
For file drivers (such as FoxPro and dBase IV) supporting multiple indexes within the same index file, the
indicator marking an individual index.

 target file
Indicates to the project system the name of the application or library file to be built.

 task
A currently executing Windows application.

 template procedure
(Clarion) A pre-written source code module written in the Clarion Template Language, containing "boiler-
plate" Clarion language code, instructions for processing it at code generation, plus a user interface for
gathering the customization instructions from the developer.

 text control
A multi-line edit control which automatically supports word wrap.

 text file
An ASCII file.

 text justification
A paragraph alignment style which lines up the edges of the paragraph at left, right, left and right, or
centers the entire line.

 third normal form
A test or measure of how closely a database meets relational theory tests for data normalization.

 thread
In a multi-threaded operating system such as Windows NT, the thread is the basic entity to which the
operating system allocates a slice of CPU time. The thread has access to the same code, data, and
system resources as the task (program) which started it. Clarion START threads do not receive separate
"timeslices" from Windows 3.1; the run time library "slices" the Clarion thread and "divides" it among the
Clarion START threads.

 thumb
The box control on a scroll bar.

 timer
A Windows resource which can automatically send a message to an application at pre-defined intervals.

 token
A structured symbol or series of symbols, recognized and parsed by the compiler. Operators, and variable
names are examples of tokens.

 toolbar
A horizontal or vertically arranged group of command buttons, and/or other controls, generally remaining
accessible the entire time a program executes.

 transaction
The logical event during which an input or entry to a database record, held for sequential management
with other entries, is written to disk. Failure of any of the disk writes during the transaction would
compromise the integrity of the database.

 tree control
Displays a logically hierarchical list of items in collapsible outline format. In Clarion for Windows, a small
square filled with a plus or minus symbol, followed by a folder, represents an expandable tree control.

 untyped parameter
(Clarion) Within a function prototype, specifies the data type of a parameter is to be resolved at tun time.

 USE variable
(Clarion) An attribute indicating a variable whose value should display in a window or report control.

 validity check
An executable code procedure which checks end user input against an expression defining acceptable
values for a given field.

 VBX control
A custom window control for processing end user input or displaying data.

 VCR controls
A set of icons designed for use in navigating a browse or list; the images on the controls bearing a
similarity to the controls on a video cassette recorder.

 vector font
A scalable typeface, such as a TrueType font.

 vector graphic
A binary file representation of a graphic or line art; defines the image as a series of lines and curves,
allowing for smooth resizing. Clarion for Windows supports the .WMF (Windows Metafile) vector format.

 view
A virtual file containing selected fields from one or more related database files.

 virtual table
A data table or view which exists in memory only, constructed from one or more tables or data files which
may exist on disk.

 watch variable
A variable designated for monitoring by the Debugger.

 widow
A portion of text or data separated from its complementary following data by a page break.

 window frame
The window boundary. Dialog window frames are not resizeable. End users can resize other windows by
dragging the frame.

 window pane
A specialized window which acts as a "part" of a greater window. This allows an end user to divide an
active window into separate sections which may then be scrolled independently or in sync.

 WinExec
The standard Windows API function for calling another application. Supported in Clarion via the RUN
statement.

 X axis
The horizontal axis. Used for locating controls; the leftmost pixel in a window is position zero.

 Y axis
The vertical axis. Used for locating controls; the upper pixel in a window is position zero.

Syntax

-A-
ABS (return absolute value)
ACCEPT (the event processor)
ACCEPTED (return control just completed)
ACOS (return arccosine)
ADD (add a new file record)
ADD (add an entry)
ADDRESS (return a memory address)
AGE (return age from base date)
ALERT (set event generation key)
ALIAS (set alternate keycode)
ALL (return repeated characters)
APPEND (add a new file record)
ARC (draw an arc of an ellipse)
ASIN (return arcsine)
ASK (get one keystroke)
Assignment Statements
ATAN (return arctangent)

-B-
BAND (return bitwise AND)
BEEP (sound tone on speaker)
BEGIN (define code structure)
BIND (declare runtime expression string variable)
BLANK (erase graphics)
BOF (beginning of file function)
BOR (return bitwise OR)
BOX (draw a rectangle)
BREAK (immediately leave loop)
BSHIFT (return shifted bits)
BUILD (build keys and indexes)
BXOR (return bitwise exclusive OR)
BYTES (return size in bytes)

-C-
CALL (call procedure from a DLL)
CASE (conditional execution structure)
CENTER (return centered string)

CHAIN (execute another program)
CHANGE (change control field value)
CHOICE (return relative item position)
CHORD (draw a section of an ellipse)
CHR (return character from ASCII)
CLIP (return string without trailing spaces)
CLIPBOARD (return windows clipboard contents)
CLOCK (return system time)
CLOSE (close a data file)
CLOSE (close a VIEW)
CLOSE (close an active report structure)
CLOSE (close window)
CODE (begin executable statements)
COLORDIALOG (return chosen color)
COMMAND (return command line)
COMMIT (terminate successful transaction)
COMPILE (specify source to be compiled)
CONTENTS (return contents of USE variable)
COPY (copy a data file)
COS (return cosine)
CREATE (create an empty data file)
CREATE (create new control)
CYCLE (go to top of loop)

-D-
DATE (return standard date)
DAY (return day of month)
DDEAPP (return server application)
DDECHANNEL (return DDE channel number)
DDECLIENT (return DDE client channel)
DDECLOSE (terminate DDE server link)
DDEEXECUTE (send command to DDE server)
DDEITEM (return server item)
DDEPOKE (send unsolicited data to DDE server)
DDEQUERY (return registered DDE servers)
DDEREAD (get data from DDE server)
DDESERVER (return DDE server channel)
DDETOPIC (return server topic)
DDEVALUE (return data value sent to server)
DDEWRITE (provide data to DDE client)

DEFORMAT (remove formatting from numeric string)
DELETE (delete a file record)
DELETE (delete a view primary file record)
DELETE (delete an entry)
DISABLE (dim a control)
DISPLAY (write USE variables to screen)
DO (call a ROUTINE)
DRAGID (return matching drag-and-drop signature)
DROPID (return drag-and-drop string)
DUPLICATE (check for duplicate key entries)
DUPLICATE (check for duplicate key entries)

-E-
EJECT (start new listing page)
ELLIPSE (draw an ellipse)
EMPTY (empty a data file)
ENABLE (re-activate dimmed control)
END (terminate a structure)
ENDPAGE (force page overflow)
EOF (end of file function)
ERASE (clear screen control and USE variables)
ERROR (return error message)
ERRORCODE (return error code number)
ERRORFILE (return error filename)
EVALUATE (return runtime expression string result)
EVENT (return event number)
EXECUTE (statement selection structure)
EXIT (leave a ROUTINE)

-F-
FIELD (return control with focus)
FILEDIALOG (return chosen file)
FILEERROR (return file driver error message)
FILEERRORCODE (return file driver error code number)
FIRSTFIELD (return first window control)
FLUSH (flush DOS buffers)
FOCUS (return control with focus)
FONTDIALOG (return chosen font)
FORMAT (format numbers into a picture)
FREE (delete all entries)

FUNCTION (declare a function)

-G-
GET (read a file record by direct access)
GET (read an entry)
GETFONT (get font information)
GETINI (return INI file entry)
GETPOSITION (get control position)
GOTO (go to a label)

-H-
HALT (exit program)
HELP (help window access)
HIDE (blank a control)
HOLD (exclusive file record access)
HOLD (exclusive view record access)

-I-
IDLE (arm periodic procedure)
IF (conditional execution structure)
IMAGE (draw a graphic image)
INCLUDE (compile code in another file)
INCOMPLETE (return empty REQ control)
INLIST (search for entry in list)
INRANGE (check number within range)
INSTRING (search for substring)
INT (truncate fraction)

-J-

-K-
KEYBOARD (return keystroke waiting)
KEYCHAR (return ASCII code)
KEYCODE (return last keycode)
KEYSTATE (return keyboard status)

-L-
LASTFIELD (return last window control)
LEFT (return left justified string)
LEN (return length of string)
LINE (draw a straight line)

LOCK (exclusive file access)
LOG10 (return base 10 logarithm)
LOGE (return natural logarithm)
LOGOUT (begin transaction)
LOOP (iteration structure)
LOWER (return lower case)

-M-
MAP (declare PROCEDURE and/or FUNCTION prototypes)
MAXIMUM (return maximum subscript value)
MEMBER (identify member source file)
MESSAGE (return message box response)
MODULE (specify MEMBER source file)
MONTH (return month of date)
MOUSEX (return mouse horizontal position)
MOUSEY (return mouse vertical position)

-N-
NAME (return DOS file or device name)
NEXT (read next file record in sequence)
NEXT (read next view record in sequence)
NOMEMO (read file record without reading memo)
NOMEMO (read view record without reading memos)
NULL (return null file field)
NUMERIC (check numeric string)

-O-
OMIT (specify source not to be compiled)
OMITTED (check omitted parameters)
OPEN (open a data file)
OPEN (open a report structure for processing)
OPEN (open a VIEW)
OPEN (open window for processing)

-P-
PACK (remove deleted records)
PATH (return current DOS directory)
PENCOLOR (return line draw color)
PENSTYLE (return line draw style)
PENWIDTH (return line draw thickness)
PIE (draw a pie chart)

POINTER (return last entry position)
POINTER (return relative record position)
POLYGON (draw a multi-sided figure)
POSITION (return file record sequence position)
POSITION (return view record sequence position)
POST (post user-defined event)
PRESS (put characters in the buffer)
PRESSKEY (put a keystroke in the buffer)
PREVIOUS (read previous file record in sequence)
PREVIOUS (read previous view record in sequence)
PRINT (print a report structure)
PRINTERDIALOG (return chosen printer)
PROCEDURE (declare a procedure)
PROGRAM (declare a program)
PROJECT (set view fields)
PUT (write an entry)
PUT (write record back to file)
PUT (write VIEW primary file record back)
PUTINI (set INI file entry)

-Q-

-R-
RANDOM (return random number)
RECORDS (return number of entries)
RECORDS (return number of file or key records)
REGET (reget file record)
REGET (reget view record)
RELEASE (release a held file record)
RELEASE (release a held view record)
REMOVE (erase the data file)
RENAME (change data file directory name)
RESET (reset file record sequence position)
RESET (reset view record sequence position)
RETURN (return to caller)
RIGHT (return right justified string)
ROLLBACK (terminate unsuccessful transaction)
ROUND (return rounded number)
ROUNDBOX (draw a box with round corners)
ROUTINE (declare local subroutine)

RUN (execute command)
RUNCODE (return DOS exit code)

-S-
SECTION (specify source code section)
SELECT (select next control to process)
SELECTED (return control that has received focus)
SEND (send message to file driver)
SET (initiate sequential file processing)
SET3DLOOK (set 3D window look)
SETCLIPBOARD (set windows clipboard contents)
SETCLOCK (set system time)
SETCOMMAND (set command line parameters)
SETCURSOR (set temporary mouse cursor)
SETDROPID (set DROPID return string)
SETFONT (specify font)
SETKEYCODE (specify keycode)
SETNONNULL (set file field non-null)
SETNULL (set file field null)
SETPATH (change current drive and directory)
SETPENCOLOR (set line draw color)
SETPENSTYLE (set line draw style)
SETPENWIDTH (set line draw thickness)
SETPOSITION (specify new control position)
SETTARGET (set current window or report)
SETTODAY (set system date)
SHARE (open a data file)
SHOW (write to screen)
SIN (return sine)
SKIP (bypass file records in sequence)
SKIP (bypass view records in sequence)
SORT (sort entries)
SQRT (return square root)
START (return new execution thread)
STOP (suspend program execution)
STREAM (enable DOS buffering)
SUB (return substring of string)
SUBTITLE (print MODULE subtitle)

-T-

TAN (return tangent)
THREAD (return current execution thread)
TITLE (print MODULE title)
TODAY (return system date)
TYPE (write string to screen)

-U-
UNBIND (free runtime expression string variable)
UNHIDE (show hidden control)
UNLOCK (unlock a locked data file)
UPDATE (write from screen to USE variables)
UPPER (return upper case)

-V-
VAL (return ASCII value)

-W-
WATCH (automatic file concurrency check)
WATCH (automatic view concurrency check)

-X-

-Y-
YEAR (return year of date)
YIELD (allow event processing)

-Z-

Data Attributes

-A-
ABSOLUTE (set fixed-position printing)
ALONE (set to print without page header, footer, or form)
ALRT (set control "hot" keys)
ALRT (set window "hot" keys)
APPLICATION (declare an MDI frame window)
AUTO (uninitialized local variable)
AUTO (set USE variable automatic re-display)
AT (set control position and size in report)
AT (set control position and size in window)
AT (set detail print area)
AT (set print structure position and size)
AT (set window position and size)
AVE (set total average)

-B-
BFLOAT4 (four-byte signed floating point)
BFLOAT8 (eight-byte signed floating point)
BINARY (MEMO contains binary data)
BINDABLE (set dynamic expression string variables)
BINDABLE (set runtime expression string RECORD variables)
BOX (declare a report box control)
BOX (declare a window box control)
BOXED (set report controls group border)
BOXED (set window controls group border)
BREAK (declare group break structure)
BUTTON (declare a pushbutton control)
BYTE (one-byte unsigned integer)

-C-
CAP, UPR (set display case)
CAP, UPR (set print case)
CENTER (set position and size)
CHECK (declare a report checkbox control)
CHECK (declare a window checkbox control)
CHECK (set on/off ITEM)
CLASS (set .VBX custom control class)
CNT (set total count)

COLOR (set color)
COLOR (set control display color)
COLUMN (set list box highlight bar)
COMBO (declare an entry/list control)
CREATE (allow data file creation)
CSTRING (fixed-length null terminated string)
CURSOR (set control mouse cursor type)
CURSOR (set mouse cursor type)
CURSOR (set toolbar mouse cursor type)
CUSTOM (declare a report .VBX custom control)
CUSTOM (declare a window .VBX custom control)

-D-
DATE (four-byte date)
DECIMAL (signed packed decimal)
DEFAULT (set enter key button)
DETAIL (report detail line structure)
DIM (set array dimensions)
DISABLE (set control dimmed at open)
DOUBLE, NOFRAME, RESIZE (set window border)
DRAGID (set drag-and-drop host signatures)
DRIVER (specify data file type)
DROP (set list box behavior)
DROPID (set drag-and-drop target signatures)
DUP (allow duplicate KEY entries)

-E-
ELLIPSE (declare a report ellipse control)
ELLIPSE (declare a window ellipse control)
ENCRYPT (encrypt data file)
ENTRY (declare a data entry control)
EQUATE (assign label)
EXTERNAL (set variable defined externally)

-F-
FILE (declare a data file structure)
FILL (set display fill color)
FILL (set print fill color)
FILTER (set view filter expression)
FIRST, LAST (set MENU or ITEM position)
FONT (set control font)

FONT (set default font)
FONT (set print structure default font)
FONT (set report default font)
FONT (set toolbar default font)
FONT (set window default font)
FOOTER (page or group footer structure)
FORM (page layout structure)
FORMAT (set LIST or COMBO layout)
FORMAT (set LIST print format)
FROM (set report listbox data source)
FROM (set window listbox data source)
FULL (set full-screen)

-G-
GRAY (set 3-D look background)
GROUP (compound data structure)
GROUP (declare a group of report controls)
GROUP (declare a group of window controls)

-H-
HEADER (page or group header structure)
HIDE (set control hidden at open)
HIDE (set control non-print)
HLP (set control´s on-line help identifier)
HLP (set window´s on-line help identifier)
HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)
HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

-I-
ICON (set control icon)
ICON (set window icon)
ICONIZE (set window open as icon)
IMAGE (declare a report graphic image control)
IMAGE (declare a window graphic image control)
IMM (set immediate event notification)
INDEX (declare static file access index)
INS, OVR (set typing mode)
ITEM (declare a menu item)

-J-
JOIN (declare a "join" operation)

-K-
KEY (declare dynamic file access index)
KEY (set control execution keycode)

-L-
LANDSCAPE (set page orientation)
LEFT, RIGHT, CENTER, DECIMAL (set display justification)
LEFT, RIGHT, CENTER, DECIMAL (set print justification)
LIKE (inherited data type)
LINE (declare a report line control)
LINE (declare a window line control)
LIST (declare a report list control)
LIST (declare a window list control)
LONG (four-byte signed integer)

-M-
MARK (set multiple selection mode)
MASK (set pattern editing data entry)
MAX (set maximize control)
MAX (set total maximum)
MAXIMIZE (set window open maximized)
MDI (set MDI child window)
MEMO (declare a text field)
MENU (declare a menu box)
MENUBAR (declare a pulldown menu)
META (set .VBX to print as .WMF)
MIN (set total minimum)
MODAL (set system modal window)
MSG (set control status bar message)
MSG (set window status bar message)
MM, THOUS, POINTS (set report coordinate measure)

-N-
NAME (set external name)
NAME (set queue variable external name)
NAME (set filename)
NAME (set variable´s external name)
NOBAR (set no highlight bar)
NOCASE (case insensitive KEY or INDEX)
NOFRAME, DOUBLE, RESIZE (set window border)

NOMERGE (set merging behavior)

-O-
OPT (exclude null KEY or INDEX entries)
OPTION (declare a group of report RADIO controls)
OPTION (declare a group of window RADIO controls)
OVER (set shared memory location)
OWNER (declare password for data encryption)

-P-
PAGE (set page total reset)
PAGEAFTER (set page break after)
PAGEBEFORE (set page break first)
PAGENO (set page number print)
PALETTE (set number of hardware colors)
PASSWORD (set data non-display)
PDECIMAL (signed packed decimal)
Picture Tokens
POINTS, THOUS, MM (set report coordinate measure)
PRE (set file label)
PRE (set group label prefix)
PRE (set label prefix)
PRE (set report label prefix)
PREVIEW (set report output to metafiles)
PRIMARY (set relational primary key)
PROMPT (declare a prompt control)
PSTRING (embedded length-byte string)

-Q-
QUEUE (declare a memory QUEUE structure)

-R-
RADIO (declare a report radio button control)
RADIO (declare a window radio button control)
RANGE (set SPIN range limits)
READONLY (set display-only)
REAL (eight-byte signed floating point)
RECLAIM (reuse deleted record space)
RECORD (declare record structure)
REGION (declare a window region control)
REPORT (declare a report structure)

REQ (set required entry)
RESET (set total reset)
RESIZE, DOUBLE, NOFRAME (set window border)
RIGHT (set MENU position)
ROUND (set round-cornered report BOX)
ROUND (set round-cornered window BOX)

-S-
SCROLL (set scrolling control)
SEPARATOR (set separator line ITEM)
SHORT (two-byte signed integer)
SIZE (memory size in bytes)
SKIP (set Tab key skip)
SPIN (declare a spinning list control)
SREAL (four-byte signed floating point)
STATIC (set local queue static)
STATIC (set local variable static)
STATUS (set status bar)
STD (set standard behavior)
STEP (set SPIN increment)
STRING (declare a report string control)
STRING (declare a window string control)
STRING (fixed-length string)
SUM (set total)
SYSTEM (set system menu)

-T-
TEXT (declare a multi-line data entry control)
TEXT (declare a multi-line text control)
THOUS, MM, POINTS (set report coordinate measure)
THREAD (set thread-specific static queue)
THREAD (set thread-specific static variable)
TIME (four-byte time)
TIMER (set periodic event)
TOOLBAR (declare a tool bar)
TOOLBOX (set toolbox window behavior)
TRN (set transparent report string)
TRN (set transparent window string)

-U-
ULONG (four-byte unsigned integer)

USE (set code reference name)
USE (set control variable or equate label)
USE (set structure equate label)
USHORT (two-byte unsigned integer)

-V-
VCR (set VCR control)
VIEW (declare a "virtual" file)

-W-
WINDOW (declare a dialog window)
WITHNEXT (set widow elimination)
WITHPRIOR (set orphan elimination)

-X-

-Y-

-Z-

SPREAD (set evenly spaced TAB controls)
SPREAD

The SPREAD attribute specifies a SHEET's TAB controls are evenly spaced.

WIZARD (set "tabless" SHEET control)
WIZARD

The WIZARD attribute specifies a SHEET control that does not display its TAB controls. This allows
the program to direct the user through each TAB in a specified sequence (usually with "Next" and
"Previous" buttons.

BLOB (declare a variable-length memo field)
label BLOB [,BINARY] [,NAME()]

BLOB Declares a variable-length string which may be greater than 64K (in both 16 and 32-bit
applications).

BINARY Declares the BLOB a storage area for binary data.
NAME Specifies the disk filename for the BLOB field. (Use of this parameter is file driver

dependent.)
BLOB (Binary Large OBject) declares a string field which is completely variable-length and may be
greater than 64K in size (in both 16 and 32-bit applications). A BLOB must be declared before the
RECORD structure. Memory for a BLOB is dynamically allocated and de-allocated as necessary.
Generally, up to 255 BLOB fields may be declared in a FILE structure. The exact number of BLOB
fields and their manner of storage on disk is file driver dependent.

A BLOB may not be accessed "as a whole;" you must use "string slicing" syntax to access one piece (up
to 64K) at a time. A BLOB may not be used in the same manner as a variable (may not be named as a
control's USE attribute, etc.).You can use PROP:Handle to get the windows handle to the BLOB entity.
This provides the only mechanism to assign one BLOB to another: get the handle of both BLOB entities
and then assign one BLOB's handle to the other BLOB's handle. The SIZE function returns the number
of bytes contained in the BLOB field for the current record in memory. You can also get (and set) the
size of a BLOB using PROP:BlobSize.

Example:
Names FILE,DRIVER('TopSpeed')
NbrKey KEY(Names:Number)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)
Number SHORT

. .
ArcNamesFILE,DRIVER('TopSpeed')
NbrKey KEY(ArcNames:Number)
Notes BLOB
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
OPEN(Names)
CREATE(ArcNames)
SET(Names)
LOOP
NEXT(Names)
IF ERRORCODE() THEN BREAK.
ArcNames:Rec = Names:Rec !Assign record data to Archive file
ArcNames:Notes{PROP:Handle} = Names:Notes{PROP:Handle} !Assign BLOB to Archive
ADD(ArcNames)

END

DIRECTORY (get file directory)
DIRECTORY(queue, path, attributes)

DIRECTORY Gets a file directory listing (just like the DIR command in DOS).
queue The label of the QUEUE structure that will receive the directory listing. This must be exactly

the same structure as the ff_:queue structure in the EQUATES.CLW file.
path A string constant, variable, or expression that specifies the path and filenames directory

listing to get. This may include the wildcard characters (* and ?).
attributes An integer constant, variable, or expression that specifies the attributes of the files to place in

the queue.
The DIRECTORY procedure returns a directory listing of all files in the path with the specified
attributes into the specified queue.

The queue parameter must name a QUEUE with a structure that begins the same as the following
structure contained in EQUATES.CLW:

ff_:queue QUEUE,PRE(ff_),TYPE
name STRING(13)
date LONG
time LONG
size LONG
attrib BYTE

END

Your QUEUE may contain more fields, but must begin with these five fields. It will receive the returned
information about each file in the path that has the attributes you specify. The date and time fields will
contain standard Clarion date and time information (the conversion from the operating system's storage
format to Clarion standard format is automatic).

The attributes parameter is a bitmap which specifies what filenames to place in the queue. The
following equates are contained in EQUATES.CLW:

ff_:NORMAL EQUATE(0)
ff_:READONLY EQUATE(1)
ff_:HIDDEN EQUATE(2)
ff_:SYSTEM EQUATE(4)
ff_:DIRECTORY EQUATE(10H)
ff_:ARCHIVE EQUATE(20H) ! NOT Win95 compatible

The attributes bitmap is a non-exclusive OR filter: if you add the equates, you get files with any of the
attributes you specify. This means that, when you just set the ff_:NORMAL attribute, you only get files
(no sub-directories) without the read-only, hidden, system, or archive attributes set. If you add
ff_:DIRECTORY to ff_:NORMAL, you will get files AND sub-directories from the path.

Example:
DirectoryList PROCEDURE
AllFiles QUEUE,PRE(FIL)
name STRING(13)
date LONG
time LONG
size LONG
attrib BYTE

END
LP LONG

Recs LONG
CODE
DIRECTORY(AllFiles,'*.*',ff_:DIRECTORY) !Get all files and directories
Recs = RECORDS(AllFiles)
LOOP LP = 1 to Recs
GET(AllFiles,LP)
IF BAND(FIL:Attrib,ff_:DIRECTORY) AND FIL:Name <> '..' AND FIL:Name <> '.' THEN
CYCLE !Let sub-directory entries stay

ELSE
DELETE(AllFiles) !Get rid of all other entries

END

REJECTCODE (return reject code number)
REJECTCODE()

The REJECTCODE function returns the code number for the reason any EVENT:Rejected that was
posted. If no EVENT:Rejected was posted, REJECTCODE returns zero. The EQUATES.CLW file
contains equates for the values returned by REJECTCODE:

REJECT:RangeHigh ! Above the top range on a SPIN
REJECT:RangeLow ! Below the bottom range on a SPIN
REJECT:Range ! Other range error
REJECT:Invalid ! Invalid input

Return Data Type: LONG

Example:
CASE EVENT()
OF EVENT:Rejected
EXECUTE REJECTCODE()
MESSAGE('Input invalid -- out of range -- too high')
MESSAGE('Input invalid -- out of range -- too low')
MESSAGE('Input invalid -- out of range')
MESSAGE('Input invalid')

END
END

PAPER (set report paper size)
PAPER([type] [,width] [,height])

PAPER Defines the paper size for the report.
type An integer constant or EQUATE that specifies a standard Windows paper size. EQUATES for

these are contained in the EQUATES.CLW file.
width An integer constant or constant expression that specifies the width of the paper.
height An integer constant or constant expression that specifies the height of the paper.

The PAPER attribute on a REPORT structure defines the paper size for the report. The width and height
parameters are only required when PAPER:Custom is selected as the type.

The values contained in the width, and height parameters default to dialog units unless the THOUS,
MM, or POINTS attribute is also present. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is dependent upon the size of
the default font for the report. This measurement is based on the font specified in the FONT attribute of
the report, or the printers default font.

Example:
CustRpt1REPORT,AT(1000,1000,6500,9000),THOUS,PAPER(PAPER:Custom,8500,7000)

! print on 8.5" x 7" paper
!report declarations

END
CustRpt2REPORT,AT(72,72,468,648),POINTS,PAPER(PAPER:A4)

! print on A4 size paper
!report declarations

END

Example Source for Global Program Section
The following code was generated from the Clarion Program template.

Comments appear in red at the default embed points.

PROGRAM
!Embed: Before Global INCLUDEs
INCLUDE('Equates.CLW')
INCLUDE('TplEqu.CLW')
INCLUDE('Keycodes.CLW')
INCLUDE('Errors.CLW')

!Embed: After Global INCLUDEs
MAP
MODULE('EMBED001.clw')
Main

END
MODULE('EMBED002.clw')
BrowseNames

END
MODULE('EMBED003.clw')
PrintNAM:KeyNumber

END
MODULE('EMBED004.clw')
PrintNAM:KeyZip

END
MODULE('EMBED005.clw')
UpdateNames

END
MODULE('EMBED_SF.CLW')
CheckOpen(FILE,<BYTE>,<BYTE>)
ReportPreview(QUEUE)
StandardWarning(LONG,<STRING>,<STRING>,<STRING>,<STRING>),LONG,PROC
SetupStringStops(STRING,STRING,LONG,<LONG>)
NextStringStop,STRING
SetupRealStops(REAL,REAL)
NextRealStop,REAL
INIRestoreWindow(STRING,STRING)
INISaveWindow(STRING,STRING)

END
MODULE('EMBED_RU.CLW')
RIUpdate:Names,LONG
RISnap:Names

END
MODULE('EMBED_RD.CLW')
RIDelete:Names,LONG

END
!Embed: Inside the Global Map

END

GlobalRequest LONG(0),THREAD
GlobalResponse LONG(0),THREAD
!Embed: Before File Declarations
Names FILE,DRIVER('TOPSPEED'),PRE(NAM),CREATE,THREAD
KeyNumber KEY(NAM:Number),NOCASE,OPT
KeyZip KEY(NAM:Zip),DUP,NOCASE

Record RECORD,PRE()
Number DECIMAL(3)
FirstName STRING(20)
LastName STRING(20)
Address STRING(20)
City STRING(20)
State STRING(2)
Zip DECIMAL(5)

END
END

Names::Used LONG,THREAD
!Embed: After File Declarations
Sort:Name STRING(ScrollSort:Name)
Sort:Name:Array STRING(3),DIM(100),OVER(Sort:Name)
Sort:Alpha STRING(ScrollSort:Alpha)
Sort:Alpha:Array STRING(2),DIM(100),OVER(Sort:Alpha)
!Embed: Global Data
LocateOnPosition EQUATE(1)
LocateOnValue EQUATE(2)
LocateOnTop EQUATE(3)
FillBackward EQUATE(1)
FillForward EQUATE(2)
RefreshOnPosition EQUATE(1)
RefreshOnQueue EQUATE(2)
RefreshOnTop EQUATE(3)
RefreshOnBottom EQUATE(4)
RefreshOnCurrent EQUATE(5)
CODE
!Embed: Program Setup
Main
!Embed: Program End

Example Source for Browse Procedure
The following code was generated from the Browse procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: INTERNAL Top of SetupBrowseBehavior GROUP
!Embed: INTERNAL Bottom of SetupBrowseBehavior GROUP
!Embed: Gather Template Symbols
BrowseNames PROCEDURE
CurrentTab STRING(80)
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
RecordFiltered LONG
!Embed: Data Section, Before Window Declaration
BRW1::View:Browse VIEW(Names)

PROJECT(NAM:Number)
PROJECT(NAM:FirstName)
PROJECT(NAM:LastName)
PROJECT(NAM:Address)
PROJECT(NAM:City)
PROJECT(NAM:State)
PROJECT(NAM:Zip)

END
Queue:Browse:1 QUEUE,PRE() ! Browsing Queue
BRW1::NAM:Number LIKE(NAM:Number) ! Queue Display field
BRW1::NAM:FirstName LIKE(NAM:FirstName) ! Queue Display field
BRW1::NAM:LastName LIKE(NAM:LastName) ! Queue Display field
BRW1::NAM:Address LIKE(NAM:Address) ! Queue Display field
BRW1::NAM:City LIKE(NAM:City) ! Queue Display field
BRW1::NAM:State LIKE(NAM:State) ! Queue Display field
BRW1::NAM:Zip LIKE(NAM:Zip) ! Queue Display field
!Embed: End of list QUEUE 1
BRW1::Position STRING(512) ! Queue POSITION information

END ! END (Browsing Queue)
BRW1::CurrentScroll BYTE ! Queue position of scroll thumb
BRW1::ScrollRecordCount LONG ! Queue position of scroll thumb
BRW1::Sort1:KeyDistribution LIKE(NAM:Zip),DIM(100)
BRW1::Sort1:LowValue LIKE(NAM:Zip) ! Queue position of scroll thumb
BRW1::Sort1:HighValue LIKE(NAM:Zip) ! Queue position of scroll thumb
BRW1::Sort2:KeyDistribution LIKE(NAM:Number),DIM(100)
BRW1::Sort2:LowValue LIKE(NAM:Number) ! Queue position of scroll thumb
BRW1::Sort2:HighValue LIKE(NAM:Number) ! Queue position of scroll thumb
BRW1::CurrentEventLONG !
BRW1::CurrentChoice LONG !
BRW1::RecordCount LONG !
BRW1::SortOrder BYTE !
BRW1::LocateMode BYTE !
BRW1::RefreshMode BYTE !

BRW1::LastSortOrder BYTE !
BRW1::FillDirection BYTE !
BRW1::AddQueue BYTE !
BRW1::Changed BYTE !
BRW1::RecordStatusBYTE ! Flag for Range/Filter test
BRW1::ItemsToFill LONG ! Controls records retrieved
BRW1::MaxItemsInList LONG ! Retrieved after window opened
BRW1::HighlightedPosition STRING(512) ! POSITION of located record
BRW1::NewSelectPosted BYTE ! Queue position of located record
BRW1::PopupText STRING(128) !
QuickWindow WINDOW('Browse the Names File'),AT(,,358,188),FONT('MS Sans
Serif',8,,),IMM,HLP('BrowseNames'),SYSTEM,GRAY,MDI

LIST,AT(8,20,342,124),MSG('Browsing Records'),USE(?
Browse:1),IMM,HVSCROLL,FORMAT('12L|M~Number~@n03@80L|M~First Name~@S20@80L|M~Last
Name~@S20@80L|M~Address~@S20@' &|

'80L|M~City~@S20@8L|M~State~@s2@20L|M~Zip~@n05@'),FROM(Queue:Browse:1)
BUTTON('&Insert'),AT(207,148,45,14),USE(?Insert:2)
BUTTON('&Change'),AT(256,148,45,14),USE(?Change:2),DEFAULT
BUTTON('&Delete'),AT(305,148,45,14),USE(?Delete:2)
SHEET,AT(4,4,350,162),USE(?CurrentTab)
TAB('NAM:KeyNumber')
END
TAB('NAM:KeyZip')
END

END
BUTTON('Close'),AT(260,170,45,14),USE(?Close)
BUTTON('Help'),AT(309,170,45,14),USE(?Help),STD(STD:Help)

END
!Embed: Data Section, After Window Declaration
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup
IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
IF Names::Used = 0
CheckOpen(Names,1)
BIND(NAM:RECORD)

END
Names::Used += 1
!Embed: Beginning of Procedure, After Opening Files
!Embed: Before Opening the Window
OPEN(QuickWindow)
WindowOpened=True
!Embed: After Opening the Window
BRW1::AddQueue = True
BRW1::RecordCount = 0
IF LocalRequest <> SelectRecord
!Embed: Browse Preparation, Request Normal Operation

ELSE
!Embed: Browse Preparation, Request to Select Record

END
?Browse:1{Prop:VScroll} = False

!Embed: Preparing Window Alerts
?Browse:1{Prop:Alrt,252} = MouseLeft2
?Browse:1{Prop:Alrt,255} = InsertKey
?Browse:1{Prop:Alrt,254} = DeleteKey
?Browse:1{Prop:Alrt,253} = CtrlEnter
?Browse:1{Prop:Alrt,252} = MouseLeft2
!Embed: Preparing to Process the Window
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey
!Embed: Window Event Handling PreAlertKey

OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
SELECT(?Browse:1)

OF EVENT:LoseFocus
!Embed: Window Event Handling LoseFocus

OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

OF EVENT:Timer
!Embed: Window Event Handling Timer

OF EVENT:Move
!Embed: Window Event Handling Move

OF EVENT:Size
!Embed: Window Event Handling Size

OF EVENT:Restore
!Embed: Window Event Handling Restore

OF EVENT:Maximize
!Embed: Window Event Handling Maximize

OF EVENT:Iconize
!Embed: Window Event Handling Iconize

OF EVENT:Moved
!Embed: Window Event Handling Moved

OF EVENT:Sized
!Embed: Window Event Handling Sized

OF EVENT:Restored
!Embed: Window Event Handling Restored

OF EVENT:Maximized

!Embed: Window Event Handling Maximized
OF EVENT:Iconized
!Embed: Window Event Handling Iconized

ELSE
!Embed: Other Window Event Handling

!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
OF ?Browse:1
!Embed: Control Handling, before event handling ?Browse:1
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Browse:1, Accepted
!Embed: Internal Control Event Handling ?Browse:1, Accepted
!Embed: Control Event Handling, after generated code ?Browse:1, Accepted

OF EVENT:NewSelection
!Embed: Control Event Handling, before generated code ?Browse:1, NewSelection
!Embed: Internal Control Event Handling ?Browse:1, NewSelection
DO BRW1::NewSelection
!Embed: Control Event Handling, after generated code ?Browse:1, NewSelection

OF EVENT:ScrollUp
!Embed: Control Event Handling, before generated code ?Browse:1, ScrollUp
!Embed: Internal Control Event Handling ?Browse:1, ScrollUp
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, ScrollUp

OF EVENT:ScrollDown
!Embed: Control Event Handling, before generated code ?Browse:1, ScrollDown
!Embed: Internal Control Event Handling ?Browse:1, ScrollDown
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, ScrollDown

OF EVENT:PageUp
!Embed: Control Event Handling, before generated code ?Browse:1, PageUp
!Embed: Internal Control Event Handling ?Browse:1, PageUp
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, PageUp

OF EVENT:PageDown
!Embed: Control Event Handling, before generated code ?Browse:1, PageDown
!Embed: Internal Control Event Handling ?Browse:1, PageDown
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, PageDown

OF EVENT:ScrollTop
!Embed: Control Event Handling, before generated code ?Browse:1, ScrollTop
!Embed: Internal Control Event Handling ?Browse:1, ScrollTop
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, ScrollTop

OF EVENT:ScrollBottom
!Embed: Control Event Handling, before generated code ?Browse:1, ScrollBottom
!Embed: Internal Control Event Handling ?Browse:1, ScrollBottom
DO BRW1::ProcessScroll
!Embed: Control Event Handling, after generated code ?Browse:1, ScrollBottom

OF EVENT:Locate
!Embed: Control Event Handling, before generated code ?Browse:1, Locate
!Embed: Internal Control Event Handling ?Browse:1, Locate
!Embed: Control Event Handling, after generated code ?Browse:1, Locate

OF EVENT:AlertKey
!Embed: Control Event Handling, before generated code ?Browse:1, AlertKey
!Embed: Internal Control Event Handling ?Browse:1, AlertKey

DO BRW1::AlertKey
!Embed: Control Event Handling, after generated code ?Browse:1, AlertKey

OF EVENT:PreAlertKey
!Embed: Control Event Handling, before generated code ?Browse:1, PreAlertKey
!Embed: Internal Control Event Handling ?Browse:1, PreAlertKey
!Embed: Control Event Handling, after generated code ?Browse:1, PreAlertKey

OF EVENT:ScrollDrag
!Embed: Control Event Handling, before generated code ?Browse:1, ScrollDrag
!Embed: Internal Control Event Handling ?Browse:1, ScrollDrag
DO BRW1::ScrollDrag
!Embed: Control Event Handling, after generated code ?Browse:1, ScrollDrag

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Browse:1, Selected
!Embed: Internal Control Event Handling ?Browse:1, Selected
!Embed: Control Event Handling, after generated code ?Browse:1, Selected

ELSE
!Embed: Other Control Event Handling ?Browse:1

END
!Embed: Control Handling, after event handling ?Browse:1

OF ?Insert:2
!Embed: Control Handling, before event handling ?Insert:2
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Insert:2, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Insert:2, Accepted
DO BRW1::ButtonInsert
!Embed: Control Event Handling, after generated code ?Insert:2, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Insert:2, Selected
!Embed: Internal Control Event Handling ?Insert:2, Selected
!Embed: Control Event Handling, after generated code ?Insert:2, Selected

ELSE
!Embed: Other Control Event Handling ?Insert:2

END
!Embed: Control Handling, after event handling ?Insert:2

OF ?Change:2
!Embed: Control Handling, before event handling ?Change:2
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Change:2, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Change:2, Accepted
DO BRW1::ButtonChange
!Embed: Control Event Handling, after generated code ?Change:2, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Change:2, Selected
!Embed: Internal Control Event Handling ?Change:2, Selected
!Embed: Control Event Handling, after generated code ?Change:2, Selected

ELSE
!Embed: Other Control Event Handling ?Change:2

END
!Embed: Control Handling, after event handling ?Change:2

OF ?Delete:2
!Embed: Control Handling, before event handling ?Delete:2
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Delete:2, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Delete:2, Accepted

DO BRW1::ButtonDelete
!Embed: Control Event Handling, after generated code ?Delete:2, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Delete:2, Selected
!Embed: Internal Control Event Handling ?Delete:2, Selected
!Embed: Control Event Handling, after generated code ?Delete:2, Selected

ELSE
!Embed: Other Control Event Handling ?Delete:2

END
!Embed: Control Handling, after event handling ?Delete:2

OF ?CurrentTab
!Embed: Control Handling, before event handling ?CurrentTab
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?CurrentTab, Accepted
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, Accepted
!Embed: Control Event Handling, after generated code ?CurrentTab, Accepted

OF EVENT:NewSelection
!Embed: Control Event Handling, before generated code ?CurrentTab, NewSelection
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, NewSelection
!Embed: Control Event Handling, after generated code ?CurrentTab, NewSelection

OF EVENT:TabChanging
!Embed: Control Event Handling, before generated code ?CurrentTab, TabChanging
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, TabChanging
!Embed: Control Event Handling, after generated code ?CurrentTab, TabChanging

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?CurrentTab, Selected
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, Selected
!Embed: Control Event Handling, after generated code ?CurrentTab, Selected

ELSE
!Embed: Other Control Event Handling ?CurrentTab

END
!Embed: Control Handling, after event handling ?CurrentTab

OF ?Close
!Embed: Control Handling, before event handling ?Close
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Close, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Close, Accepted
LocalResponse = RequestCancelled
POST(Event:CloseWindow)
!Embed: Control Event Handling, after generated code ?Close, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Close, Selected
!Embed: Internal Control Event Handling ?Close, Selected
!Embed: Control Event Handling, after generated code ?Close, Selected

ELSE
!Embed: Other Control Event Handling ?Close

END
!Embed: Control Handling, after event handling ?Close

OF ?Help
!Embed: Control Handling, before event handling ?Help
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Help, Accepted

DO SyncWindow
!Embed: Internal Control Event Handling ?Help, Accepted
!Embed: Control Event Handling, after generated code ?Help, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Help, Selected
!Embed: Internal Control Event Handling ?Help, Selected
!Embed: Control Event Handling, after generated code ?Help, Selected

ELSE
!Embed: Other Control Event Handling ?Help

END
!Embed: Control Handling, after event handling ?Help

!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
Names::Used -= 1
IF Names::Used = 0 THEN CLOSE(Names).
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(QuickWindow)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF QuickWindow{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: After Refresh Window for a control ?Browse:1
DO BRW1::SelectSort
!Embed: After Refresh Window for a control ?Browse:1
!Embed: Refresh Window routine, before DISPLAY()
?Browse:1{Prop:VScrollPos} = BRW1::CurrentScroll
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups
DO BRW1::GetRecord

!---
!Embed: Procedure Routines
!--

BRW1::ValidateRecord ROUTINE
!Embed: Start of Validate Record ROUTINE
BRW1::RecordStatus = Record:OutOfRange
!Embed: Validate Record: Range Checking 1
BRW1::RecordStatus = Record:Filtered
!Embed: Validate Record: Filter Checking 1
!Embed: After Range and Filter Check 1
BRW1::RecordStatus = Record:OK
!Embed: End of Validate Record ROUTINE
EXIT

!--
BRW1::SelectSort ROUTINE
BRW1::LastSortOrder = BRW1::SortOrder
BRW1::Changed = False
IF CHOICE(?CurrentTab) = 2
BRW1::SortOrder = 1

ELSE
BRW1::SortOrder = 2

END
IF BRW1::SortOrder <> BRW1::LastSortOrder OR BRW1::Changed OR ForceRefresh
DO BRW1::GetRecord
DO BRW1::Reset
IF BRW1::LastSortOrder = 0
IF LocalRequest = SelectRecord
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

ELSE
BRW1::RefreshMode = RefreshOnTop
DO BRW1::RefreshPage
DO BRW1::PostNewSelection

END
ELSE
IF BRW1::Changed
BRW1::RefreshMode = RefreshOnTop
DO BRW1::RefreshPage
DO BRW1::PostNewSelection

ELSE
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

END
END
IF BRW1::RecordCount
GET(Queue:Browse:1,BRW1::CurrentChoice)
DO BRW1::FillBuffer

END
DO BRW1::InitializeBrowse

END
!--
BRW1::InitializeBrowse ROUTINE
!Embed: Start of Initialize Browse ROUTINE
SETCURSOR(Cursor:Wait)
DO BRW1::Reset
!Embed: Before Browse Total Loop 1
LOOP
NEXT(BRW1::View:Browse)
IF ERRORCODE()
IF ERRORCODE() = BadRecErr
BREAK

ELSE
StandardWarning(Warn:RecordFetchError,'Names')

POST(Event:CloseWindow)
EXIT

END
END
DO BRW1::ValidateRecord
EXECUTE(BRW1::RecordStatus)
BREAK
CYCLE

END
DO BRW1::FillQueue
!Embed: Browse Total Loop 1

END
!Embed: After Browse Total Loop 1
SETCURSOR()
DO BRW1::Reset
LOOP
PREVIOUS(BRW1::View:Browse)
IF ERRORCODE()
IF ERRORCODE() = BadRecErr
BREAK

ELSE
StandardWarning(Warn:RecordFetchError,'Names')
POST(Event:CloseWindow)
EXIT

END
END
DO BRW1::ValidateRecord
EXECUTE(BRW1::RecordStatus)
BREAK
CYCLE

END
BREAK

END
CASE BRW1::SortOrder
OF 1
BRW1::Sort1:HighValue = NAM:Zip

OF 2
BRW1::Sort2:HighValue = NAM:Number

END
DO BRW1::Reset
LOOP
NEXT(BRW1::View:Browse)
IF ERRORCODE()
IF ERRORCODE() = BadRecErr
BREAK

ELSE
StandardWarning(Warn:RecordFetchError,'Names')
POST(Event:CloseWindow)
EXIT

END
END
DO BRW1::ValidateRecord
EXECUTE(BRW1::RecordStatus)
BREAK
CYCLE

END
BREAK

END
CASE BRW1::SortOrder
OF 1

BRW1::Sort1:LowValue = NAM:Zip
SetupRealStops(BRW1::Sort1:LowValue,BRW1::Sort1:HighValue)
LOOP BRW1::ScrollRecordCount = 1 TO 100
BRW1::Sort1:KeyDistribution[BRW1::ScrollRecordCount] = NextRealStop()

END
OF 2
BRW1::Sort2:LowValue = NAM:Number
SetupRealStops(BRW1::Sort2:LowValue,BRW1::Sort2:HighValue)
LOOP BRW1::ScrollRecordCount = 1 TO 100
BRW1::Sort2:KeyDistribution[BRW1::ScrollRecordCount] = NextRealStop()

END
END
!Embed: End of Initialize Browse ROUTINE

!--
BRW1::FillBuffer ROUTINE
!Embed: Start of Fill Buffer ROUTINE
NAM:Number = BRW1::NAM:Number
NAM:FirstName = BRW1::NAM:FirstName
NAM:LastName = BRW1::NAM:LastName
NAM:Address = BRW1::NAM:Address
NAM:City = BRW1::NAM:City
NAM:State = BRW1::NAM:State
NAM:Zip = BRW1::NAM:Zip
!Embed: Start of Fill Buffer ROUTINE

!--
BRW1::FillQueue ROUTINE
!Embed: Format an element of the browse queue 1
BRW1::NAM:Number = NAM:Number
BRW1::NAM:FirstName = NAM:FirstName
BRW1::NAM:LastName = NAM:LastName
BRW1::NAM:Address = NAM:Address
BRW1::NAM:City = NAM:City
BRW1::NAM:State = NAM:State
BRW1::NAM:Zip = NAM:Zip
BRW1::Position = POSITION(BRW1::View:Browse)
!Embed: End of Format an element of the browse queue 1

!--
BRW1::PostNewSelection ROUTINE
IF NOT BRW1::NewSelectPosted
BRW1::NewSelectPosted = True
POST(Event:NewSelection,?Browse:1)

END
!--
BRW1::NewSelection ROUTINE
BRW1::NewSelectPosted = False
IF KEYCODE() = MouseRight
BRW1::PopupText = ''
IF BRW1::RecordCount
!Embed: INTERNAL Browse Box Popup with Records
IF BRW1::PopupText
BRW1::PopupText = '&Insert|&Change|&Delete|-|' & BRW1::PopupText

ELSE
BRW1::PopupText = '&Insert|&Change|&Delete'

END
ELSE
!Embed: INTERNAL Browse Box Popup with No Records
IF BRW1::PopupText
BRW1::PopupText = '&Insert|~&Change|~&Delete|-|' & BRW1::PopupText

ELSE
BRW1::PopupText = '&Insert|~&Change|~&Delete'

END
END
EXECUTE(POPUP(BRW1::PopupText))
!Embed: INTERNAL Browse Box Popup Handling
POST(Event:Accepted,?Insert:2)
POST(Event:Accepted,?Change:2)
POST(Event:Accepted,?Delete:2)
!Embed: INTERNAL Browse Box Popup Handling

END
ELSIF BRW1::RecordCount
BRW1::CurrentChoice = CHOICE(?Browse:1)
GET(Queue:Browse:1,BRW1::CurrentChoice)
DO BRW1::FillBuffer
IF BRW1::RecordCount = ?Browse:1{Prop:Items}
IF ?Browse:1{Prop:VScroll} = False
?Browse:1{Prop:VScroll} = True

END
CASE BRW1::SortOrder
OF 1
LOOP BRW1::CurrentScroll = 1 TO 100
IF BRW1::Sort1:KeyDistribution[BRW1::CurrentScroll] => NAM:Zip
IF BRW1::CurrentScroll <= 1
BRW1::CurrentScroll = 0

ELSIF BRW1::CurrentScroll = 100
BRW1::CurrentScroll = 100

ELSE
END
BREAK

END
END

OF 2
LOOP BRW1::CurrentScroll = 1 TO 100
IF BRW1::Sort2:KeyDistribution[BRW1::CurrentScroll] => NAM:Number
IF BRW1::CurrentScroll <= 1
BRW1::CurrentScroll = 0

ELSIF BRW1::CurrentScroll = 100
BRW1::CurrentScroll = 100

ELSE
END
BREAK

END
END

END
ELSE
IF ?Browse:1{Prop:VScroll} = True
?Browse:1{Prop:VScroll} = False

END
END
DO RefreshWindow

END
!---
BRW1::ProcessScroll ROUTINE
IF BRW1::RecordCount
BRW1::CurrentEvent = EVENT()
CASE BRW1::CurrentEvent
OF Event:ScrollUp OROF Event:ScrollDown
DO BRW1::ScrollOne

OF Event:PageUp OROF Event:PageDown
DO BRW1::ScrollPage

OF Event:ScrollTop OROF Event:ScrollBottom

DO BRW1::ScrollEnd
END
?Browse:1{Prop:SelStart} = BRW1::CurrentChoice
DO BRW1::PostNewSelection

END
!--
BRW1::ScrollOne ROUTINE
IF BRW1::CurrentEvent = Event:ScrollUp
!Embed: INTERNAL: Start of Scroll Up ROUTINE

ELSE
!Embed: INTERNAL: Start of Scroll Down ROUTINE

END
IF BRW1::CurrentEvent = Event:ScrollUp AND BRW1::CurrentChoice > 1
BRW1::CurrentChoice -= 1
EXIT

ELSIF BRW1::CurrentEvent = Event:ScrollDown AND BRW1::CurrentChoice <
BRW1::RecordCount

BRW1::CurrentChoice += 1
EXIT

END
BRW1::ItemsToFill = 1
BRW1::FillDirection = BRW1::CurrentEvent - 2
DO BRW1::FillRecord
IF BRW1::CurrentEvent = Event:ScrollUp
!Embed: INTERNAL: End of Scroll Up ROUTINE

ELSE
!Embed: INTERNAL: End of Scroll Down ROUTINE

END
!--
BRW1::ScrollPage ROUTINE
IF BRW1::CurrentEvent = Event:PageUp
!Embed: INTERNAL: Start of Page Up ROUTINE

ELSE
!Embed: INTERNAL: Start of Page Down ROUTINE

END
BRW1::ItemsToFill = ?Browse:1{Prop:Items}
BRW1::FillDirection = BRW1::CurrentEvent - 4
DO BRW1::FillRecord ! Fill with next read(s)
IF BRW1::ItemsToFill
IF BRW1::CurrentEvent = Event:PageUp
BRW1::CurrentChoice -= BRW1::ItemsToFill
IF BRW1::CurrentChoice < 1
BRW1::CurrentChoice = 1

END
ELSE
BRW1::CurrentChoice += BRW1::ItemsToFill
IF BRW1::CurrentChoice > BRW1::RecordCount
BRW1::CurrentChoice = BRW1::RecordCount

END
END

END
IF BRW1::CurrentEvent = Event:PageUp
!Embed: INTERNAL: End of Page Up ROUTINE

ELSE
!Embed: INTERNAL: End of Page Down ROUTINE

END
!--
BRW1::ScrollEnd ROUTINE
IF BRW1::CurrentEvent = Event:ScrollTop
!Embed: INTERNAL: Start of Scroll Top ROUTINE

ELSE
!Embed: INTERNAL: Start of Scroll Bottom ROUTINE

END
FREE(Queue:Browse:1)
BRW1::RecordCount = 0
DO BRW1::Reset
BRW1::ItemsToFill = ?Browse:1{Prop:Items}
IF BRW1::CurrentEvent = Event:ScrollTop
BRW1::FillDirection = FillForward

ELSE
BRW1::FillDirection = FillBackward

END
DO BRW1::FillRecord ! Fill with next read(s)
IF BRW1::CurrentEvent = Event:ScrollTop
BRW1::CurrentChoice = 1

ELSE
BRW1::CurrentChoice = BRW1::RecordCount

END
IF BRW1::CurrentEvent = Event:ScrollTop
!Embed: INTERNAL: End of Scroll Top ROUTINE

ELSE
!Embed: INTERNAL: End of Scroll Bottom ROUTINE

END
!--
BRW1::AlertKey ROUTINE
!Embed: INTERNAL: Start of Alert Key ROUTINE
IF BRW1::RecordCount
CASE KEYCODE() ! What keycode was hit
!Embed: AlertKey routine, inside CASE KEYCODE 1
OF MouseLeft2
!Embed: Browse Double Click Handler 1
!Embed: INTERNAL Browse Box Double Click Handler
POST(Event:Accepted,?Change:2)
DO BRW1::FillBuffer

!Embed: Browse Key Handling
OF InsertKey
POST(Event:Accepted,?Insert:2)

!Embed: Browse Key Handling
OF DeleteKey
POST(Event:Accepted,?Delete:2)

OF CtrlEnter
POST(Event:Accepted,?Change:2)

END ! END (What keycode was hit)
ELSE
CASE KEYCODE() ! What keycode was hit
!Embed: Browse Key Handling
OF InsertKey
POST(Event:Accepted,?Insert:2)

END
END
DO BRW1::PostNewSelection
!Embed: INTERNAL: End of Alert Key ROUTINE

!--
BRW1::ScrollDrag ROUTINE
IF ?Browse:1{Prop:VScrollPos} <= 1
POST(Event:ScrollTop,?Browse:1)

ELSIF ?Browse:1{Prop:VScrollPos} = 100
POST(Event:ScrollBottom,?Browse:1)

ELSE
CASE BRW1::SortOrder

OF 1
NAM:Zip = BRW1::Sort1:KeyDistribution[?Browse:1{Prop:VScrollPos}]
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

OF 2
NAM:Number = BRW1::Sort2:KeyDistribution[?Browse:1{Prop:VScrollPos}]
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

END
END

!--
BRW1::FillRecord ROUTINE
IF BRW1::FillDirection = FillForward
!Embed: Start of Fill Forward ROUTINE
!Embed: Start of Fill Record ROUTINE, Reading Forward

ELSE
!Embed: Start of Fill Backward ROUTINE
!Embed: Start of Fill Record ROUTINE, Reading Backward

END
IF BRW1::RecordCount
IF BRW1::FillDirection = FillForward
GET(Queue:Browse:1,BRW1::RecordCount) ! Get the first queue item

ELSE
GET(Queue:Browse:1,1) ! Get the first queue item

END
RESET(BRW1::View:Browse,BRW1::Position) ! Reset for sequential processing
NEXT(BRW1::View:Browse)

END
LOOP WHILE BRW1::ItemsToFill
IF BRW1::FillDirection = FillForward
NEXT(BRW1::View:Browse)

ELSE
PREVIOUS(BRW1::View:Browse)

END
IF ERRORCODE()
IF ERRORCODE() = BadRecErr
BREAK

ELSE
StandardWarning(Warn:RecordFetchError,'Names')
POST(Event:CloseWindow)
EXIT

END
END
DO BRW1::ValidateRecord
EXECUTE(BRW1::RecordStatus)
BEGIN
IF BRW1::FillDirection = FillForward
GET(Queue:Browse:1,BRW1::RecordCount) ! Get the first queue item

ELSE
GET(Queue:Browse:1,1) ! Get the first queue item

END
DO BRW1::FillBuffer
BREAK

END
CYCLE

END
IF BRW1::AddQueue
IF BRW1::RecordCount = ?Browse:1{Prop:Items}
IF BRW1::FillDirection = FillForward
GET(Queue:Browse:1,1) ! Get the first queue item

ELSE
GET(Queue:Browse:1,BRW1::RecordCount) ! Get the first queue item

END
DELETE(Queue:Browse:1)
BRW1::RecordCount -= 1

END
DO BRW1::FillQueue
IF BRW1::FillDirection = FillForward
ADD(Queue:Browse:1)

ELSE
ADD(Queue:Browse:1,1)

END
BRW1::RecordCount += 1

END
BRW1::ItemsToFill -= 1

END
BRW1::AddQueue = True
IF BRW1::FillDirection = FillForward
!Embed: End of Fill Forward ROUTINE
!Embed: End of Fill Record ROUTINE, Reading Forward

ELSE
!Embed: End of Fill Backward ROUTINE
!Embed: End of Fill Record ROUTINE, Reading Backward

END
EXIT

!--
BRW1::LocateRecord ROUTINE
!Embed: Start of Locate Record ROUTINE
IF BRW1::LocateMode = LocateOnPosition
BRW1::HighlightedPosition = POSITION(BRW1::View:Browse)
RESET(BRW1::View:Browse,BRW1::HighlightedPosition)

ELSE
CLOSE(BRW1::View:Browse)
CASE BRW1::SortOrder
OF 1
IF BRW1::LocateMode = LocateOnValue
SET(NAM:KeyZip,NAM:KeyZip)

ELSE
SET(NAM:KeyZip)

END
BRW1::View:Browse{Prop:Filter} = ''

OF 2
IF BRW1::LocateMode = LocateOnValue
SET(NAM:KeyNumber,NAM:KeyNumber)

ELSE
SET(NAM:KeyNumber)

END
BRW1::View:Browse{Prop:Filter} = ''

END
OPEN(BRW1::View:Browse)

END
FREE(Queue:Browse:1)
BRW1::RecordCount = 0
BRW1::ItemsToFill = 1
BRW1::FillDirection = FillForward ! Fill with next read(s)
BRW1::AddQueue = False
DO BRW1::FillRecord ! Fill with next read(s)
BRW1::AddQueue = True
IF BRW1::ItemsToFill
BRW1::RefreshMode = RefreshOnBottom

DO BRW1::RefreshPage
ELSE
BRW1::RefreshMode = RefreshOnPosition
DO BRW1::RefreshPage

END
DO BRW1::PostNewSelection
BRW1::LocateMode = 0
EXIT

!--
BRW1::RefreshPage ROUTINE
!Embed: Start of Refresh Page ROUTINE
SETCURSOR(Cursor:Wait)
IF BRW1::RefreshMode = RefreshOnPosition
BRW1::HighlightedPosition = POSITION(BRW1::View:Browse)
RESET(BRW1::View:Browse,BRW1::HighlightedPosition)
BRW1::RefreshMode = RefreshOnTop

ELSIF RECORDS(Queue:Browse:1)
GET(Queue:Browse:1,BRW1::CurrentChoice)
IF ERRORCODE()
GET(Queue:Browse:1,RECORDS(Queue:Browse:1))

END
BRW1::HighlightedPosition = BRW1::Position
GET(Queue:Browse:1,1)
RESET(BRW1::View:Browse,BRW1::Position)
BRW1::RefreshMode = RefreshOnCurrent

ELSE
BRW1::HighlightedPosition = ''
DO BRW1::Reset

END
FREE(Queue:Browse:1)
BRW1::RecordCount = 0
BRW1::ItemsToFill = ?Browse:1{Prop:Items}
IF BRW1::RefreshMode = RefreshOnBottom
BRW1::FillDirection = FillBackward

ELSE
BRW1::FillDirection = FillForward

END
DO BRW1::FillRecord ! Fill with next read(s)
IF BRW1::HighlightedPosition
IF BRW1::ItemsToFill
IF NOT BRW1::RecordCount
DO BRW1::Reset

END
IF BRW1::RefreshMode = RefreshOnBottom
BRW1::FillDirection = FillForward

ELSE
BRW1::FillDirection = FillBackward

END
DO BRW1::FillRecord

END
END
IF BRW1::RecordCount
IF BRW1::HighlightedPosition
LOOP BRW1::CurrentChoice = 1 TO BRW1::RecordCount
GET(Queue:Browse:1,BRW1::CurrentChoice)
IF BRW1::Position = BRW1::HighlightedPosition THEN BREAK.

END
ELSE
IF BRW1::RefreshMode = RefreshOnBottom
BRW1::CurrentChoice = RECORDS(Queue:Browse:1)

ELSE
BRW1::CurrentChoice = 1

END
END
?Browse:1{Prop:Selected} = BRW1::CurrentChoice
DO BRW1::FillBuffer
!Embed: Browse Box, Records Found 1
?Change:2{Prop:Disable} = 0
?Delete:2{Prop:Disable} = 0

ELSE
CLEAR(NAM:Record)
BRW1::CurrentChoice = 0
!Embed: Browse Box, No Records Found 1
?Change:2{Prop:Disable} = 1
?Delete:2{Prop:Disable} = 1

END
SETCURSOR()
!Embed: End of Refresh Page ROUTINE
BRW1::RefreshMode = 0
EXIT

BRW1::Reset ROUTINE
CLOSE(BRW1::View:Browse)
CASE BRW1::SortOrder
OF 1
SET(NAM:KeyZip)
BRW1::View:Browse{Prop:Filter} = ''

OF 2
SET(NAM:KeyNumber)
BRW1::View:Browse{Prop:Filter} = ''

END
OPEN(BRW1::View:Browse)

!--
!--
BRW1::GetRecord ROUTINE
IF BRW1::RecordCount
BRW1::CurrentChoice = CHOICE(?Browse:1)
GET(Queue:Browse:1,BRW1::CurrentChoice)
WATCH(BRW1::View:Browse)
REGET(BRW1::View:Browse,BRW1::Position)

END
!--
BRW1::ButtonInsert ROUTINE
GET(Names,0)
CLEAR(NAM:Record,0)
LocalRequest = InsertRecord
!Embed: Browse Box, Before Insert 2
DO BRW1::CallUpdate
!Embed: Browse Box, After Insert 2
IF GlobalResponse = RequestCompleted
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

ELSE
BRW1::RefreshMode = RefreshOnQueue
DO BRW1::RefreshPage

END
DO BRW1::InitializeBrowse
DO BRW1::PostNewSelection
SELECT(?Browse:1)
LocalRequest = OriginalRequest
DO RefreshWindow

!--
BRW1::ButtonChange ROUTINE
LocalRequest = ChangeRecord
!Embed: Browse Box, Before Change 2
DO BRW1::CallUpdate
!Embed: Browse Box, After Change 2
IF GlobalResponse = RequestCompleted
BRW1::LocateMode = LocateOnValue
DO BRW1::LocateRecord

ELSE
BRW1::RefreshMode = RefreshOnQueue
DO BRW1::RefreshPage

END
DO BRW1::InitializeBrowse
DO BRW1::PostNewSelection
SELECT(?Browse:1)
LocalRequest = OriginalRequest
DO RefreshWindow

!--
BRW1::ButtonDelete ROUTINE
LocalRequest = DeleteRecord
!Embed: Browse Box, Before Delete 2
DO BRW1::CallUpdate
!Embed: Browse Box, After Delete 2
DELETE(Queue:Browse:1)
BRW1::RecordCount -= 1
BRW1::RefreshMode = RefreshOnQueue
DO BRW1::RefreshPage
DO BRW1::InitializeBrowse
DO BRW1::PostNewSelection
SELECT(?Browse:1)
LocalRequest = OriginalRequest
DO RefreshWindow

!--
BRW1::CallUpdate ROUTINE
!Embed: Browse Box, before calling the update procedure 2
CLOSE(BRW1::View:Browse)
GlobalRequest = LocalRequest
UpdateNames
LocalResponse = GlobalResponse
DO BRW1::Reset
!Embed: Browse Box, returning from the update procedure 2

Example Source for Form Procedure
The following code was generated from the Form procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
UpdateNames PROCEDURE
CurrentTab STRING(80)
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
ActionMessage CSTRING(40)
RecordChanged BYTE,AUTO
!Embed: Data Section, Before Window Declaration
SAV::NAM:Record STRING(SIZE(NAM:Record))
QuickWindow WINDOW('Update the Names File'),AT(,,151,140),FONT('MS Sans
Serif',8,,),IMM,HLP('UpdateNames'),SYSTEM,GRAY,MDI

SHEET,AT(4,4,143,114),USE(?CurrentTab)
TAB('General')
PROMPT('&Number:'),AT(8,20),USE(?NAM:Number:Prompt)
ENTRY(@n03),AT(61,20,40,10),USE(NAM:Number)
PROMPT('&First Name:'),AT(8,34),USE(?NAM:FirstName:Prompt)
ENTRY(@S20),AT(61,34,80,10),USE(NAM:FirstName)
PROMPT('&Last Name:'),AT(8,48),USE(?NAM:LastName:Prompt)
ENTRY(@S20),AT(61,48,80,10),USE(NAM:LastName)
PROMPT('&Address:'),AT(8,62),USE(?NAM:Address:Prompt)
ENTRY(@S20),AT(61,62,80,10),USE(NAM:Address)
PROMPT('&City:'),AT(8,76),USE(?NAM:City:Prompt)
ENTRY(@S20),AT(61,76,80,10),USE(NAM:City)
PROMPT('&State:'),AT(8,90),USE(?NAM:State:Prompt)
ENTRY(@s2),AT(61,90,40,10),USE(NAM:State)
PROMPT('&Zip:'),AT(8,104),USE(?NAM:Zip:Prompt)
ENTRY(@n05),AT(61,104,40,10),USE(NAM:Zip)

END
END
BUTTON('OK'),AT(4,122,45,14),USE(?OK),DEFAULT
BUTTON('Cancel'),AT(53,122,45,14),USE(?Cancel)
BUTTON('Help'),AT(102,122,45,14),USE(?Help),STD(STD:Help)

END
!Embed: Data Section, After Window Declaration
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup

IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
IF Names::Used = 0
CheckOpen(Names,1)
BIND(NAM:RECORD)

END
Names::Used += 1
!Embed: Beginning of Procedure, After Opening Files
RISnap:Names
SAV::NAM:Record = NAM:Record
IF LocalRequest = InsertRecord
!Embed: On Insert, before record is primed
DO PrimeFields
!Embed: On Insert, after record is primed

END
IF LocalRequest = DeleteRecord
IF StandardWarning(Warn:StandardDelete) = Button:OK
LOOP
LocalResponse = RequestCancelled
SETCURSOR(Cursor:Wait)
IF RIDelete:Names()
SETCURSOR()
CASE StandardWarning(Warn:DeleteError)
OF Button:Yes
CYCLE

OF Button:No OROF Button:Cancel
BREAK

END
ELSE
SETCURSOR()
LocalResponse = RequestCompleted

END
BREAK

END
END
DO ProcedureReturn

END
!Embed: Before Opening the Window
OPEN(QuickWindow)
WindowOpened=True
!Embed: After Opening the Window
!Embed: Preparing Window Alerts
!Embed: Preparing to Process the Window
CASE LocalRequest
OF InsertRecord
ActionMessage = 'Adding a Names Record'

OF ChangeRecord
ActionMessage = 'Changing a Names Record'

OF DeleteRecord
END
QuickWindow{Prop:Text} = ActionMessage
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey

!Embed: Window Event Handling PreAlertKey
OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow
IF LocalResponse <> RequestCompleted
END

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown
IF LocalResponse <> RequestCompleted
END

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
SELECT(?NAM:Number:Prompt)

OF EVENT:LoseFocus
!Embed: Window Event Handling LoseFocus

OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

OF EVENT:Timer
!Embed: Window Event Handling Timer

OF EVENT:Move
!Embed: Window Event Handling Move

OF EVENT:Size
!Embed: Window Event Handling Size

OF EVENT:Restore
!Embed: Window Event Handling Restore

OF EVENT:Maximize
!Embed: Window Event Handling Maximize

OF EVENT:Iconize
!Embed: Window Event Handling Iconize

OF EVENT:Moved
!Embed: Window Event Handling Moved

OF EVENT:Sized
!Embed: Window Event Handling Sized

OF EVENT:Restored
!Embed: Window Event Handling Restored

OF EVENT:Maximized
!Embed: Window Event Handling Maximized

OF EVENT:Iconized
!Embed: Window Event Handling Iconized

ELSE
!Embed: Other Window Event Handling
IF EVENT() = Event:Completed
!Embed: When completed, before writing to disk
CASE LocalRequest
OF InsertRecord
ADD(Names)

CASE ERRORCODE()
OF NoError
LocalResponse = RequestCompleted
POST(Event:CloseWindow)

OF DupKeyErr
IF DUPLICATE(NAM:KeyNumber)
IF StandardWarning(Warn:DuplicateKey,'NAM:KeyNumber')
SELECT(?NAM:Number:Prompt)
CYCLE

END
END

ELSE
IF StandardWarning(Warn:InsertError)
SELECT(?NAM:Number:Prompt)
CYCLE

END
END

OF ChangeRecord
LOOP
LocalResponse = RequestCancelled
SETCURSOR(Cursor:Wait)
IF RIUpdate:Names()
SETCURSOR()
CASE StandardWarning(Warn:UpdateError)
OF Button:Yes
CYCLE

OF Button:No
POST(Event:CloseWindow)
BREAK

OF Button:Cancel
DISPLAY
SELECT(?NAM:Number:Prompt)
BREAK

END
ELSE
SETCURSOR()
LocalResponse = RequestCompleted
POST(Event:CloseWindow)

END
BREAK

END
END

END
!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
OF ?CurrentTab
!Embed: Control Handling, before event handling ?CurrentTab
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?CurrentTab, Accepted
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, Accepted
!Embed: Control Event Handling, after generated code ?CurrentTab, Accepted

OF EVENT:NewSelection
!Embed: Control Event Handling, before generated code ?CurrentTab, NewSelection
DO RefreshWindow

!Embed: Internal Control Event Handling ?CurrentTab, NewSelection
!Embed: Control Event Handling, after generated code ?CurrentTab, NewSelection

OF EVENT:TabChanging
!Embed: Control Event Handling, before generated code ?CurrentTab, TabChanging
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, TabChanging
!Embed: Control Event Handling, after generated code ?CurrentTab, TabChanging

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?CurrentTab, Selected
DO RefreshWindow
!Embed: Internal Control Event Handling ?CurrentTab, Selected
!Embed: Control Event Handling, after generated code ?CurrentTab, Selected

ELSE
!Embed: Other Control Event Handling ?CurrentTab

END
!Embed: Control Handling, after event handling ?CurrentTab

OF ?NAM:Number:Prompt
!Embed: Control Handling, before event handling ?NAM:Number:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:Number:Prompt

END
!Embed: Control Handling, after event handling ?NAM:Number:Prompt

OF ?NAM:Number
!Embed: Control Handling, before event handling ?NAM:Number
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:Number, Accepted
!Embed: Internal Control Event Handling ?NAM:Number, Accepted
!Embed: Control Event Handling, after generated code ?NAM:Number, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:Number, Rejected
!Embed: Internal Control Event Handling ?NAM:Number, Rejected
!Embed: Control Event Handling, after generated code ?NAM:Number, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:Number, Selected
!Embed: Internal Control Event Handling ?NAM:Number, Selected
!Embed: Control Event Handling, after generated code ?NAM:Number, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:Number

END
!Embed: Control Handling, after event handling ?NAM:Number

OF ?NAM:FirstName:Prompt
!Embed: Control Handling, before event handling ?NAM:FirstName:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:FirstName:Prompt

END
!Embed: Control Handling, after event handling ?NAM:FirstName:Prompt

OF ?NAM:FirstName
!Embed: Control Handling, before event handling ?NAM:FirstName
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:FirstName, Accepted
!Embed: Internal Control Event Handling ?NAM:FirstName, Accepted
!Embed: Control Event Handling, after generated code ?NAM:FirstName, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:FirstName, Rejected
!Embed: Internal Control Event Handling ?NAM:FirstName, Rejected
!Embed: Control Event Handling, after generated code ?NAM:FirstName, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:FirstName, Selected
!Embed: Internal Control Event Handling ?NAM:FirstName, Selected
!Embed: Control Event Handling, after generated code ?NAM:FirstName, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:FirstName

END
!Embed: Control Handling, after event handling ?NAM:FirstName

OF ?NAM:LastName:Prompt
!Embed: Control Handling, before event handling ?NAM:LastName:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:LastName:Prompt

END
!Embed: Control Handling, after event handling ?NAM:LastName:Prompt

OF ?NAM:LastName
!Embed: Control Handling, before event handling ?NAM:LastName
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:LastName, Accepted
!Embed: Internal Control Event Handling ?NAM:LastName, Accepted
!Embed: Control Event Handling, after generated code ?NAM:LastName, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:LastName, Rejected
!Embed: Internal Control Event Handling ?NAM:LastName, Rejected
!Embed: Control Event Handling, after generated code ?NAM:LastName, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:LastName, Selected
!Embed: Internal Control Event Handling ?NAM:LastName, Selected
!Embed: Control Event Handling, after generated code ?NAM:LastName, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:LastName

END
!Embed: Control Handling, after event handling ?NAM:LastName

OF ?NAM:Address:Prompt
!Embed: Control Handling, before event handling ?NAM:Address:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:Address:Prompt

END
!Embed: Control Handling, after event handling ?NAM:Address:Prompt

OF ?NAM:Address
!Embed: Control Handling, before event handling ?NAM:Address
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:Address, Accepted
!Embed: Internal Control Event Handling ?NAM:Address, Accepted
!Embed: Control Event Handling, after generated code ?NAM:Address, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:Address, Rejected
!Embed: Internal Control Event Handling ?NAM:Address, Rejected
!Embed: Control Event Handling, after generated code ?NAM:Address, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:Address, Selected
!Embed: Internal Control Event Handling ?NAM:Address, Selected
!Embed: Control Event Handling, after generated code ?NAM:Address, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:Address

END
!Embed: Control Handling, after event handling ?NAM:Address

OF ?NAM:City:Prompt
!Embed: Control Handling, before event handling ?NAM:City:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:City:Prompt

END
!Embed: Control Handling, after event handling ?NAM:City:Prompt

OF ?NAM:City
!Embed: Control Handling, before event handling ?NAM:City
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:City, Accepted
!Embed: Internal Control Event Handling ?NAM:City, Accepted
!Embed: Control Event Handling, after generated code ?NAM:City, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:City, Rejected
!Embed: Internal Control Event Handling ?NAM:City, Rejected
!Embed: Control Event Handling, after generated code ?NAM:City, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:City, Selected
!Embed: Internal Control Event Handling ?NAM:City, Selected
!Embed: Control Event Handling, after generated code ?NAM:City, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:City

END
!Embed: Control Handling, after event handling ?NAM:City

OF ?NAM:State:Prompt
!Embed: Control Handling, before event handling ?NAM:State:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:State:Prompt

END
!Embed: Control Handling, after event handling ?NAM:State:Prompt

OF ?NAM:State
!Embed: Control Handling, before event handling ?NAM:State
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:State, Accepted
!Embed: Internal Control Event Handling ?NAM:State, Accepted
!Embed: Control Event Handling, after generated code ?NAM:State, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:State, Rejected
!Embed: Internal Control Event Handling ?NAM:State, Rejected
!Embed: Control Event Handling, after generated code ?NAM:State, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:State, Selected
!Embed: Internal Control Event Handling ?NAM:State, Selected
!Embed: Control Event Handling, after generated code ?NAM:State, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:State

END
!Embed: Control Handling, after event handling ?NAM:State

OF ?NAM:Zip:Prompt
!Embed: Control Handling, before event handling ?NAM:Zip:Prompt
CASE EVENT()
ELSE
!Embed: Other Control Event Handling ?NAM:Zip:Prompt

END
!Embed: Control Handling, after event handling ?NAM:Zip:Prompt

OF ?NAM:Zip

!Embed: Control Handling, before event handling ?NAM:Zip
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?NAM:Zip, Accepted
!Embed: Internal Control Event Handling ?NAM:Zip, Accepted
!Embed: Control Event Handling, after generated code ?NAM:Zip, Accepted

OF EVENT:Rejected
!Embed: Control Event Handling, before generated code ?NAM:Zip, Rejected
!Embed: Internal Control Event Handling ?NAM:Zip, Rejected
!Embed: Control Event Handling, after generated code ?NAM:Zip, Rejected

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?NAM:Zip, Selected
!Embed: Internal Control Event Handling ?NAM:Zip, Selected
!Embed: Control Event Handling, after generated code ?NAM:Zip, Selected

ELSE
!Embed: Other Control Event Handling ?NAM:Zip

END
!Embed: Control Handling, after event handling ?NAM:Zip

OF ?OK
!Embed: Control Handling, before event handling ?OK
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?OK, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?OK, Accepted
IF OriginalRequest = ChangeRecord OR OriginalRequest = InsertRecord
SELECT()

ELSE
POST(EVENT:Completed)

END
!Embed: Control Event Handling, after generated code ?OK, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?OK, Selected
!Embed: Internal Control Event Handling ?OK, Selected
!Embed: Control Event Handling, after generated code ?OK, Selected

ELSE
!Embed: Other Control Event Handling ?OK

END
!Embed: Control Handling, after event handling ?OK

OF ?Cancel
!Embed: Control Handling, before event handling ?Cancel
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Cancel, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Cancel, Accepted
LocalResponse = RequestCancelled
POST(Event:CloseWindow)
!Embed: Control Event Handling, after generated code ?Cancel, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Cancel, Selected
!Embed: Internal Control Event Handling ?Cancel, Selected
!Embed: Control Event Handling, after generated code ?Cancel, Selected

ELSE
!Embed: Other Control Event Handling ?Cancel

END
!Embed: Control Handling, after event handling ?Cancel

OF ?Help
!Embed: Control Handling, before event handling ?Help
CASE EVENT()

OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Help, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Help, Accepted
!Embed: Control Event Handling, after generated code ?Help, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Help, Selected
!Embed: Internal Control Event Handling ?Help, Selected
!Embed: Control Event Handling, after generated code ?Help, Selected

ELSE
!Embed: Other Control Event Handling ?Help

END
!Embed: Control Handling, after event handling ?Help

!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
Names::Used -= 1
IF Names::Used = 0 THEN CLOSE(Names).
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(QuickWindow)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF QuickWindow{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: Refresh Window routine, before DISPLAY()
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups

!---
!Embed: Procedure Routines
PrimeFields ROUTINE
NAM:Record = SAV::NAM:Record
!Embed: Prime record fields on Insert

SAV::NAM:Record = NAM:Record

Example Source for Frame Procedure
The following code was generated from the Frame procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
Main PROCEDURE
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
CurrentTab STRING(80)
!Embed: Data Section, Before Window Declaration
AppFrame APPLICATION('Application'),AT(,,400,220),FONT('MS Sans
Serif',8,,),STATUS(-1,80,120,45),SYSTEM,MAX,RESIZE,IMM

MENUBAR
MENU('&File')
ITEM('&Print Setup ...'),USE(?PrintSetup),MSG('Setup

printer'),STD(STD:PrintSetup)
ITEM,SEPARATOR
ITEM('E&xit'),USE(?Exit),MSG('Exit this

application'),STD(STD:Close)
END
MENU('&Edit')
ITEM('Cu&t'),USE(?Cut),MSG('Remove item to Windows

Clipboard'),STD(STD:Cut)
ITEM('&Copy'),USE(?Copy),MSG('Copy item to Windows

Clipboard'),STD(STD:Copy)
ITEM('&Paste'),USE(?Paste),MSG('Paste contents of Windows

Clipboard'),STD(STD:Paste)
END
MENU('&Browse')
ITEM('Browse the Names file'),USE(?BrowseNames),MSG('Browse

Names')
END
MENU('&Reports'),USE(?ReportMenu),MSG('Report data')
MENU('Report the Names file'),USE(?PrintNames)
ITEM('Print by NAM:KeyNumber key'),USE(?

PrintNAM:KeyNumber),MSG('Print ordered by the NAM:KeyNumber key')
ITEM('Print by NAM:KeyZip key'),USE(?

PrintNAM:KeyZip),MSG('Print ordered by the NAM:KeyZip key')
END

END
MENU('&Window'),MSG('Create and Arrange

windows'),STD(STD:WindowList)
ITEM('T&ile'),USE(?Tile),MSG('Make all open windows

visible'),STD(STD:TileWindow)
ITEM('&Cascade'),USE(?Cascade),MSG('Stack all open

windows'),STD(STD:CascadeWindow)

ITEM('&Arrange Icons'),USE(?Arrange),MSG('Align all window
icons'),STD(STD:ArrangeIcons)

END
MENU('&Help'),MSG('Windows Help')
ITEM('&Contents'),USE(?Helpindex),MSG('View the contents of the

help file'),STD(STD:HelpIndex)
ITEM('&Search for Help On...'),USE(?HelpSearch),MSG('Search for

help on a subject'),STD(STD:HelpSearch)
ITEM('&How to Use Help'),USE(?HelpOnHelp),MSG('How to use Windows

Help'),STD(STD:HelpOnHelp)
END

END
END

!Embed: Data Section, After Window Declaration
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup
IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
!Embed: Beginning of Procedure, After Opening Files
!Embed: Before Opening the Window
OPEN(AppFrame)
WindowOpened=True
!Embed: After Opening the Window
!Embed: Preparing Window Alerts
!Embed: Preparing to Process the Window
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey
!Embed: Window Event Handling PreAlertKey

OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
OF EVENT:LoseFocus
!Embed: Window Event Handling LoseFocus

OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

ELSE
!Embed: Other Window Event Handling

!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
CASE ACCEPTED()
OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?PrintSetup
!Embed: Control Event Handling, before generated code ?PrintSetup, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?PrintSetup, Accepted
!Embed: Control Event Handling, after generated code ?PrintSetup, Accepted

OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?Exit
!Embed: Control Event Handling, before generated code ?Exit, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Exit, Accepted
!Embed: Control Event Handling, after generated code ?Exit, Accepted

OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?Cut
!Embed: Control Event Handling, before generated code ?Cut, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Cut, Accepted
!Embed: Control Event Handling, after generated code ?Cut, Accepted

OF ?Copy
!Embed: Control Event Handling, before generated code ?Copy, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Copy, Accepted
!Embed: Control Event Handling, after generated code ?Copy, Accepted

OF ?Paste
!Embed: Control Event Handling, before generated code ?Paste, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Paste, Accepted
!Embed: Control Event Handling, after generated code ?Paste, Accepted

OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?BrowseNames
!Embed: Control Event Handling, before generated code ?BrowseNames, Accepted
DO SyncWindow
START(BrowseNames,50000)
LocalRequest = OriginalRequest
DO RefreshWindow

!Embed: Internal Control Event Handling ?BrowseNames, Accepted
!Embed: Control Event Handling, after generated code ?BrowseNames, Accepted

OF ?ReportMenu
!Embed: Control Event Handling, before generated code ?ReportMenu,
!Embed: Internal Control Event Handling ?ReportMenu,
!Embed: Control Event Handling, after generated code ?ReportMenu,

OF ?PrintNames
!Embed: Control Event Handling, before generated code ?PrintNames,
!Embed: Internal Control Event Handling ?PrintNames,
!Embed: Control Event Handling, after generated code ?PrintNames,

OF ?PrintNAM:KeyNumber
!Embed: Control Event Handling, before generated code ?PrintNAM:KeyNumber,

Accepted
DO SyncWindow
START(PrintNAM:KeyNumber,50000)
LocalRequest = OriginalRequest
DO RefreshWindow
!Embed: Internal Control Event Handling ?PrintNAM:KeyNumber, Accepted
!Embed: Control Event Handling, after generated code ?PrintNAM:KeyNumber,

Accepted
OF ?PrintNAM:KeyZip
!Embed: Control Event Handling, before generated code ?PrintNAM:KeyZip, Accepted
DO SyncWindow
START(PrintNAM:KeyZip,50000)
LocalRequest = OriginalRequest
DO RefreshWindow
!Embed: Internal Control Event Handling ?PrintNAM:KeyZip, Accepted
!Embed: Control Event Handling, after generated code ?PrintNAM:KeyZip, Accepted

OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?Tile
!Embed: Control Event Handling, before generated code ?Tile, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Tile, Accepted
!Embed: Control Event Handling, after generated code ?Tile, Accepted

OF ?Cascade
!Embed: Control Event Handling, before generated code ?Cascade, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Cascade, Accepted
!Embed: Control Event Handling, after generated code ?Cascade, Accepted

OF ?Arrange
!Embed: Control Event Handling, before generated code ?Arrange, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Arrange, Accepted
!Embed: Control Event Handling, after generated code ?Arrange, Accepted

OF
!Embed: Control Event Handling, before generated code ,
!Embed: Internal Control Event Handling ,
!Embed: Control Event Handling, after generated code ,

OF ?Helpindex
!Embed: Control Event Handling, before generated code ?Helpindex, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Helpindex, Accepted
!Embed: Control Event Handling, after generated code ?Helpindex, Accepted

OF ?HelpSearch
!Embed: Control Event Handling, before generated code ?HelpSearch, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?HelpSearch, Accepted

!Embed: Control Event Handling, after generated code ?HelpSearch, Accepted
OF ?HelpOnHelp
!Embed: Control Event Handling, before generated code ?HelpOnHelp, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?HelpOnHelp, Accepted
!Embed: Control Event Handling, after generated code ?HelpOnHelp, Accepted

END
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
OF ?PrintSetup
!Embed: Control Handling, before event handling ?PrintSetup
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?PrintSetup

END
!Embed: Control Handling, after event handling ?PrintSetup

OF ?Exit
!Embed: Control Handling, before event handling ?Exit
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Exit

END
!Embed: Control Handling, after event handling ?Exit

OF ?Cut
!Embed: Control Handling, before event handling ?Cut
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Cut

END
!Embed: Control Handling, after event handling ?Cut

OF ?Copy
!Embed: Control Handling, before event handling ?Copy
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Copy

END
!Embed: Control Handling, after event handling ?Copy

OF ?Paste
!Embed: Control Handling, before event handling ?Paste
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Paste

END
!Embed: Control Handling, after event handling ?Paste

OF ?BrowseNames
!Embed: Control Handling, before event handling ?BrowseNames
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?BrowseNames

END
!Embed: Control Handling, after event handling ?BrowseNames

OF ?ReportMenu
!Embed: Control Handling, before event handling ?ReportMenu

CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?ReportMenu

END
!Embed: Control Handling, after event handling ?ReportMenu

OF ?PrintNames
!Embed: Control Handling, before event handling ?PrintNames
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?PrintNames

END
!Embed: Control Handling, after event handling ?PrintNames

OF ?PrintNAM:KeyNumber
!Embed: Control Handling, before event handling ?PrintNAM:KeyNumber
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?PrintNAM:KeyNumber

END
!Embed: Control Handling, after event handling ?PrintNAM:KeyNumber

OF ?PrintNAM:KeyZip
!Embed: Control Handling, before event handling ?PrintNAM:KeyZip
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?PrintNAM:KeyZip

END
!Embed: Control Handling, after event handling ?PrintNAM:KeyZip

OF ?Tile
!Embed: Control Handling, before event handling ?Tile
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Tile

END
!Embed: Control Handling, after event handling ?Tile

OF ?Cascade
!Embed: Control Handling, before event handling ?Cascade
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Cascade

END
!Embed: Control Handling, after event handling ?Cascade

OF ?Arrange
!Embed: Control Handling, before event handling ?Arrange
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Arrange

END
!Embed: Control Handling, after event handling ?Arrange

OF ?Helpindex
!Embed: Control Handling, before event handling ?Helpindex
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Helpindex

END
!Embed: Control Handling, after event handling ?Helpindex

OF ?HelpSearch
!Embed: Control Handling, before event handling ?HelpSearch
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?HelpSearch

END
!Embed: Control Handling, after event handling ?HelpSearch

OF ?HelpOnHelp
!Embed: Control Handling, before event handling ?HelpOnHelp
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?HelpOnHelp

END
!Embed: Control Handling, after event handling ?HelpOnHelp

!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(AppFrame)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF AppFrame{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: Refresh Window routine, before DISPLAY()
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups

!---
!Embed: Procedure Routines

Example Source for Menu Procedure
The following code was generated from the Menu procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
MenuProc PROCEDURE
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
CurrentTab STRING(80)
!Embed: Data Section, Before Window Declaration
MenuWindow WINDOW('Caption'),AT(0,0,260,146)

MENUBAR
MENU('&File'),USE(?FileMenu)
ITEM('Item&2'),USE(?Item2),SEPARATOR
ITEM('E&xit'),USE(?Exit),STD(STD:Close)

END
END

END
!Embed: Data Section, After Window Declaration
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup
IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
!Embed: Beginning of Procedure, After Opening Files
!Embed: Before Opening the Window
OPEN(MenuWindow)
WindowOpened=True
!Embed: After Opening the Window
!Embed: Preparing Window Alerts
!Embed: Preparing to Process the Window
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey
!Embed: Window Event Handling PreAlertKey

OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
OF EVENT:LoseFocus
!Embed: Window Event Handling LoseFocus

OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

ELSE
!Embed: Other Window Event Handling

!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
CASE ACCEPTED()
OF ?FileMenu
!Embed: Control Event Handling, before generated code ?FileMenu,
!Embed: Internal Control Event Handling ?FileMenu,
!Embed: Control Event Handling, after generated code ?FileMenu,

OF ?Item2
!Embed: Control Event Handling, before generated code ?Item2,
!Embed: Internal Control Event Handling ?Item2,
!Embed: Control Event Handling, after generated code ?Item2,

OF ?Exit
!Embed: Control Event Handling, before generated code ?Exit, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Exit, Accepted
!Embed: Control Event Handling, after generated code ?Exit, Accepted

END
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
OF ?FileMenu
!Embed: Control Handling, before event handling ?FileMenu
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?FileMenu

END
!Embed: Control Handling, after event handling ?FileMenu

OF ?Item2
!Embed: Control Handling, before event handling ?Item2
CASE EVENT()
OF EVENT:Accepted

ELSE
!Embed: Other Control Event Handling ?Item2

END
!Embed: Control Handling, after event handling ?Item2

OF ?Exit
!Embed: Control Handling, before event handling ?Exit
CASE EVENT()
OF EVENT:Accepted
ELSE
!Embed: Other Control Event Handling ?Exit

END
!Embed: Control Handling, after event handling ?Exit

!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(MenuWindow)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF MenuWindow{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: Refresh Window routine, before DISPLAY()
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups

!---
!Embed: Procedure Routines

Example Source for Process Procedure
The following code was generated from the Process procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
process PROCEDURE
!Embed: Declaration Section
RejectRecord LONG,AUTO
LocalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG,AUTO
RecordsToProcess LONG,AUTO
RecordsProcessed LONG,AUTO
RecordsPerCycle LONG,AUTO
RecordsThisCycle LONG,AUTO
PercentProgress BYTE
RecordStatus BYTE,AUTO
!---
Process:View VIEW(Names)

END
Progress:Thermometer BYTE
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Progress:Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?Progress:UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?Progress:PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Progress:Cancel)

END
CODE
!Embed: Procedure Setup
LocalRequest = GlobalRequest
LocalResponse = RequestCancelled
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Beginning of Procedure, Before Opening Files
IF Names::Used = 0
CheckOpen(Names,1)
BIND(NAM:RECORD)

END
Names::Used += 1
!Embed: Beginning of Procedure, After Opening Files
!Embed: Preparing to Process the Window
RecordsToProcess = BYTES(Names)
RecordsPerCycle = 1000
RecordsProcessed = 0
PercentProgress = 0
!Embed: Before Opening Progress Window
OPEN(ProgressWindow)
ProgressWindow{Prop:Text} = 'Processing Records'
?Progress:PctText{Prop:Text} = '0% Completed'
?Progress:UserString{Prop:Text}=''
!Embed: Before Turning QuickScan On
SEND(Names,'QUICKSCAN=on')

!Embed: After Turning QuickScan On
ACCEPT
CASE EVENT()
OF Event:OpenWindow
!Embed: Window Event: Open Window, before setting up for reading
!Embed: Before SET() issued
SET(Names)
OPEN(Process:View)
!Embed: Before first record retrieval
LOOP
DO GetNextRecord
DO ValidateRecord
CASE RecordStatus
OF Record:Ok
BREAK

OF Record:OutOfRange
LocalResponse = RequestCancelled
BREAK

END
END
IF LocalResponse = RequestCancelled
POST(Event:CloseWindow)
CYCLE

END
!Embed: After first record retrieval
!Embed: Window Event: Open Window, after setting up for read

OF Event:Timer
RecordsThisCycle = 0
LOOP WHILE RecordsThisCycle < RecordsPerCycle
!Embed: Activity for each record
!Embed: Error checking after record Action
LOOP
!Embed: Before subsequent record retrieval
DO GetNextRecord
!Embed: After subsequent record retrieval
DO ValidateRecord
CASE RecordStatus
OF Record:OutOfRange
LocalResponse = RequestCancelled
BREAK

OF Record:OK
BREAK

END
END
IF LocalResponse = RequestCancelled
LocalResponse = RequestCompleted
BREAK

END
LocalResponse = RequestCancelled

END
IF LocalResponse = RequestCompleted
?Progress:PctText{Prop:Text} = 'Process Completed'
DISPLAY(?Progress:PctText)
POST(Event:CloseWindow)

END
END
CASE FIELD()
OF ?Progress:Cancel
CASE Event()
OF Event:Accepted

LocalResponse = RequestCancelled
POST(Event:CloseWindow)

END
END

END
!Embed: Before Turning QuickScan Off
IF SEND(Names,'QUICKSCAN=off').
!Embed: After Turning QuickScan Off
DO ProcedureReturn

ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
Names::Used -= 1
IF Names::Used = 0 THEN CLOSE(Names).
!Embed: End of Procedure, After Closing Files
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
ValidateRecord ROUTINE
RecordStatus = Record:OutOfRange
IF LocalResponse = RequestCancelled THEN EXIT.
!Embed: Validate Record: Range Checking
RecordStatus = Record:Filtered
!Embed: Validate Record: Filter Checking

RecordStatus = Record:OK
EXIT

GetNextRecord ROUTINE
!Embed: Top of GetNextRecord ROUTINE
NEXT(Process:View)
!Embed: GetNextRecord ROUTINE, after NEXT
IF ERRORCODE()
IF ERRORCODE() <> BadRecErr
StandardWarning(Warn:RecordFetchError,'Names')

END
LocalResponse = RequestCancelled
!Embed: GetNextRecord ROUTINE, NEXT failed
EXIT

ELSE
LocalResponse = RequestCompleted
!Embed: GetNextRecord ROUTINE, NEXT succeeds

END
RecordsProcessed += BYTES(Names)
RecordsThisCycle += BYTES(Names)
IF PercentProgress < 100
PercentProgress = (RecordsProcessed / RecordsToProcess)*100
IF PercentProgress > 100
PercentProgress = 100

END
IF PercentProgress <> Progress:Thermometer THEN
Progress:Thermometer = PercentProgress
?Progress:PctText{Prop:Text} = FORMAT(PercentProgress,@N3) & '% Completed'
DISPLAY()

END
END

!Embed: Procedure Routines

Example Source for Report Procedure
The following code was generated from the Report procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
PrintNAM:KeyNumber PROCEDURE
!Embed: Declaration Section
RejectRecord LONG,AUTO
LocalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG,AUTO
RecordsToProcess LONG,AUTO
RecordsProcessed LONG,AUTO
RecordsPerCycle LONG,AUTO
RecordsThisCycle LONG,AUTO
PercentProgress BYTE
RecordStatus BYTE,AUTO
!---
Process:View VIEW(Names)

PROJECT(NAM:Address)
PROJECT(NAM:City)
PROJECT(NAM:FirstName)
PROJECT(NAM:LastName)
PROJECT(NAM:Number)
PROJECT(NAM:State)
PROJECT(NAM:Zip)

END
!Embed: Data Section, Before Report Declaration
report REPORT,AT(1000,2000,6000,7000),PRE(RPT),FONT('Arial',10,,),THOUS

HEADER,AT(1000,1000,6000,1000)
END

detail DETAIL
STRING(@n03),AT(125,80),USE(NAM:Number)
STRING(@S20),AT(125,240),USE(NAM:FirstName)
STRING(@S20),AT(125,400),USE(NAM:LastName)
STRING(@S20),AT(125,560),USE(NAM:Address)
STRING(@S20),AT(125,720),USE(NAM:City)
STRING(@s2),AT(125,880),USE(NAM:State)
STRING(@n05),AT(125,1040),USE(NAM:Zip)

END
FOOTER,AT(1000,9000,6000,1000)
END

END
!Embed: Data Section, After Report Declaration
Progress:Thermometer BYTE
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Progress:Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?Progress:UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?Progress:PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Progress:Cancel)

END
PrintSkipDetails BOOL,AUTO

PrintPreviewQueue QUEUE,PRE
PrintPreviewImage STRING(80)

END
CODE
!Embed: Procedure Setup
LocalRequest = GlobalRequest
LocalResponse = RequestCancelled
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Beginning of Procedure, Before Opening Files
IF Names::Used = 0
CheckOpen(Names,1)
BIND(NAM:RECORD)

END
Names::Used += 1
!Embed: Beginning of Procedure, After Opening Files
!Embed: Preparing to Process the Window
RecordsToProcess = RECORDS(Names)
RecordsPerCycle = 25
RecordsProcessed = 0
PercentProgress = 0
!Embed: Before Opening Progress Window
OPEN(ProgressWindow)
Progress:Thermometer = 0
?Progress:PctText{Prop:Text} = '0% Completed'
ProgressWindow{Prop:Text} = 'Generating Report'
?Progress:UserString{Prop:Text}=''
!Embed: After Opening Progress Window
!Embed: Before Turning QuickScan On
SEND(Names,'QUICKSCAN=on')
!Embed: After Turning QuickScan On
ACCEPT
CASE EVENT()
OF Event:OpenWindow
!Embed: Window Event: Open Window, before setting up for reading
!Embed: Before SET() issued
SET(NAM:KeyNumber)
OPEN(Process:View)
!Embed: Before first record retrieval
LOOP
DO GetNextRecord
DO ValidateRecord
CASE RecordStatus
OF Record:Ok
BREAK

OF Record:OutOfRange
LocalResponse = RequestCancelled
BREAK

END
END
IF LocalResponse = RequestCancelled
POST(Event:CloseWindow)
CYCLE

END
!Embed: After first record retrieval
!Embed: Window Event: Open Window, after setting up for read
!Embed: Before Opening Report
OPEN(report)
!Embed: After Opening Report
report{Prop:Preview} = PrintPreviewImage

OF Event:Timer
LOOP RecordsPerCycle TIMES
!Embed: Before Lookups
!Embed: Lookup Related Records
!Embed: After Lookups
!Embed: Before Printing Detail Section
PrintSkipDetails = FALSE

IF ~PrintSkipDetails THEN
PRINT(RPT:detail)

END
!Embed: After Printing Detail Section
LOOP
!Embed: Before subsequent record retrieval
DO GetNextRecord
!Embed: After subsequent record retrieval
DO ValidateRecord
CASE RecordStatus
OF Record:OutOfRange
LocalResponse = RequestCancelled
BREAK

OF Record:OK
BREAK

END
END
IF LocalResponse = RequestCancelled
LocalResponse = RequestCompleted
BREAK

END
LocalResponse = RequestCancelled

END
IF LocalResponse = RequestCompleted
POST(Event:CloseWindow)

END
END
CASE FIELD()
OF ?Progress:Cancel
CASE Event()
OF Event:Accepted
LocalResponse = RequestCancelled
POST(Event:CloseWindow)

END
END

END
!Embed: Before Turning QuickScan Off
IF SEND(Names,'QUICKSCAN=off').
!Embed: After Turning QuickScan Off
!Embed: Before Print Preview
IF LocalResponse = RequestCompleted
ENDPAGE(report)
ReportPreview(PrintPreviewQueue)
IF GlobalResponse = RequestCompleted
report{PROP:FlushPreview} = True

END
END
!Embed: Before Closing Report
CLOSE(report)

!Embed: After Closing Report
FREE(PrintPreviewQueue)
DO ProcedureReturn

ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
Names::Used -= 1
IF Names::Used = 0 THEN CLOSE(Names).
!Embed: End of Procedure, After Closing Files
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
ValidateRecord ROUTINE
RecordStatus = Record:OutOfRange
IF LocalResponse = RequestCancelled THEN EXIT.
!Embed: Validate Record: Range Checking
RecordStatus = Record:Filtered
!Embed: Validate Record: Filter Checking

RecordStatus = Record:OK
EXIT

GetNextRecord ROUTINE
!Embed: Top of GetNextRecord ROUTINE
NEXT(Process:View)
!Embed: GetNextRecord ROUTINE, after NEXT
IF ERRORCODE()
IF ERRORCODE() <> BadRecErr
StandardWarning(Warn:RecordFetchError,'Names')

END
LocalResponse = RequestCancelled
!Embed: GetNextRecord ROUTINE, NEXT failed
EXIT

ELSE
LocalResponse = RequestCompleted
!Embed: GetNextRecord ROUTINE, NEXT succeeds

END
RecordsProcessed += 1
RecordsThisCycle += 1
IF PercentProgress < 100
PercentProgress = (RecordsProcessed / RecordsToProcess)*100
IF PercentProgress > 100
PercentProgress = 100

END
IF PercentProgress <> Progress:Thermometer THEN
Progress:Thermometer = PercentProgress
?Progress:PctText{Prop:Text} = FORMAT(PercentProgress,@N3) & '% Completed'
DISPLAY()

END
END

!Embed: Procedure Routines

Example Source for Source Procedure
The following code was generated from the Source procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
SrcProc PROCEDURE ! Declare Procedure
!Embed: Data Section
CODE ! Begin processed code

!Embed: Processed Code

Example Source for Viewer Procedure
The following code was generated from the Viewer procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
ViewProc PROCEDURE
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
CurrentTab STRING(80)
ASCIIFileSize LONG
ASCIIBytesThisReadLONG
ASCIIBytesRead LONG
ASCIIBytesThisCycle LONG
ASCIIPercentProgress BYTE
!Embed: Data Section, Before Window Declaration
Queue:ASCII QUEUE

STRING(255)
END

ASC1:FileName STRING(80)
ASC1:CurrentFileName STRING(80)
ASC1:ASCIIFile FILE,PRE(ASC1),DRIVER('ASCII'),NAME(ASCIIFileName)

RECORD,PRE()
STRING STRING(255)

END
END

ASC1:ReportCounterLONG
ASC1:Report REPORT,AT(1000,2500,6000,6000),FONT('Fixedsys',9,,FONT:regular),THOUS
Detail DETAIL,AT(,,,167)

STRING(@s255),AT(104,0,,),USE(Queue:ASCII)
END

END
ASC1:WholeWord BYTE
ASC1:Matchcase BYTE
ASC1:Direction CSTRING('Down')
ASC1:SearchString CSTRING(80)
ASC1:CurrentPointer LONG
ASC1:TextLocation LONG
ASC1:SearchWindow WINDOW('Searching Text...'),AT(43,25,267,60),FONT('MS Sans
Serif',8,,),GRAY

PROMPT('Find What:'),AT(11,5,,),USE(?ASC1:TextPrompt)
ENTRY(@s20),AT(53,5,149,15),USE(ASC1:SearchString)
CHECK('Match &Whole Word Only'),AT(11,30,,),USE(ASC1:WholeWord)
CHECK('Match &Case'),AT(11,44,,),USE(ASC1:MatchCase)
OPTION('Direction'),AT(111,28,81,26),USE(ASC1:Direction),BOXED
RADIO('Up'),AT(117,39,,)
RADIO('Down'),AT(149,39,,)

END

BUTTON('Find'),AT(208,5,53,15),USE(?ASC1:Search),DEFAULT
BUTTON('Cancel'),AT(208,25,53,15),USE(?ASC1:CancelSearch)
END

ViewWindow WINDOW('View an ASCII File'),AT(3,7,296,136),SYSTEM,GRAY,MAX,IMM
LIST,AT(5,5,285,110),FONT('FixedSys',9,,FONT:regular),USE(?

AsciiBox),HVSCROLL,FROM(Queue:ASCII)
BUTTON('&Print'),AT(135,120,35,10),USE(?ASCIIPrint)
BUTTON('&Find...'),AT(174,120,35,10),USE(?ASCIISearch)
BUTTON('Find Next'),AT(213,120,39,10),USE(?ASCIIRepeat)
BUTTON('&Close'),AT(255,120,35,10),USE(?Close)

END
!Embed: Data Section, After Window Declaration
Progress:Thermometer BYTE
ProgressWindow WINDOW('Progress...'),AT(,,142,59),CENTER,TIMER(1),GRAY,DOUBLE

PROGRESS,USE(Progress:Thermometer),AT(15,15,111,12),RANGE(0,100)
STRING(''),AT(0,3,141,10),USE(?Progress:UserString),CENTER
STRING(''),AT(0,30,141,10),USE(?Progress:PctText),CENTER
BUTTON('Cancel'),AT(45,42,50,15),USE(?Progress:Cancel)

END
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup
IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
!Embed: Beginning of Procedure, After Opening Files
!Embed: Before Opening the Window
OPEN(ViewWindow)
WindowOpened=True
!Embed: After Opening the Window
!Embed: Preparing Window Alerts
!Embed: Preparing to Process the Window
?ASCIIRepeat{Prop:Disable}=True
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey
!Embed: Window Event Handling PreAlertKey

OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
SELECT(?AsciiBox)

OF EVENT:LoseFocus

!Embed: Window Event Handling LoseFocus
OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

ELSE
!Embed: Other Window Event Handling

!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
OF ?AsciiBox
!Embed: Control Handling, before event handling ?AsciiBox
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?AsciiBox, Accepted
!Embed: Internal Control Event Handling ?AsciiBox, Accepted
!Embed: Control Event Handling, after generated code ?AsciiBox, Accepted

OF EVENT:NewSelection
!Embed: Control Event Handling, before generated code ?AsciiBox, NewSelection
!Embed: Internal Control Event Handling ?AsciiBox, NewSelection
!Embed: Control Event Handling, after generated code ?AsciiBox, NewSelection

OF EVENT:ScrollUp
!Embed: Control Event Handling, before generated code ?AsciiBox, ScrollUp
!Embed: Internal Control Event Handling ?AsciiBox, ScrollUp
!Embed: Control Event Handling, after generated code ?AsciiBox, ScrollUp

OF EVENT:ScrollDown
!Embed: Control Event Handling, before generated code ?AsciiBox, ScrollDown
!Embed: Internal Control Event Handling ?AsciiBox, ScrollDown
!Embed: Control Event Handling, after generated code ?AsciiBox, ScrollDown

OF EVENT:PageUp
!Embed: Control Event Handling, before generated code ?AsciiBox, PageUp
!Embed: Internal Control Event Handling ?AsciiBox, PageUp
!Embed: Control Event Handling, after generated code ?AsciiBox, PageUp

OF EVENT:PageDown
!Embed: Control Event Handling, before generated code ?AsciiBox, PageDown
!Embed: Internal Control Event Handling ?AsciiBox, PageDown
!Embed: Control Event Handling, after generated code ?AsciiBox, PageDown

OF EVENT:ScrollTop
!Embed: Control Event Handling, before generated code ?AsciiBox, ScrollTop
!Embed: Internal Control Event Handling ?AsciiBox, ScrollTop
!Embed: Control Event Handling, after generated code ?AsciiBox, ScrollTop

OF EVENT:ScrollBottom
!Embed: Control Event Handling, before generated code ?AsciiBox, ScrollBottom
!Embed: Internal Control Event Handling ?AsciiBox, ScrollBottom
!Embed: Control Event Handling, after generated code ?AsciiBox, ScrollBottom

OF EVENT:Locate
!Embed: Control Event Handling, before generated code ?AsciiBox, Locate
!Embed: Internal Control Event Handling ?AsciiBox, Locate

!Embed: Control Event Handling, after generated code ?AsciiBox, Locate
OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?AsciiBox, Selected
!Embed: Internal Control Event Handling ?AsciiBox, Selected
!Embed: Control Event Handling, after generated code ?AsciiBox, Selected

ELSE
!Embed: Other Control Event Handling ?AsciiBox

END
!Embed: Control Handling, after event handling ?AsciiBox

OF ?ASCIIPrint
!Embed: Control Handling, before event handling ?ASCIIPrint
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?ASCIIPrint, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?ASCIIPrint, Accepted
SETCURSOR(CURSOR:Wait)
ASC1:ReportCounter = 0
OPEN(ASC1:Report)
LOOP
ASC1:ReportCounter += 1
IF ASC1:ReportCounter > RECORDS(Queue:ASCII)
BREAK

END
GET(Queue:ASCII,ASC1:ReportCounter)
PRINT(DETAIL)

END
CLOSE(ASC1:Report)
SETCURSOR
!Embed: Control Event Handling, after generated code ?ASCIIPrint, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?ASCIIPrint, Selected
!Embed: Internal Control Event Handling ?ASCIIPrint, Selected
!Embed: Control Event Handling, after generated code ?ASCIIPrint, Selected

ELSE
!Embed: Other Control Event Handling ?ASCIIPrint

END
!Embed: Control Handling, after event handling ?ASCIIPrint

OF ?ASCIISearch
!Embed: Control Handling, before event handling ?ASCIISearch
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?ASCIISearch, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?ASCIISearch, Accepted
OPEN(ASC1:SearchWindow)
ACCEPT
CASE EVENT()
OF Event:OpenWindow
CLEAR(ASC1:SearchString)

OF Event:CloseWindow
CLOSE(ASC1:SearchWindow)

OF Event:Accepted
CASE FIELD()
OF ?ASC1:Search
LocalResponse = RequestCompleted
POST(Event:CloseWindow)

OF ?ASC1:CancelSearch
LocalResponse = RequestCancelled
POST(Event:CloseWindow)

END
END

END
IF LocalResponse = RequestCompleted
DO ASC1:FindText
?ASCIIRepeat{Prop:Disable}=False

ELSE
?ASCIIRepeat{Prop:Disable}=True

END
!Embed: Control Event Handling, after generated code ?ASCIISearch, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?ASCIISearch, Selected
!Embed: Internal Control Event Handling ?ASCIISearch, Selected
!Embed: Control Event Handling, after generated code ?ASCIISearch, Selected

ELSE
!Embed: Other Control Event Handling ?ASCIISearch

END
!Embed: Control Handling, after event handling ?ASCIISearch

OF ?ASCIIRepeat
!Embed: Control Handling, before event handling ?ASCIIRepeat
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?ASCIIRepeat, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?ASCIIRepeat, Accepted
DO ASC1:FindText
!Embed: Control Event Handling, after generated code ?ASCIIRepeat, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?ASCIIRepeat, Selected
!Embed: Internal Control Event Handling ?ASCIIRepeat, Selected
!Embed: Control Event Handling, after generated code ?ASCIIRepeat, Selected

ELSE
!Embed: Other Control Event Handling ?ASCIIRepeat

END
!Embed: Control Handling, after event handling ?ASCIIRepeat

OF ?Close
!Embed: Control Handling, before event handling ?Close
CASE EVENT()
OF EVENT:Accepted
!Embed: Control Event Handling, before generated code ?Close, Accepted
DO SyncWindow
!Embed: Internal Control Event Handling ?Close, Accepted
LocalResponse = RequestCancelled
POST(Event:CloseWindow)
!Embed: Control Event Handling, after generated code ?Close, Accepted

OF EVENT:Selected
!Embed: Control Event Handling, before generated code ?Close, Selected
!Embed: Internal Control Event Handling ?Close, Selected
!Embed: Control Event Handling, after generated code ?Close, Selected

ELSE
!Embed: Other Control Event Handling ?Close

END
!Embed: Control Handling, after event handling ?Close

!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE

!Embed: End of Procedure, Before Closing Files
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(ViewWindow)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF ViewWindow{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: After Refresh Window for a control ?Close
ASC1:FileName = 'c:\win95\win.ini'
IF ASC1:FileName <> ASC1:CurrentFileName
ASCIIFileName = ASC1:FileName
DO ASC1:FillQueue
ASC1:CurrentFileName = ASC1:Filename

END
!Embed: After Refresh Window for a control ?Close
!Embed: Refresh Window routine, before DISPLAY()
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups

!---
!Embed: Procedure Routines
ASC1:FillQueue ROUTINE
FREE(Queue:ASCII)
IF NOT ASCIIFileName
?AsciiBox{Prop:Disable} = True
EXIT

ELSE
?AsciiBox{Prop:Disable} = False

END
OPEN(ASC1:ASCIIFile,10h)
IF ERRORCODE()
DISABLE(?AsciiBox)
!Embed: ASCII Box, File not found 1
IF StandardWarning(Warn:FileLoadError,ASC1:FileName)
EXIT

END
ELSE
ENABLE(?AsciiBox)
!Embed: ASCII Box, File found 1

END
ASCIIFileSize = BYTES(ASC1:ASCIIFile)
IF ASCIIFileSize = 0
CLOSE(ASC1:ASCIIFile)
DISABLE(?AsciiBox)
IF StandardWarning(Warn:FileZeroLength,ASC1:FileName)
EXIT

END
EXIT

END
OPEN(ProgressWindow)
ASCIIPercentProgress = 0
ASCIIBytesRead = 0
ProgressWindow{Prop:Text} = 'Reading File'
Progress:Thermometer = 0
?Progress:PctText{Prop:Text} = '0% Completed'
?Progress:UserString{Prop:Text} = ''
ACCEPT
CASE EVENT()
OF Event:OpenWindow
SET(ASC1:ASCIIFile)

OF Event:Timer
ASCIIBytesThisCycle = 0
LOOP WHILE ASCIIBytesThisCycle < 20000
NEXT(ASC1:ASCIIFile)
IF ERRORCODE()
LocalResponse = RequestCompleted
BREAK

END
ASCIIBytesThisRead = BYTES(ASC1:ASCIIFile)
ASCIIBytesThisCycle += ASCIIBytesThisRead
ASCIIBytesRead += ASCIIBytesThisRead
Queue:ASCII = ASC1:String
ADD(Queue:ASCII)

END
IF ASCIIPercentProgress < 100
ASCIIPercentProgress = (ASCIIBytesRead/ASCIIFileSize)*100
IF ASCIIPercentProgress > 100
ASCIIPercentProgress = 100

END
IF Progress:Thermometer <> ASCIIPercentProgress THEN
Progress:Thermometer = ASCIIPercentProgress
?Progress:PctText{Prop:Text} = FORMAT(ASCIIPercentProgress,@N3) & '% Completed

(' & ASCIIBytesRead & ') bytes'
DISPLAY(?Progress:Thermometer)
DISPLAY(?Progress:PctText)

END
END
IF LocalResponse = RequestCompleted
LocalResponse = RequestCancelled
POST(Event:CloseWindow)

END
END
CASE FIELD()
OF ?Progress:Cancel
CASE EVENT()
OF Event:Accepted
IF StandardWarning(Warn:ConfirmCancelLoad,ASC1:FileName)=Button:OK
POST(Event:CloseWindow)

END

END
END

END
CLOSE(ProgressWindow)
CLOSE(ASC1:ASCIIFile)

!--
ASC1:FindText ROUTINE
ASC1:CurrentPointer = CHOICE(?AsciiBox)
SETCURSOR(CURSOR:Wait)
LOOP
IF ASC1:Direction = 'Down'
ASC1:CurrentPointer += 1
IF ASC1:CurrentPointer = RECORDS(Queue:ASCII)
IF StandardWarning(Warn:EndOfASCIIQueue,'Down') = Button:Yes
ASC1:CurrentPointer = 1

ELSE
BREAK

END
END

ELSE
ASC1:CurrentPointer -= 1
IF ASC1:CurrentPointer = 0
IF StandardWarning(Warn:EndOfASCIIQueue,'Up') = Button:Yes
ASC1:CurrentPointer = RECORDS(Queue:ASCII)

ELSE
BREAK

END
END

END
GET(Queue:ASCII,ASC1:CurrentPointer)
IF ASC1:MatchCase
ASC1:TextLocation = INSTRING(ASC1:SearchString,Queue:ASCII,1,1)

ELSE
ASC1:TextLocation = INSTRING(UPPER(ASC1:SearchString),UPPER(Queue:ASCII),1,1)

END
IF NOT ASC1:TextLocation
CYCLE

END
IF ASC1:WholeWord
IF ASC1:TextLocation > 1
IF SUB(Queue:ASCII,ASC1:TextLocation-1,1)
CYCLE

END
END
IF ASC1:TextLocation+LEN(CLIP(ASC1:SearchString))<LEN(CLIP(Queue:ASCII))
IF SUB(Queue:ASCII,ASC1:TextLocation+LEN(CLIP(ASC1:SearchString)),1)
CYCLE

END
END

END
?AsciiBox{Prop:SelStart} = ASC1:CurrentPointer
BREAK

END
SETCURSOR

Example Source for Window Procedure
The following code was generated from the Window procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Compile Module Declarations
!Embed: Module Data Section
!Embed: Module Data Section
!Embed: Gather Template Symbols
WindProc PROCEDURE
LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
!Embed: Data Section, Before Window Declaration
window WINDOW('Caption'),AT(,,185,92),SYSTEM,GRAY,RESIZE,MDI

END
!Embed: Data Section, After Window Declaration
CODE
!Embed: Initialize the Procedure
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
!Embed: Procedure Setup
IF KEYCODE() = MouseRight
SETKEYCODE(0)

END
!Embed: Beginning of Procedure, Before Opening Files
!Embed: Beginning of Procedure, After Opening Files
!Embed: Before Opening the Window
OPEN(window)
WindowOpened=True
!Embed: After Opening the Window
!Embed: Preparing Window Alerts
!Embed: Preparing to Process the Window
ACCEPT
!Embed: Accept Loop, Before CASE EVENT() handling
CASE EVENT()
!Embed: CASE EVENT() structure, before generated code
OF EVENT:AlertKey
!Embed: Window Event Handling AlertKey

OF EVENT:PreAlertKey
!Embed: Window Event Handling PreAlertKey

OF EVENT:CloseWindow
!Embed: Window Event Handling CloseWindow

OF EVENT:CloseDown
!Embed: Window Event Handling CloseDown

OF EVENT:OpenWindow
!Embed: Window Event Handling OpenWindow
IF NOT WindowInitialized

DO InitializeWindow
WindowInitialized = True

END
OF EVENT:LoseFocus
!Embed: Window Event Handling LoseFocus

OF EVENT:GainFocus
!Embed: Window Event Handling GainFocus
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

ELSE
DO RefreshWindow

END
OF EVENT:Suspend
!Embed: Window Event Handling Suspend

OF EVENT:Resume
!Embed: Window Event Handling Resume

ELSE
!Embed: Other Window Event Handling

!Embed: CASE EVENT() structure, after generated code
END
!Embed: Accept Loop, After CASE EVENT() handling
!Embed: Accept Loop, Before CASE FIELD() handling
CASE FIELD()
!Embed: CASE FIELD() structure, before generated code
!Embed: CASE FIELD() structure, after generated code
END
!Embed: Accept Loop, After CASE FIELD() handling

END
DO ProcedureReturn

!---
ProcedureReturn ROUTINE
!Embed: End of Procedure, Before Closing Files
!Embed: End of Procedure, After Closing Files
!Embed: Before Closing the Window
IF WindowOpened
CLOSE(window)

END
!Embed: After Closing the Window
!Embed: End of Procedure
IF LocalResponse
GlobalResponse = LocalResponse

ELSE
GlobalResponse = RequestCancelled

END
RETURN

!---
InitializeWindow ROUTINE
!Embed: Window Initialization Code
DO RefreshWindow

!---
RefreshWindow ROUTINE
IF window{Prop:AcceptAll} THEN EXIT.
!Embed: Refresh Window routine, before lookups
!Embed: Lookup Related Records
!Embed: Refresh Window routine, after lookups
!Embed: Refresh Window routine, before DISPLAY()
DISPLAY()
ForceRefresh = False

!---
SyncWindow ROUTINE
!Embed: Sync Record routine, before lookups
!Embed: Lookup Related Records
!Embed: Sync Record routine, after lookups

!---
!Embed: Procedure Routines

Example Source for ToDo Procedure
The following code was generated from the ToDo procedure template.

Comments appear in red at the default embed points.

MEMBER('Prog.clw') ! This is a MEMBER module
!Embed: Compile Module Declarations
!Embed: Module Data Section
MyToDo PROCEDURE
CODE
IF StandardWarning(Warn:ProcedureToDo,' MyToDo ')
RETURN

END

Example Source for...
Global Program Section

Browse Procedure

Form Procedure

Frame Procedure

Menu Procedure

Process Procedure

Report Procedure

Source Procedure

Viewer Procedure

Window Procedure

ToDo Procedure

Grid Size Dialog
This allows you to set the spacing between grid points. When you place a new control in the report, you
can then optionally force it to the grid points with the Option Snap to Grid command.

Set the spacing by typing in values for the Horizontal and Vertical spacing. The measurement units
depend on the default for the report, as set in the Report Properties dialog. The Grid Size dialog tells
you the minimum value (1/20th inch, or 2 millimeters).

Preview Print Details Dialog
This allows you to choose a report section to preview.

Because you can nest many sections of various types within a single report, you have to select a section
before actually previewing it. This way, the Report Formatter knows what part(s) you want to compose on
the screen.

Select a section from the Details list, then press the Add button to move it to the Selected Details list.
Press the OK button to preview.

Database Drivers
Clarion for Windows achieves database independence with its built-in driver technology, enabling you to
access data from virtually any file system. Many file drivers are available and more are being added. All of
the file drivers read and write in the file system's native format without temporary files or import/export
routines.

Often, your application's main purpose is accessing existing data in its original format. For those times,
you just plug in the appropriate file driver. For the times when you're not "locked into" a particular file
system, this appendix provides tips on the file drivers best suited for different jobs. You can choose the
right tool depending on the type, size, and nature of the data files necessary for your application.

The commands for accessing data from different systems are the same; simply choose the correct file
driver from the drop down list within your Data Dictionary, and don't worry about it.

See Also:

Supported File Systems

Optimizing File Drivers with Driver Strings

Supported File Systems
ASCII Files

Basic Files

Btrieve Files

Clarion Files

Clipper Files

dBase III Files

dBase IV Files

DOS Files

FoxPro and FoxBase Files

TopSpeed Database Files

Optimizing File Drivers with Driver Strings
There are settings you can specify, with driver strings (the second parameter of the DRIVER attribute), to
optimize the way your application creates, reads, and writes data files for a specific driver. To specify a
driver string with the Data Dictionary, type it in the Options field in the New File Properties dialog, as
described in the Using the Dictionary chapter. To send a driver string in executable code (after the
application initializes the driver), use the SEND() function, described in the Language Reference.

Driver strings are all preceded by a forward slash character (/). SEND function commands can take two
formatsone with an equal sign to modify a switch setting, the other without an equal sign to return the
value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting. Some driver strings have no effect after the file is open, so the SEND function syntax to
modify the setting is not listed. However, the SEND function to return the value of the switch is valid for all
driver strings.

ASCII Files
The ASCII driver reads and writes standard ASCII files without field delimiters. This is often used for
mainframe data import/export via an ASCII flat-file. A carriage-return/line-feed delimits records. The ASCII
driver does not support keys.

Files: CWASC16.LIB Windows Export Library (16-bit)

CWASC32.LIB Windows Export Library (32-bit)

CLASC16.LIB Windows Static Link Library (16-bit)

CLASC32.LIB Windows Static Link Library (32-bit)

CWASC16.DLL Windows Dynamic Link Library (16-bit)

CWASC32.DLL Windows Dynamic Link Library (32-bit)

Tip: Due to its lack of relational features and security (anyone can view and change an ASCII
file using Notepad), it's unlikely you'll use the ASCII driver to store large data files. But it
can help you create a text file vieweruse it to open a file, and read it in to a multi-line edit
or listbox control!

ASCII:Supported Data Types
STRING
GROUP

ASCII:File Specifications/Maximums
File Size: 4,294,967,295 bytes
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520 bytes
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: n/a
Memo Field Size: n/a
Open Data Files: Operating system dependent

ASCII:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used to read and write to the file. The
ASCII driver allocates internal buffers of 512 bytes, or the size of the record,
whichever is larger. The default number of buffers is 2 for files opened denying
write access to other users, and 1 for all other open modes. Use the optional
driver string to increase the buffers should you find access to records is slow.

SEND(file, 'FILEBUFFERS')
Returns a STRING containing the number of bytes in the buffers in STRING
format

/TAB= n Specifies TAB/SPACE expansion. The ASCII driver expands TABs (ASCII
character 9) to spaces when reading. The value indicates the number of spaces
with which to replace the tab, subject to the guidelines below. The default value is
8.

If n > 0 , spaces replace each tab until the character pointer moves to the next
multiple of n. For example, with the default of 8, if the TAB character is the third
character in the record, 6 spaces replace the TAB.

If n = 0, the driver removes tabs without replacement.

If n < 0, the driver removes tabs with the positive value of n spaces. For example,
"TAB=-4" causes 4 spaces to replace every tab, regardless of the position of the
tab in the record.

If n = -100, tabs remain as tabs; the driver does not replace them with spaces.

SEND(file, 'TAB') Returns the number of spaces which replace the tab character in the form of a
STRING.

/ENDOFRECORD=n,<m> Specifies the end of record delimiter.

 n represents the number of characters that make up the end-of-record separator.

m represents the ASCII code(s) for the end-of-record characters, separated by
commas. The default is 2,13,10, indicating 2 characters mark the end-of-record,
namely, carriage return (13) and line feed (10).

SEND(file,'ENDOFRECORD')
Returns the end of record delimiter in the form of a STRING.

Tip: Mainframes frequently use a carriage return to delimit records. You can use
/ENDOFRECORD to read these files.

/QUICKSCAN=on|off
SEND(file,'QUICKSCAN=on|off')

Specifies buffered access behavior. The ASCII driver reads a buffer at a time (not
a record), allowing for fast access. In a multi-user environment these buffers are
not 100% trustworthy for subsequent access, because another user may change
the file between accesses. As a safeguard, the driver rereads the buffers before
each record access. To disable the reread, set QUICKSCAN to ON. The default
is ON for files opened denying write access to other users, and OFF for all other
open modes.

SEND(file,'QUICKSCAN')
Returns the Quickscan setting (ON or OFF) in the form of a STRING(3).

/CLIP=on|off The driver automatically removes trailing spaces from a record before writing it to
file. To disable this feature, set CLIP to OFF. The default is ON.

SEND(file,'CLIP')
Returns the CLIP setting (ON or OFF) in the form of a STRING(3).

ASCII:Unsupported Functions and Attributes
Memos: NOMEMO()

Transaction Processing:COMMIT(), LOGOUT(), ROLLBACK()

Key Processing:
BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer)
RESET(key,string)
SET(file,key), SET(key), SET(key,key), SET(key,keypointer), SET(key,key,filepointer)
DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)
REGET(key,string)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

ASCII:Miscellaneous
POSITION(file) returns a STRING(4).

Basic Files
The BASIC file driver reads and writes comma delimited ASCII files. Quotes (" ") surround strings,
commas delimit fields, and a carriage-return/line-feed delimits records. The original BASIC programming
language defined this file format. The Basic driver does not support keys.

Tip: The Basic file format provides a good choice for a common file format for sharing data
with spreadsheet programs. A common file extension used for these files is *.CSV, which
stands for "comma separated values."

Files: CWBAS16.LIB Windows Export Library (16-bit)

CWBAS32.LIB Windows Export Library (32-bit)

CLBAS16.LIB Windows Static Link Library (16-bit)

CLBAS32.LIB Windows Static Link Library (32-bit)

CWBAS16.DLL Windows Dynamic Link Library (16-bit)

CWBAS32.DLL Windows Dynamic Link Library (32-bit)

Basic:Supported Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT8

Basic:File Specifications/Maximums
File Size: 4,294,967,295 bytes
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520 bytes
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: 0
Memo Field Size: n/a
Open Data Files: Operating system dependent

Basic:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used to read and write to the file.

The Basic driver allocates internal buffers of 512 bytes, or the size of your record,
whichever is larger, to store the retrieved data. The default number of buffers is 2
for files opened denying write access to other users, and 1 for all other open
modes. Use the optional driver string to increase the buffers should you find
access to records is slow.

SEND(file, 'FILEBUFFERS')
Returns the number of buffers in the form of a STRING.

/ENDOFRECORD=n,<m> Specifies the end of record delimiter.

n represents the number of characters of the end-of-record separator.

m represents the ASCII code(s) for the end-of-record characters, separated by
commas. The default is 2,13,10 indicating 2 characters mark the end-of-record,
namely, carriage return (13) and line feed (10).

SEND(file,'ENDOFRECORD')
Returns the end of record delimiter in the form of a STRING.

Tip: Mainframes frequently use a carriage return to delimit records. You can use
/ENDOFRECORD to read these files.

/QUICKSCAN=on|off

SEND(file,'QUICKSCAN=ON|OFF')
Specifies buffered access behavior.

The Basic driver reads a buffer at a time (not a record), allowing for fast access.
In a multi-user environment these buffers are not 100% trustworthy for
subsequent access, because another user may change the database between
accesses. As a safeguard, the driver rereads the buffers before each record
access. To disable the reread, set QUICKSCAN to ON. The default is ON for files
opened denying write access to other users, and OFF for all other open modes.

SEND(file,'QUICKSCAN')
Returns the Quickscan setting (ON or OFF) in the form of a STRING(3).

/FIELDDELIMITER=n,<m> Specifies the end-of-field separator.

n represents the number of characters that make up the end-of-field separator.

m represents the ASCII code(s) for the end-of-field characters, separated by
commas. The default is 1,44, which indicates the "comma" character.

SEND(file,'FIELDDELIMITER')
Returns the value of the field delimiter in the form of a STRING.

/COMMA=n Specifies a single character end-of-field separator. n represents the ASCII code
for the end-of-field character. The default is 44, which is equivalent to
"/FIELDDELIMITER=1,44."

SEND(file,'COMMA') Returns the ASCII code for the single character end-of-field delimiter in the form
of a STRING.

Tip: TAB-delimited values are a common format compatible with the Windows clipboard. Using
the BASIC file driver string
/COMMA=9 allows you to read Windows clipboard files

/QUOTE=n Specifies a single character string delimiter. n represents the ASCII code.
The default is 34, the ASCII value for the quotation mark character.

SEND(file,'QUOTE') Returns the ASCII code value of the single character string delimiter in the form
of a STRING.

/ALWAYSQUOTE=on|off
For compatibility with Basic format data files created by products which do not
place string values in quotes, set ALWAYSQUOTE to off.

When the contents of a string field includes the comma or quote character(s),
and ALWAYSQUOTE is off, the Basic driver automatically places quotes around
the string when writing to file. This also applies to delimiter characters specified
with FIELDDELIMITER, or COMMA. For example, with the defaults in use and
ALWAYSQUOTE off, a STRING field containing the value 1313 Mockingbird
Lane, Apt. 33 is automatically stored as: "1313 Mockingbird Lane, Apt. 33"

SEND(file,'ALWAYSQUOTE')
Returns the ALWAYSQUOTE setting (ON or OFF) in the form of a STRING(3).

Basic:Unsupported Functions and Attributes
Memos: NOMEMO()

Transaction Processing:COMMIT(), LOGOUT(), ROLLBACK()

Key Processing: BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer)
RESET(key,string)
SET(file,key), SET(key), SET(key,key), SET(key,keypointer), SET(key,key,filepointer)
DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)
REGET(key,string)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

Basic:Miscellaneous
The following demonstrates how to use the driver strings to create two popular file formats:

Microsoft Word for Windows Mail Merge:
/ALWAYSQUOTE=OFF
/FIELDDELIMITER=2,13,7
/ENDOFRECORD=4,13,7,13,7

TAB delimited format:
/COMMA=9

POSITION(file) returns a STRING(4).

Btrieve Files
This file driver reads and writes Btrieve files, using low-level direct access.

Under Clarion for Windows, the Btrieve file driver is implemented by using .DLLs and an .EXE supplied by
Btrieve Technologies, Inc. (BTI). For an application to use a Btrieve file driver, the following BTI files must
accompany the executable:

16-bit
WBTR32.EXE
WBTRLOCL.DLL
WBTRCALL.DLL
WBTRVRES.DLL

32-bit
Filenames were not available at press time.
Contact BTI for more information.

LICENSE WARNING: A registered Clarion for Windows owner cannot redistribute the above BTI
files outside of his/her organization without a license from BTI. In order to obtain a license, please
contact:
Btrieve Technologies, Inc.
5918 West Courtyard Drive, Suite 400
Austin, Texas 78730
Phone: (512)794-1719
For Client/Server-based Btrieve, Netware Btrieve is a server-based version of Btrieve that runs on a
Novell server. The Btrieve requester program BREQUEST.EXE must be loaded at each workstation
before Windows is started.

A single file normally holds the data and all keys. Data filenames default to a *.DAT file extension. By
default, the driver stores memos in a separate file, or optionally in the data file itself, given the appropriate
driver string.

KEYs are dynamic, and automatically update when the data file changes.

INDEXes are stored separately from data files. INDEX files receive a temporary file name, and are
deleted when the program terminates normally. INDEXes are staticthey are not automatically updated
when the data file changes. The BUILD statement creates or updates index files.

The Btrieve file format stores minimal file structure information in the file. The driver validates your
description against the information in the file. It is possible to successfully open a Btrieve file that has key
definitions that do not exactly match your definition. You must make certain that your file and key
definitions accurately match the Btrieve file.

Files: CWBTRV16.LIB Windows Export Library (16-bit)

CWBTRV32.LIB Windows Export Library (32-bit)

CLBTRV16.LIB Windows Static Link Library (16-bit)

CLBTRV32.LIB Windows Static Link Library (32-bit)

CWBTRV16.DLL Windows Dynamic Link Library (16-bit)

CWBTRV32.DLL Windows Dynamic Link Library (32-bit)
An Owner Name is similar to a password. An encrypted Btrieve file uses the owner name as the
encryption key.

Btrieve:Data Types
Clarion data type Btrieve data type
BYTE STRING (1 byte)
SHORT INTEGER (2 bytes)
LONG INTEGER (4 bytes)
SREAL FLOAT (4 bytes)
REAL FLOAT (8 bytes)
BFLOAT4 BFLOAT (4 bytes)
BFLOAT8 BFLOAT (8 bytes)
PDECIMAL DECIMAL
STRING STRING
CSTRING ZSTRING
PSTRING LSTRING
DATE DATE
TIME TIME
USHORT UNSIGNED BINARY (2 bytes)
ULONG UNSIGNED BINARY (4 bytes)
MEMO STRING,LVAR or NOTE (see below)
BYTE,NAME('LOGICAL') LOGICAL*
USHORT,NAME('LOGICAL') LOGICAL*
PDECIMAL,NAME('MONEY') MONEY*
STRING(@N0n-),NAME('STS') SIGNED TRAILING SEPERATE*
DECIMAL
Notes:

You can store Clarion DECIMAL types in a Btrieve file. However, you cannot build a key
or index using the field.

If you want to create a file with LOGICAL or MONEY field types, you must specify an
external name of LOGICAL or MONEY, respectively. If you are accessing an existing file, the
NAME attribute is not required.

LOGICAL may be declared as a BYTE or USHORT, depending on whether it is a one or
two byte LOGICAL:
LogicalField1 BYTE!One byte LOGICAL
LogicalField2 USHORT !Two byte LOGICAL

MONEY may be declared as a PDECIMAL(x,2), where x is the total
number of digits to be stored:

MoneyField PDECIMAL(7,2) !Store up to 99999.99
Btrieve NUMERIC fields are not fully supported by the driver. Btrieve NUMERIC is stored

as a string with the last character holding a digit and an implied sign.. The possible values for
this last character are:

 1 2 3 4 5 6 7 8 9 0
Positive: A B C D E F G H I {
Negative: J K L M N O P Q R }

To access a NUMERIC field you must define a STRING(@N0x), where x is
one less than the digits in the NUMERIC, and a STRING(1) to hold the
sign indicator. The Btrieve driver does not maintain this sign field, the
application must be written to directly handle it.

For example to access a NUMERIC(7) you would have:
NumericGroup GROUP !Store -999999 to 999999
Number STRING(@N06) !Numbers
Sign STRING(1) !Sign indicator

END

Btrieve:File Specifications/Maximums:
File Size : 4,000,000,000 bytes
Records per File : Limited by the size of the file
Record Size
Client-based : 65,520 bytes variable length
Server based : 54K variable length

Field Size : 65,520 bytes
Fields per Record : 65,520 bytes
Keys/Indexes per File: 24 with NLM5
256 with NLM6.
Client Btrieve v6.15
Page Size Max Key Segments
512 8
1,024 23
1,536 24
2,048 54
4,096 119

This is the total number of components. If you have a multicomponent key built
from three fields, this counts as three indexes when counting the number of allowed
indexes.
Key Size: 255 bytes
Memo fields per File: System memory dependent
Memo field size : 65,520 bytes
Open Files : Operating system dependent

Btrieve:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function to return the value
of the switch is valid for all driver strings.

/MEMO=SINGLE To access existing Btrieve files created with the Btrieve LEM from Clarion 2.1, or
files with variable length records set MEMO to SINGLE.

/MEMO=LVAR To access a file with variable length records, use a SINGLE style MEMO whose
size equals the maximum size of the variable length component of the record. To
add/put records to this style file with binary data stored in the variable length
section, use the ADD(file,length), APPEND(file,length) and PUT(file,pos,length)
functions. The driver ignores the pos parameter in the PUT function, but initialize
it to 0 (zero) for future compatibility. The ADD, APPEND or PUT functions will
remove all trailing spaces for text memos and NULL characters for binary memos
before storing the record.

/MEMO=NOTE,<delimiter> To access Xtrieve data files that have data type of Note or LVar, set the driver
string to NOTE and LVAR respectively. With the NOTE data type, specify the
end-of-field delimiter. Specify the ASCII value for the delimiter. NOTE and LVAR
memos do not require the use of the size variants of ADD, APPEND and PUT,
when storing records. The end of record marker is not necessary for a NOTE
style memo. The driver automatically adds the end of record marker before
storing the record and removes it before putting the memo data into the memo
buffer.

As an example, "/MEMO=NOTE,141" indicates a file with an Xtrieve Notes field
using CR/LF as the delimiter. For more information on the Xtrieve data types
refer to the documentation supplied by Novell.

SEND(file,'MEMO') Returns the MEMO setting: NORMAL,NOTE,LVAR or SINGLE

/PAGESIZE=<size> Optionally sets the Btrieve Page size at file creation time. The keyword must be
upper case. It must always be a multiple of 512, with a maximum of 4096. Larger
page sizes usually result in more efficient disk storage. Do not add spaces before
or after the equal sign.

SEND(file,'PAGESIZE')
Returns the page size in the form of a STRING.

/ALLOWREAD=[ON|OFF] By default, a Btrieve file created with an owner name may be accessed only in
read-only mode when the owner name is not known. To prevent all access to the
file without the owner name, set ALLOWREAD to OFF.

SEND(file,'ALLOWREAD')
Returns the ALLOWREAD setting (ON or OFF) in the form of a STRING(3).

/COMPRESS=[ON|OFF] Btrieve allows you to compress the data before storage. This allows for a smaller
storage requirement, but reduces performance. When COMPRESS is ON,

CREATE creates a compressed Btrieve file.

SEND(file,'COMPRESS')
Returns the COMPRESS setting (ON or OFF) in the form of a STRING(3).

/PREALLOCATE=n When creating a Btrieve file, you can preallocate n pages of disk space for the
file. The default is zero.

SEND(file,'PREALLOCATE')
Returns the number of pages of allocated disk space in the form of a STRING.

/FREESPACE=[0|10|20|30]
Specifies the percentage of free space to maintain on variable length pages. The
default is zero.

SEND(file,'FREESPACE') Returns the percentage of free space to maintain on variable length pages in the
form of a STRING.

/ACS=file_name When creating a Btrieve file you can specify an alternate collating sequence that
STRING keys will be sorted by. This sorting sequence is normally obtained from
the sort sequence you define in the INI file for your program. However, Btrieve
supplies files for doing case insensitive sorts. To create your file using these sort
sequences you specify the name of the sort file in the driver string.

For example. To use the alternate collating sequence file UPPER.ALT you would
specify:

AFile FILE,DRIVER('BTRIEVE','/ACS=UPPER.ALT'),CREATE

/APPENDBUFFER=size

SEND(file,'APPENDBUFFER=size')
By default APPEND adds records to the file one at a time. To get better
performance over a network you can tell the driver to build up a buffer of records
then send all of them to Btrieve at once. This is done using
SEND(file,'APPENDBUFFER=size') where size is the number of records you
want to allocate for the buffer. The maximum value of size of the buffer.

SEND(file,'APPENDBUFFER')
Returns the number of records that will fit in the buffer.

/BALANCEKEYS=[ON|OFF]')
When creating a Btrieve file, you can use this driver string to tell Btrieve that
Btrieve that all keys associated with the file must be stored in a balances btree.
This saves disk space, but will slow down file adds, deletes and updates where
key values change.

SEND(file,'BALANCEKEYS')
Returns the BALANCEKEYS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'FREEAPPENDBUFFER')
Frees up the memory used by the append buffer allocated by a call to
SEND(file,APPENDBUFFER=size). Returns the number of records that fitted in
the old buffer.

/LACS= With Btrieve v6.15 Btrieve added the feature of Local Alternate Collating
Sequences. This allows your string key to sort based on the country code for the
machine running your program. To use this feature you put '/LACS=' in your

driver string.

/LACS=country_ID,code_page
With Btrieve v6.15 Btrieve added the feature of User-Defined Alternate Collating
Sequences. This allows your string key to sort based on the DOS country code
and code page for a particular country. To use this feature you put
'/LACS=country_id,codepage' in your driver string. Note that there must be no
spaces surrounding the comma.

SEND(file,'LACS') Returns country_ID,code_page or the string ',' (if using machine-dependent
LACS).

/TRUNCATE=[ON|OFF] When creating a Btrieve file, you can use this driver string to tell Btrieve to
truncate trailing spaces. This forces the record to be stored as a variable length
records.

SEND(file,'TRUNCATE')
Returns the TRUNCATE setting (ON or OFF) in the form of a STRING(3).

Btrieve:Unsupported/Modified Functions and Attributes
Key Attribute: NOCASE
NLM 5 does not support case insensitive indexing. When necessary, you must supply an

alternate collating sequence which implements case insensitive sorting.
Btrieve supports an alternate collating sequence. However, NLM 6 does not support both

NOCASE and an alternate collating sequence. If you specify both, the NOCASE attribute takes
precedence. No error is returned from the SEND function.

Buffering Control: STREAM, FLUSH
There is no buffering control within the Btrieve driver.
File Locking: LOCK()
Btrieve does not support file locking. The driver does not return any error if you call it. If

you require file locking, use LOGOUT.
Record Access: GET(file, fileptr, len)

File information: BYTES()

File updates: PUT(file, fileptr)

SET(file, filepointer), SET(key, keypointer)
If a file or key pointer has a value of zero, or any other value that does not exist in the

file, the driver ignores the pointer parameter. Processing is set to either file or key order, and the
record pointer is set to the first element.

SET(key, key, filepointer)
If the filepointer has a value of zero, or any other value that does not exist in the file,

processing starts at the first key value whose position is greater than (or less than for
PREVIOUS) the filepointer. Not passing a valid pointer is inefficient.

EOF(file), BOF(file)
These functions are supported, but not recommended. They cause more disk I/O than

ERRORCODE(). Btrieve returns eof when reading past the last record. This requires the driver
must read the next record, then the next to see if it's at the end of file, then goes back to the
record you want.

ADD(file), PUT(file)
When using the LVAR and NOTE memo type, make certain that the memo has the

appropriate structure. If the structure is incorrect and the driver calculates a length greater than
the maximum memo size defined for that file, these functions fail and set errorcode to 57 -
Invalid Memo File.***

DELETE(file) when stepping through in record order
Tip: Btrieve's DELETE destroys positioning information when processing in file order. The
driver attempts to reposition to the appropriate record. This is not always possible and
may require the driver to read from the start of the file. Using key order processing avoids
this possible slow down.

LOGOUT()
Btrieve does not allow you to logout only certain files. When you issue a LOGOUT() call,

all Btrieve files accessed during the transaction are logged out. This means the following code is
illegal (as you cannot close a logged-out file:
 LOGOUT(1,file1)
 OPEN(file2)
 CLOSE(file2)

APPEND()
Btrieve does not support non-key updates. To emulate APPEND() behavior, the driver

drops all indexes possible when APPEND() is first called. Calling BUILD() immediately after

appending records rebuilds the dropped key fields.
BUILD()
If used after an APPEND(), but before a file is closed, this adds the keys dropped by

APPEND(). In all other cases BUILD() rebuilds the file and keys. If you only want to rebuild
keys, doing a BUILD(key) for each key is faster than BUILD(file).

BUILD(DynamicIndex, expression,filter)

Btrieve:Miscellaneous
The driver stores records less than 4K as fixed length. It stores records greater than 4K

as variable length. The minimum record length is 4 bytes. One record can be held in each open
file by each user.

The driver ignores any NAME attribute on a MEMO field. MEMO fields can reside either
in a separate file, or in the data file if the driver string MEMO is set to SINGLE, LVAR or NOTE.
If the driver string MEMO is not set, the separate MEMO file name is "MEM," preceded by the
first five characters of the file's label, plus the file extension "DAT." Setting the driver string
MEMO restricts you to one memo field per file.

Btrieve allows you to open a file in five different formats: NORMAL, ACCELERATED,
READ-ONLY, VERIFY or EXCLUSIVE. The equivalent Clarion OPEN() states are:
Btrieve State Clarion OPEN/SHARE access mode
ACCELERATED Read/Write with FCB compatibility mode (2H)
READ-ONLY Read Only (0H,10H,20H,30H,40H)
VERIFY Write Only with FCB compatibility mode (1H)
EXCLUSIVE Write Only with any Deny flag (11H,21H,31H,41H);

Read/Write with Deny All, Read or Write (12H,22H,32H)
NORMAL Read/Write with Deny None (42H)

Btrieve allows a file to have a specified owner. See the driver string /READONLY for
details on setting this flag. The file may also be encrypted. This is set with the ENCRYPT
attribute. A file can only be encrypted when an owner name is supplied.

Btrieve uses an unsigned long for its internal record pointer; negative values are stripped
of their sign. We recommend the ULONG data type for your record pointer.

 Calculating Page Size:
To determine the physical record length, add 8 bytes for each KEY that allows

duplicates. Add 4 bytes if the file allows variable record lengths. Finally, allow 6 bytes for
overhead per page.

For example: If the record size is 300 bytes and the file has three KEYs
that allow Duplicates, the total record size is:

 300 record size

x 24 overhead for three KEYs with the DUP attribute

= 324 physical record length

A page size of 512 would only hold one such record, and 182 bytes per
page would go unused (512 - 6 - 324). If the page size were 1024, three
records could be stored per page and only 46 bytes would go unused
(1024 - 6 - (324 * 3)).

You must load BTRIEVE.EXE with a page size equal to or greater than
the largest page size of any file that you will be accessing.

When defining a file, the key definition does not need to exactly match the
underlying file. For example, you can have a physical file with a single
component STRING(20). You can define this as a key with two string
components with a total length of 20. The rule is that the data types must
match and the total size must match. However, if your Clarion definition
does not exactly match the underlying file, the driver cannot optimize
APPEND() or BUILD() statements.

A Key's NAME attribute can add additional functionality.
KEY,NAME('MODIFIABLE=true|false')
Btrieve allows you to create a key that can not be changed once created. To use this feature
you can use the name attribute on the key to set MODIFIABLE to FALSE. It defaults to TRUE.
KEY,NAME('ANYNULL')
Btrieve allows you to create a key that will not include a record if any key components are null.
To create such a key you specify ANYNULL in the key name.
For example, to create a key that is non modifiable and excludes keys if any component is null:
 Key1 KEY(+pre:field1,-pre:field2),NAME('ANYNULL MODIFIABLE=FALSE')

KEY,NAME('REPEATINGDUPLICATE')
By default Btrieve version 6 stores a reference to only the first record in a
series of duplicate records in a key. The other occurrences of the
duplicate key value are obtained by following a link list stored at the
record. To create an index where all duplicate records are stored in the
key you use the NAME('REPEATINGDUPLICATE'). This produces larger
keys, but random access to duplicate records is faster. (This feature is
only available for version 6 files.)

POSITION(file) returns a STRING(4).
POSITION(key) returns a STRING the size of the key fields + 4 bytes.

Clarion Files
The Clarion file driver is compatible with the file system used by Clarion Database Developer 3.0 and
Clarion Professional Developer.

Keys and Indexes exist as separate files from the data file. Keys are dynamicthey are automatically
updated as the data file changes. The default file extension for a key file is *.K##. Indexes are staticthey
do not automatically update, but instead require the BUILD statement for updating.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file defaults
to the first eight characters of the File Label plus an extension of .MEM.

Files: CWC2116.LIB Windows Export Library (16-bit)

CWC2132.LIB Windows Export Library (32-bit)

CLC2116.LIB Windows Static Link Library (16-bit)

CLC2132.LIB Windows Static Link Library (32-bit)

CWC2116.DLL Windows Dynamic Link Library (16-bit)

CWC2132.DLL Windows Dynamic Link Library (32-bit)

Tip: By avoiding the ASCII-only file formats of many other popular PC database application
development systems, the Clarion file format provides a more secure means of storing
data.

Clarion:Data Types
BYTE DECIMAL
SHORT STRING (255 byte maximum)
LONG MEMO
REAL GROUP

Clarion:Maximum File Specifications:
File Size: limited only by disk space
Records per File : 4,294,967,295
Record Size: 65,520 bytes
Field Size : 65,520 bytes
Fields per Record: 65,520 bytes
Keys/Indexes per File: 251
Key Size : 245 bytes
Memo fields per File : 1
Memo Field Size: 65,520 bytes
Open Data Files: Operating system dependent

Clarion:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

RECOVER may not be used as a DRIVER stringyou may only use it with the SEND function.

SEND(file,'RECOVER=n')
The RECOVER string, when n is greater than 0, UNLOCKs a data file, or
RELEASEs a held record in order to recover from a system crash.

n represents the number os seconds to wait before invoking the recovery
process. When n is equal to 1, the recovery process is invoked immediately.
When n is equal to 0, the recovery process is disarmed.

The SEND function returns a blank string.

To RELEASE a held record, you must read that record into memory. If there are
multiple held records, loop through the entire file after SENDing the RECOVER=
message to the driver.

SEND(file,'IGNORESTATUS=on|off')

/IGNORESTATUS=on|off When set on, the driver does not skip deleted records when accessing the file
with GET(), NEXT(), and PREVIOUS() in file order. It also enables a PUT() on a
deleted or held record. /IGNORESTATUS requires opening the file in exclusive
mode.

SEND(file,'IGNORESTATUS')
Returns the IGNORESTATUS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'DELETED')
For use only with the SEND command, when /IGNORESTATUS is on. Reports
the status of the loaded record. If deleted, the return string is "ON;" if not, "OFF."

SEND(file,'HELD') For use only with the SEND command, when /IGNORESTATUS is on. Reports
the status of the loaded record. If held, the return string is "ON;" if not, "OFF."

Clarion:Miscellaneous
POSITION(file) returns a STRING(4).
POSITION(key) returns a STRING the size of the key fields + 4 bytes.

Clarion:Unsupported Functions and Attributes
Record Access: GET(file, fileptr, len), ADD(file, len), APPEND(file, len)

The driver does not support variable length records.

File updates: PUT(file, fileptr, len)

The driver does not support variable length records.

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend their
use. These functions must physically access the files in order to operate,
adding considerable overhead. Instead, test the value returned by
ERRORCODE() after each sequential access. NEXT() or PREVIOUS()
post Error 33 (Record Not Available) if an attempt is made to access a
record beyond the end or beginning of the file.

BUILD(DynamicIndex, expression,filter)

 Clipper Files
The Clipper file driver is compatible with Clipper Summer '87 and Clipper 5.0. The default data file
extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamicthey automatically update as
the data file changes. Indexes are staticthey do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is *.NTX.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file name
takes the first eight characters of the File Label plus an extension of .DBT.

Files: CWCLIP16.LIB Windows Export Library (16-bit)

CWCLIP32.LIB Windows Export Library (32-bit)

CLCLIP16.LIB Windows Static Link Library (16-bit)

CLCLIP32.LIB Windows Static Link Library (32-bit)

CWCLIP16.DLL Windows Dynamic Link Library (16-bit)

CWCLIP32.DLL Windows Dynamic Link Library (32-bit)

Tip: As a popular xBase database application development system, Clipper provides a
common file format for many installed business applications and their data files. Use the
Clipper driver to access these files in their native format.

Clipper:Data Types
The xBase file format stores all data as ASCII strings. You may either specify STRING types with declared
pictures for each field, or specify native Clarion data types, which the driver converts automatically.
Clipper data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*NumericREAL STRING(@N-_p.d)
*LogicalBYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO
If your application reads and writes to existing files, a pictured STRING will suffice. However, if your
application creates a Clipper file, you may require additional information for these Clipper types:

To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name attribute, specify 'NumericFieldName=N(Precision,DecimalPlaces)' where
NumericFieldName is the name of the field, Precision is the precision of the field and
DecimalPlaces is the number of decimal places.

If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax. If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data from the
field.

If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file containing
the offset of the memo in the .DBT file. The MEMO declaration must have a NAME() attribute
naming the pointer field. An example file declaration follows:
File FILE, DRIVER('Clipper')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')
 END

END

Clipper:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes (Clipper '87)

8,192 bytes (Clipper 5.0)
Field Size
 Character: 254 bytes (Clipper '87)

2048 bytes (Clipper 5.0)
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Memo: 65,520 bytes (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Clipper:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/BUFFERS=n Specify a value for the number of buffers used to read and write to the file.

The Clipper driver utilizes DOS buffering. The default is three buffers of 1024
bytes each. Increasing the number of buffers will not increase performance when
a file is shared by multiple users.

SEND(file,'BUFFERS')
Returns the number of buffers in the form of a STRING.

/RECOVER

SEND(file,'RECOVER')
Equivalent to the Xbase RECALL command, which recovers records marked for
deletion. When using the Clipper driver, the DELETE statement flags a record as
"inactive." The driver does not remove the record until the PACK or BUILD
command is executed.

/RECOVER is evaluated each time you open the file if you add the driver string to
the data dictionary. When the driver recovers the records previously marked for
deletion, you must manually rebuild keys and indexes with the BUILD statement.

SEND(file,'IGNORESTATUS=on|off')

/IGNORESTATUS=on|off When set on, the driver does not skip deleted records when accessing the file
with GET, NEXT, and PREVIOUS in file order. It also enables a PUT on a deleted
or held record. /IGNORESTATUS requires opening the file in exclusive mode.

SEND(file,'IGNORESTATUS')
Returns the IGNORESTATUS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'DELETED')
For use only with the SEND command, when IGNORESTATUS is on. Reports the
status of the current record. If deleted, the return string is "ON;" if not, "OFF."

Clipper:Unsupported/Modified Functions & Attributes
Memos: BINARY

Clipper supports only text memos.

Keys: NOCASE, OPT

File: ENCRYPT, OWNER, RECLAIM

The Clipper driver cannot read encrypted Clipper files. To reclaim space
from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The Clipper driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

Clipper does not support variable length records

File updates: PUT(file, fileptr, len)

Clipper does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend their
use. They must physically access the files and add overhead. Instead,
test the value returned by ERRORCODE() after each sequential access.
NEXT or PREVIOUS post Error 33 (Record Not Available) if an attempt is
made to access a record beyond the end or beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the data file
or its associated KEY files. Consequently it is slower than APPEND which
performs no checks and does not update KEYs. When adding large
amounts of data to a database use APPEND...BUILD in preference to
ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of two
forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the index.
The field names must appear as specified in the fields' NAME() attribute if
supplied, or must be the label name. A prefix may be used for
compatibility with the Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index, see

the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files are
copied if the newname is a subdirectory specification. To copy an index
file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NTX" for both the source and
the target file names if none is specified. If you require a file name without
an extension, terminate the name with a period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('Clipper')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)
 . .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A: CLAR2.DBF,
CLAR2.DBT, STRKEY.NTX, STRKEY2.NTX, and NUMKEY.NTX.

DELETE(file)

When the driver deletes a record from a Clipper database, the record is
not physically removed, instead the driver marks it inactive. Memo fields
are not physically removed from the memo file, however they cannot be
retrieved if they refer to an inactive record. Key values are removed from
the index files. To remove records and memo fields permanently, execute
a PACK(file).

Tip: To those programmers familiar with Clipper, this driver processes deleted records
consistent with the way Clipper processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from processing by executable code
statements, but remain in the data file.

HOLD(file), HOLD(file, timeout)

Clipper performs record locking by locking the entire record within the
data file. This prevents read access to other processes. Therefore we
recommend minimizing the amount of time for which a record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they both
contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under Clipper, the RECORDS() function reports the same number of
records for the data file and its keys and indexes. Usually there will be no
difference in the number of records unless the INDEX is out of date.
Because the DELETE statement does not physically remove records, the
number of records reported by the RECORDS() function includes inactive
records. Exercise care when using this function.

RENAME(file, newname)

The RENAME command copies the data and memo files using newname,
which may specify a new file name or directory path. Key and index files
must be renamed using the same syntax as the COPY command, above.

POSITION(file) returns a STRING(12).
POSITION(key) returns a STRING the size of the key fields + 4 bytes.
BUILD(DynamicIndex, expression,filter) is not supported.

Clipper:Miscellaneous
Clipper allows a maximum of 254 characters to a character field.
Clipper allows a logical field to accept one of nine possible values (y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field from
a preexisting database in a logical expression, account for all these possibilities. Remember that
when a STRING field is used as an expression, it is true if it contains any data and false if it is
equal to zero or blank. Therefore, to evaluate a Logical field's truth, the expression should be
true if the field contains any of the "true" characters (T,t,Y, or y). For example, if a Logical field
were used to specify a product as taxable or nontaxable, the expression to evaluate its truth
would be:

(If Condition):
Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Clarion for Windows supports MEMO fields up to a maximum of 64K. If you have an
existing file which includes a memo greater than 64K, you can use the file but not modify the
large MEMOs.

You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted. If you attempt to update such a record, any modification to the
MEMO field is ignored.

Clipper supports a maximum of 10 characters in a field name. If you require more, use
an External Name with 10 characters or less.

Clipper supports the use of expressions to define keys. Within the Dictionary Editor, you
can place the expression in the external name field in the Key Properties dialog. The general
format of the external name is :
 'FileName=T[Expression]'

Where FileName represents the name of the index file (which can contain
a path and file extension), and T represents the type of the index. Valid
types are: C = character, D = date, and N = numeric. If the type is D or N
then Expression can name only one field.

The expression may refer to multiple fields in the record, and contain
xBase functions. Square brackets must enclose the expression. The
currently supported functions appear below. If the driver encounters an
unsupported Xbase function in a preexisting file, it posts error 76 'Invalid
Index String' when the file is opened for keys and static indexes.

String expressions may use the '+' operator to concatenate multiple string
arguments. Numeric expressions use the '+' or '-' operators with their
conventional meanings. The maximum length of a Clipper expression is
250 characters.

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string format mm/dd/yy; the result takes the
form 'yyyymmdd'. The yyyy element of the date defaults to the twentieth century.
An invalid date results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DESCEND(string|date|numeric)

Inverts the argument, and creates descending Clipper indexes.

DTOC(date) Converts a date key to string format 'mm/dd/yy'

DTOS(date) Converts a date key to string format 'yyyymmdd'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the string and the number of decimal
places are optional. The default string length is 10, and the number of decimal
places is 0.

SUBSTR(string,offset,n) Returns a substring of the string key starting at offset and of n characters in
length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

dBase III Files
The dBase3 file driver is compatible with dBase III. The default data file extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamicthey automatically update as
the data file changes. Indexes are staticthey do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is *.NDX.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file name
takes the first eight characters of the File Label plus an extension of .DBT.

Files: CWDB316.LIB Windows Export Library (16-bit)

CWDB332.LIB Windows Export Library (32-bit)

CLDB316.LIB Windows Static Link Library (16-bit)

CLDB332.LIB Windows Static Link Library (32-bit)

CWDB316.DLL Windows Dynamic Link Library (16-bit)

CWDB332.DLL Windows Dynamic Link Library (32-bit)

Tip: dBase III is probably the most common file format for PC database applications. These
days, even desktop publishing programs can import dBase III compatible .DBF files. If the
main task of your application is to export data files for other applications about which you
know nothing, you should consider this format.

dBase III:Data Types
The xBase file format stores all data as ASCII strings. You may either specify STRING types with declared
pictures for each field, or specify native Clarion types, which the driver converts automatically.
dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*NumericREAL STRING(@N-_p.d)
*LogicalBYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO
If your application reads and writes to existing files, a pictured STRING will suffice. However, if your
application creates a dBase III file, you may require additional information for these dBase III types:

To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name attribute, specify 'NumericFieldName=N(Precision,DecimalPlaces)' where
NumericFieldName is the name of the field, Precision is the precision of the field and
DecimalPlaces is the number of decimal places.

If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax. If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data from the
field.

If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file containing
the offset of the memo in the .DBT file. The MEMO declaration must have a NAME() attribute
naming the pointer field. An example file declaration follows:
File FILE, DRIVER('dBase3')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')
 END

END

dBase III:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size
 Character: 254 bytes
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Memo: 64K (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

dBase III:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/BUFFERS=n Specify a value for the number of buffers used to read and write to the file.

The dBase III driver utilizes DOS buffering. The default is three buffers of 1024
bytes each. Increasing the number of buffers will not increase performance when
a file is shared by multiple users.

SEND(file,'BUFFERS')
Returns the number of buffers in the form of a STRING.

/RECOVER

SEND(file,'RECOVER')
Equivalent to the Xbase RECALL command, which recovers records marked for
deletion. When using the dBase III driver, the DELETE statement flags a record
as "inactive." The driver does not remove the record until the PACK command is
executed.

/RECOVER is evaluated each time you open the file if you add the driver string to
the data dictionary. When the driver recovers the records previously marked for
deletion, you must manually rebuild keys and indexes with the BUILD statement.

SEND(file,'IGNORESTATUS=on|off')

/IGNORESTATUS=on|off
When set on, the driver does not skip deleted records when accessing the file
with GET, NEXT, and PREVIOUS in file order. It also enables a PUT on a deleted
or held record. /IGNORESTATUS requires opening the file in exclusive mode.

SEND(file,'IGNORESTATUS')
Returns the IGNORESTATUS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'DELETED')
For use only with the SEND command, when IGNORESTATUS is on. Reports the
status of the current record. If deleted, the return string is "ON;" if not, "OFF."

/OMNIS Specifies OMNIS file header and file delimiter compatibility.

dBase III:Unsupported/Modified Functions & Attributes
Memos: BINARY

dBase III supports only text memos.

Keys: DUP, NOCASE, OPT, ascending|descending

File: ENCRYPT, OWNER, RECLAIM

The dBase III driver cannot read encrypted dBase III files. To reclaim
space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The dBase III driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

dBase III does not support variable length records

File updates: PUT(file, fileptr, len)

dBase III does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend their
use. They must physically access the files and add overhead. Instead,
test the value returned by ERRORCODE() after each sequential access.
NEXT or PREVIOUS post Error 33 (Record Not Available) if an attempt is
made to access a record beyond the end or beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the data file
or its associated KEY files. Consequently it is slower than APPEND which
performs no checks and does not update KEYs. When adding large
amounts of data to a database use APPEND...BUILD in preference to
ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of two
forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the index.
The field names must appear as specified in the fields' NAME() attribute if
supplied, or must be the label name. A prefix may be used for
compatibility with the Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index, see

the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files are
copied if the newname is a subdirectory specification. To copy an index
file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NDX" for both the source and
the target file names if none is specified. If you require a file name without
an extension, terminate the name with a period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('dBase3')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)
 . .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A: CLAR2.DBF,
CLAR2.DBT, STRKEY.NDX, STRKEY2.NDX, and NUMKEY.NDX.

DELETE(file)

When the driver deletes a record from a dBase III database, the record is
not physically removed, instead the driver marks it inactive. Memo fields
are not physically removed from the memo file, however they cannot be
retrieved if they refer to an inactive record. Key values are removed from
the index files. To remove records and memo fields permanently, execute
a PACK(file).

Tip: To those programmers familiar with dBase III, this driver processes deleted records
consistent with the way dBase III processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from processing by executable code
statements, but remain in the data file.

HOLD(file), HOLD(file, timeout)

dBase III performs record locking by locking the entire record within the
data file. This prevents read access to other processes. Therefore we
recommend minimizing the amount of time for which a record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they both
contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under dBase III the RECORDS() function reports the same number of
records for the data file and its keys and indexes. Usually there will be no
difference in the number of records unless the INDEX is out of date.
Because the DELETE statement does not physically remove records, the
number of records reported by the RECORDS() function includes inactive
records. Exercise care when using this function.

RENAME(file, newname)

The RENAME command copies the data and memo files using newname,
which may specify a new file name or directory path. Key and index files
must be renamed using the same syntax as the COPY command, above.

BUILD(DynamicIndex, expression,filter) is not supported.

dBase III:Miscellaneous
dBase III allows a maximum of 254 characters to a character field.
dBase III allows a logical field to accept one of nine possible values (y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field from
a preexisting database in a logical expression, account for all these possibilities. Remember that
when a STRING field is used as an expression, it is true if it contains any data and false if it is
equal to zero or blank. Therefore, to evaluate a Logical field's truth, the expression should be
true if the field contains any of the "true" characters (T,t,Y, or y). For example, if a Logical field
were used to specify a product as taxable or nontaxable, the expression to evaluate its truth
would be:

(If Condition):
Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Clarion for Windows supports MEMO fields up to a maximum of 64K. If you have an
existing file which includes a memo greater than 64K, you can use the file but not modify the
large MEMOs.

You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

dBase III supports a maximum of 10 characters in a field name. If you require more, use
an External Name with 10 characters or less.

dBase III supports the use of expressions to define keys. Within the Dictionary Editor,
you can place the expression in the external name field in the Key Properties dialog. The
general format of the external name is :
 'FileName=T[Expression]'

Where FileName represents the name of the index file (which can contain
a path and file extension), and T represents the type of the index. Valid
types are: C = character, D = date, and N = numeric. If the type is D or N
then Expression can name only one field.

The expression may refer to multiple fields in the record, and contain
xBase functions. Square brackets must enclose the expression. The
currently supported functions appear below. If the driver encounters an
unsupported Xbase function in a preexisting file, it posts error 76 'Invalid
Index String' when the file is opened for keys and static indexes.

String expressions may use the '+' operator to concatenate multiple string
arguments. Numeric expressions use the '+' or '-' operators with their
conventional meanings. The maximum length of a dBase III expression is
250 characters.

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string format mm/dd/yy; the result takes the
form 'yyyymmdd'. The yyyy element of the date defaults to the twentieth century.
An invalid date results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length [, decimal places]])
Converts a numeric to a string. The length of the string and the number of
decimal places are optional. The default string length is 10, and the number of
decimal places is 0.

SUBSTR(string,offset,n) Returns a substring of the string key starting at offset and of n characters in
length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

POSITION(file) returns a STRING(12).
POSITION(key) returns a STRING the size of the key fields + 4 bytes.

dBase IV Files
The dBase4 file driver is compatible with dBase IV. The default data file extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are dynamicthey automatically update as
the data file changes. Indexes are staticthey do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is *.NDX.

dBase IV supports multiple index files, whose extension is *.MDX. The miscellaneous section describes
procedures for using .MDX files.

The driver stores records as fixed length. It stores memo fields in a separate file. The memo file name
takes the first eight characters of the File Label plus an extension of .DBT.

Files: CWDB416.LIB Windows Export Library (16-bit)

CWDB432.LIB Windows Export Library (32-bit)

CLDB416.LIB Windows Static Link Library (16-bit)

CLDB432.LIB Windows Static Link Library (32-bit)

CWDB416.DLL Windows Dynamic Link Library (16-bit)

CWDB432.DLL Windows Dynamic Link Library (32-bit)

Tip: dBase IV was never as widely adopted as dBase III. Choose this driver only when you must
share data with an end-user using dBase IV.

dBase IV:Data Types
The xBase file format stores all data as ASCII strings. You may either specify STRING types with declared
pictures for each field, or specify native Clarion types, which the driver converts automatically.
dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*NumericREAL STRING(@N-_p.d)
*LogicalBYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO
If your application reads and writes to existing files, a pictured STRING will suffice. However, if your
application creates a dBase IV file, you may require additional information for these dBase IV types:

To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name attribute, specify 'NumericFieldName=N(Precision,DecimalPlaces)' where
NumericFieldName is the name of the field, Precision is the precision of the field and
DecimalPlaces is the number of decimal places.

If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax. If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data from the
field.

If you're hand coding a STRING with picture, add the NAME attribute: STRING(1),
NAME('LogFld = L').

To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file containing
the offset of the memo in the .DBT file. The MEMO declaration must have a NAME() attribute
naming the pointer field. An example file declaration follows:

File FILE, DRIVER('dBase4')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')
 END

END

dBase IV:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size
 Character: 254 bytes
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point

Float: 20 bytes including decimal point
 Memo: 64K (see note)
Fields per Record: 255
Keys/Indexes per File:

.NDX: No Limit

.MDX 47 tags per .MDX files
Key Sizes
 Character: 100 bytes
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

dBase IV:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/BUFFERS=n Specify a value for the number of buffers used to read and write to the file.

The dBase IV driver utilizes DOS buffering. The default is three buffers of 1024
bytes each. Increasing the number of buffers will not increase performance when
a file is shared by multiple users.

SEND(file,'BUFFERS')
Returns the number of buffers in the form of a STRING.

/RECOVER

SEND(file,'RECOVER')
Equivalent to the Xbase RECALL command, which recovers records marked for
deletion. When using the dBase IV driver, the DELETE statement flags a record
as "inactive." The driver does not remove the record until the PACK command is
executed.

/RECOVER is evaluated each time you open the file if you add the driver string to
the data dictionary. When the driver recovers the records previously marked for
deletion, you must manually rebuild keys and indexes with the BUILD statement.

SEND(file,'IGNORESTATUS=on|off')

/IGNORESTATUS=on|off When set on, the driver does not skip deleted records when accessing the file
with GET, NEXT, and PREVIOUS in file order. It also enables a PUT on a deleted
or held record. /IGNORESTATUS requires opening the file in exclusive mode.

SEND(file,'IGNORESTATUS')
Returns the IGNORESTATUS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'DELETED')
For use only with the SEND command, when IGNORESTATUS is on. Reports the
status of the current record. If deleted, the return string is "ON;" if not, "OFF."

dBase IV:Unsupported/Modified Functions & Attributes
Memos: BINARY

dBase IV supports only text memos.

Keys: OPT

File: ENCRYPT, OWNER, RECLAIM

The dBase IV driver cannot read encrypted dBase IV files. To reclaim
space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The dBase IV driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

dBase IV does not support variable length records

File updates:

PUT(file, fileptr, len)

dBase IV does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend their
use. They must physically access the files and add overhead. Instead,
test the value returned by ERRORCODE() after each sequential access.
NEXT or PREVIOUS post Error 33 (Record Not Available) if an attempt is
made to access a record beyond the end or beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the data file
or its associated KEY files. Consequently it is slower than APPEND which
performs no checks and does not update KEYs. When adding large
amounts of data to a database use APPEND...BUILD in preference to
ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of two
forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the index.
The field names must appear as specified in the fields' NAME() attribute if
supplied, or must be the label name. A prefix may be used for
compatibility with the Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index, see
the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files are
copied if the newname is a subdirectory specification. To copy an index
file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NDX" for both the source and
the target file names if none is specified. If you require a file name without
an extension, terminate the name with a period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('dBase3')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)
 . .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A: CLAR2.DBF,
CLAR2.DBT, STRKEY.NDX, STRKEY2.NDX, and NUMKEY.NDX.

DELETE(file)

When the driver deletes a record from a dBase IV database, the record is
not physically removed, instead the driver marks it inactive. Memo fields
are not physically removed from the memo file, however they cannot be
retrieved if they refer to an inactive record. Key values are removed from
the index files. To remove records and memo fields permanently, execute
a PACK(file).

Tip: To those programmers familiar with dBase IV, this driver processes deleted records in a
consistent manner with the way dBase IV processes them after the SET DELETED ON
command is issued. Records marked for deletion are ignored from processing by
executable code statements, but remain in the data file.

HOLD(file), HOLD(file, timeout)

dBase IV performs record locking by locking the entire record within the
data file. This prevents read access to other processes. Therefore we
recommend minimizing the amount of time for which a record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they both
contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under dBase IV the RECORDS() function reports the same number of
records for the data file and its keys and indexes. Usually there will be no
difference in the number of records unless the INDEX is out of date.
Because the DELETE statement does not physically remove records, the
number of records reported by the RECORDS() function includes inactive
records. Exercise care when using this function.

RENAME(file, newname)

The RENAME command copies the data and memo files using newname,
which may specify a new file name or directory path. Key and index files
must be renamed using the same syntax as the COPY command, above.

POSITION(file) returns a STRING(12).
POSITION(key) returns a STRING containing the size of the key fields + 4 bytes.
BUILD(DynamicIndex, expression,filter) is not supported.

dBase IV:Miscellaneous
dBase IV allows a maximum of 254 characters to a character field.
dBase IV allows a logical field to accept one of 11 possible values (1,0,y,Y,n,N,t,T,f,F or a

space character). The space character is neither true nor false. When using a logical field from
a preexisting database in a logical expression, account for all these possibilities. Remember that
when a STRING field is used as an expression, it is true if it contains any data and false if it is
equal to zero or blank. Therefore, to evaluate a Logical field's truth, the expression should be
true if the field contains any of the "true" characters (T,t,Y, or y). For example, if a Logical field
were used to specify a product as taxable or nontaxable, the expression to evaluate its truth
would be:

(If Condition):
Taxable='1' OR Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Clarion for Windows supports MEMO fields up to a maximum of 64K. If you have an
existing file which includes a memo greater than 64K, you can use the file but not modify the
large MEMOs.

You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

dBase IV supports a maximum of 10 characters in a field name. If you require more, use
an External Name with 10 characters or less.

dBase IV supports the use of expressions to define keys. Within the Dictionary Editor,
you can place the expression in the external name field in the Key Properties dialog. The
general format of the external name is :
 'FileName=T[Expression]'

Where FileName represents the name of the index file (which can contain
a path and file extension), and T represents the type of the index. Valid
types are: C = character, D = date, and N = numeric. If the type is D or N
then Expression can name only one field.

Multiple-index (.MDX) files require the NAME() attribute on a KEY or INDEX to specify
the storage type of the key and any expression used to generate the key values. The general
format of the NAME() attribute on a KEY or INDEX is:
 NAME('TagName|FileName[PageSize]=T[Expression],FOR[Expression]')

The following documents the parameters for the NAME() attribute:

 TagName Specifies the name of an index tag within a multiple index file. If omitted the
driver creates a dBase IV style .NDX file using the name specified in FileName.

 FileName Specifies the name of the index file, which may contain a path and extension.

 PageSize Specifies that when creating a .MDX file, (if a TagName is specified), a number in
the range 2-32 specifying the number of 512-byte blocks in each index page.
This value is only used when creating the file. If you specify multiple values via
declarations for different tags in the same .MDX file, the largest value will be
selected. The default value is 2.

 T Specifies the type of the index,. Legal types are C = character, D = date, N =
numeric. If the type is D or N then Expression may name only one field.

 Expression Specifies an expression to generate the index. It may refer to multiple fields, and
invoke multiple xBase functions. The functions currently supported are listed

below. Square brackets must enclose the expression.

Elements of the NAME() attribute may be omitted from the right. When
specifying an Expression, you must also specify the type and name. If the
Expression is omitted, the driver determines the Expression from the key
fields when the file is created, or from the index file when opened.

If the type is omitted, the driver determines the index type from the first
key component when the file is created, or from the index file when
opened.

If the NAME() attribute is omitted altogether, the index file name is
determined from the key label. The path defaults to the same location as
the .DBF.

Tag names are limited to 9 characters in length. If the supplied name is
too long it is automatically truncated.

Specify all field names in the NAME() attribute without a prefix.

dBase IV additionally supports the use of the Xbase FOR statement in expressions to
define keys. The expressions supported in the FOR condition must be a simple condition of the
form:
 expression comparison_op expression

comparison_op may be one of the following: <, <=, =<, <>, =, =>, >= or >.

The expression may refer to multiple fields in the record, and contain xBase
functions. Square brackets must enclose the expression. The currently
supported functions appear below. If the driver encounters an
unsupported Xbase function in a preexisting file, it posts error 76 'Invalid
Index String' when the file is opened for keys and static indexes.

String expressions may use the '+' operator to concatenate multiple string
arguments. Numeric expressions use the '+' or '-' operators with their
conventional meanings. The maximum length of a dBase IV expression is
250 characters.

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string format mm/dd/yy; the result takes the
form 'yyyymmdd'. The yyyy element of the date defaults to the twentieth century.
An invalid date results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the string and the number of decimal
places are optional. The default string length is 10, and the number of decimal
places is 0.

SUBSTR(string,offset,n) Returns a substring of the string key starting at offset and of n characters in
length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

DOS Files
The DOS file driver reads and writes any binary, byte-addressable files. Neither fields nor records are
delimited. When reading a record, the driver reads the number of bytes defined in the file's RECORD
structure, unless a length parameter is specified in the GET statement.

The DOS driver supports the length parameter for the ADD, APPEND, GET, and PUT statements; this
allows for variable length records in a DOS file.

The POINTER function returns the relative byte position within the file of the beginning of the last record
accessed by an ADD, APPEND, GET, or NEXT statement.

This file driver performs forward sequential processing only. No key or transaction processing functions
are supported, and the PREVIOUS statement is not supported.

Tip: Due to its limitations, the main function of this driver is as a disk editor for binary files.

Files: CWDOS16.LIB Windows Export Library (16-bit)

CWDOS32.LIB Windows Export Library (32-bit)

CLDOS16.LIB Windows Static Link Library (16-bit)

CLDOS32.LIB Windows Static Link Library (32-bit)

CWDOS16.DLL Windows Dynamic Link Library (16-bit)

CWDOS32.DLL Windows Dynamic Link Library (32-bit)

DOS:Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT4

DOS:File Specifications/Maximums
File Size : 4,294,967,295
Records per File : 4,294,967,295
Record Size : 64K
Field Size : 64K
Fields per Record : 64K
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: n/a
Memo Field Size : n/a
Open Data Files : Operating system dependent

DOS:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used to read and write to the file.

The DOS driver allocates internal buffers of 512 bytes, or the size of your record,
whichever is larger, to store the retrieved file. The default number of buffers is 2
for files opened denying write access to other users, and 1 for all other open
modes. Use the optional driver string to increase the buffers should you find
access to records is slow.

SEND(file, 'FILEBUFFERS')
Returns the value of the number of buffers in STRING format.

/QUICKSCAN=on|off

SEND(file,'QUICKSCAN=on|off')
The DOS driver reads a buffer at a time (not a record), allowing for fast access.
In a multi-user environment these buffers are not 100% trustworthy for
subsequent access, because another user may change the database between
accesses. As a safeguard, the driver rereads the buffers before each record
access. To disable the reread, set QUICKSCAN to ON. The default is ON for files
opened denying write access to other users, and OFF for all other open modes.

SEND(file,'QUICKSCAN')
Returns the Quickscan setting (ON or OFF) in the form of a STRING(3).

DOS:Unsupported Functions and Attributes
Memos: NOMEMO()

Transaction Processing:COMMIT(), LOGOUT(), ROLLBACK()

Key Processing: BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer), RESET(key,string)
SET(file,key), SET(key), SET(key,key), SET(key,keypointer), SET(key,key,filepointer), DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)REGET(key)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

DOS:Miscellaneous
POSITION(file) returns a STRING(4).

FoxPro and FoxBase Files
The FoxPro file driver is compatible with FoxPro and FoxBase. The default data file extension is *.DBF.

The default index file extension is *.IDX. The default Memo file extension is .FBT. FoxPro also supports
multiple index files, whose default extension is *.CDX. The miscellaneous section describes the
procedures for using the .CDX files.

Files: CWFOX16.LIB Windows Export Library (16-bit)

CWFOX32.LIB Windows Export Library (32-bit)

CLFOX16.LIB Windows Static Link Library (16-bit)

CLFOX32.LIB Windows Static Link Library (32-bit)

CWFOX16.DLL Windows Dynamic Link Library (16-bit)

CWFOX32.DLL Windows Dynamic Link Library (32-bit)

Tip: The FoxPro index file format is the backbone of its vaunted "Rushmore" technology. The
old saying "There's no free lunch," however, applies. Adding and appending records to a
large database is a slower process than in other xBase formats, due to the time required to
update the index file.

FoxPro and FoxBase:Data Types
The xBase file format stores all data as ASCII strings. You may either specify STRING types with declared
pictures for each field, or specify native Clarion types, which the driver converts automatically.
FoxPro data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*NumericREAL STRING(@N-_p.d)
*LogicalBYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO
If your application reads and writes to existing files, a pictured STRING will suffice. However, if your
application creates a FoxPro or FoxBase file, you may require additional information for these FoxPro and
FoxBase types:

To create a numeric field in the Data Dictionary, choose the REAL data type. In the
External Name attribute, specify 'NumericFieldName=N(Precision,DecimalPlaces)' where
NumericFieldName is the name of the field, Precision is the precision of the field and
DecimalPlaces is the number of decimal places.

If you're hand coding a native Clarion data type, add the NAME attribute using the same
syntax. If you're hand coding a STRING with picture, STRING(@N-_9.2), NAME('Number'),
where Number is the field name.

To create a logical field, using the data dictionary, choose the BYTE data type. There are
no special steps; however, see the miscellaneous section for tips on reading the data from the
field.

If you're hand coding a STRING with picture, add the NAME attribute:
STRING(1), NAME('LogFld = L').

To create a date field, using the data dictionary, choose the DATE data type, rather than
LONG, which you usually use for the TopSpeed or Clarion file formats.

MEMO field declarations require the a pointer field in the file's record structure. Declare
the pointer field as a STRING(10) or a LONG. This field will be stored in the .DBF file containing
the offset of the memo in the .DBT file. The MEMO declaration must have a NAME() attribute
naming the pointer field. An example file declaration follows:
File FILE, DRIVER('FoxPro')
Memo1 MEMO(200),NAME('Notes')
Memo2 MEMO(200),NAME('Text')
Rec RECORD
Mem1Ptr LONG,NAME('Notes')
Mem2Ptr STRING(10),NAME('Text')
 END

END

FoxPro and FoxBase:File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size
 Character: 254 bytes
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Float: 20 bytes including decimal point
 Memo: 65,520 bytes (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes (.IDX)

254 bytes (.CDX)
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

FoxPro and FoxBase:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

/BUFFERS=n Specify a value for the number of buffers used to read and write to the file.

The FoxPro driver utilizes DOS buffering. The default is three buffers of 1024
bytes each. Increasing the number of buffers will not increase performance when
a file is shared by multiple users.

SEND(file,'BUFFERS')
Returns the number of buffers in the form of a STRING.

/RECOVER

SEND(file,'RECOVER')
Equivalent to the Xbase RECALL command, which recovers records marked for
deletion. When using the FoxPro driver, the DELETE statement flags a record as
"inactive." The driver does not remove the record until the PACK command is
executed.

/RECOVER is evaluated each time you open the file if you add the driver string to
the data dictionary. When the driver recovers the records previously marked for
deletion, you must manually rebuild keys and indexes with the BUILD statement.

/IGNORESTATUS=on|off When set on, the driver does not skip deleted records when accessing the file
with GET, NEXT, and PREVIOUS in file order. It also enables a PUT on a deleted
or held record. /IGNORESTATUS requires opening the file in exclusive mode.

SEND(file,'IGNORESTATUS')
Returns the IGNORESTATUS setting (ON or OFF) in the form of a STRING(3).

SEND(file,'DELETED')
For use only with the SEND command, when IGNORESTATUS is on. Reports the
status of the current record. If deleted, the return string is "ON;" if not, "OFF."

FoxPro and FoxBase:Unsupported/Modified Functions & Attributes
Memos: BINARY

FoxPro and FoxBase support only text memos.

Keys: DUP, NOCASE, OPT, ascending|descending

File: ENCRYPT, OWNER, RECLAIM

The FoxPro driver cannot read encrypted FoxPro or FoxBase files. To
reclaim space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The FoxPro driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

FoxPro and FoxBase do not support variable length records

File updates: PUT(file, fileptr, len)

FoxPro and FoxBase do not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend their
use. They must physically access the files and add overhead. Instead,
test the value returned by ERRORCODE() after each sequential access.
NEXT or PREVIOUS post Error 33 (Record Not Available) if an attempt is
made to access a record beyond the end or beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the data file
or its associated KEY files. Consequently it is slower than APPEND which
performs no checks and does not update KEYs. When adding large
amounts of data to a database use APPEND...BUILD in preference to
ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of two
forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the index.
The field names must appear as specified in the fields' NAME() attribute if
supplied, or must be the label name. A prefix may be used for
compatibility with the Clarion conventions but is ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index, see

the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files are
copied if the newname is a subdirectory specification. To copy an index
file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".IDX" for both the source and
the target file names if none is specified. If you require a file name without
an extension, terminate the name with a period. Given the file structure:

Clar2 FILE,CREATE,DRIVER('FOXPRO')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)
 . .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A: CLAR2.DBF,
CLAR2.DBT, STRKEY.IDX, STRKEY2.IDX, and NUMKEY.IDX.

DELETE(file)

When the driver deletes a record from a FoxPro or FoxBase database,
the record is not physically removed, instead the driver marks it inactive.
Memo fields are not physically removed from the memo file, however they
cannot be retrieved if they refer to an inactive record. Key values are
removed from the index files. To remove records and memo fields
permanently, execute a PACK(file).

Tip: To those programmers familiar with FoxPro, this driver processes deleted records
consistent with the way FoxPro processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from processing by executable code
statements, but remain in the data file.

HOLD(file), HOLD(file, timeout)

FoxPro and FoxBase perform record locking by locking the entire record
within the data file. This prevents read access to other processes.
Therefore we recommend minimizing the amount of time for which a
record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they both
contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under FoxPro and FoxBase the RECORDS() function reports the same
number of records for the data file and its keys and indexes. Usually there
will be no difference in the number of records unless the INDEX is out of
date. Because the DELETE statement does not physically remove
records, the number of records reported by the RECORDS() function
includes inactive records. Exercise care when using this function.

RENAME(file, newname)

The RENAME command copies the data and memo files using newname,
which may specify a new file name or directory path. Key and index files
must be renamed using the same syntax as the COPY command, above.

POSITION(file) returns a STRING(12).
POSITION(key) returns a STRING the size of the key fields + 4 bytes.
BUILD(DynamicIndex, expression,filter) is not supported.

FoxPro and FoxBase:Miscellaneous
FoxPro and FoxBase allow a logical field to accept one of 11 possible values

(0,1,y,Y,n,N,t,T,f,F or a space character). The space character is neither true nor false. When
using a logical field from a preexisting database in a logical expression, account for all these
possibilities. Remember that when a STRING field is used as an expression, it is true if it
contains any data and false if it is equal to zero or blank. Therefore, to evaluate a Logical field's
truth, the expression should be true if the field contains any of the "true" characters (1,T,t,Y, or
y). For example, if a Logical field were used to specify a product as taxable or nontaxable, the
expression to evaluate its truth would be:

(If Condition):
Taxable='1' OR Taxable='T' OR Taxable='t' OR Taxable='Y' OR Taxable='y'

Clarion for Windows supports MEMO fields up to a maximum of 64K. If you have an
existing file which includes a memo greater than 64K, you can use the file but not modify the
large MEMOs.

You can determine when your application encounters a large MEMO by detecting when
the memo pointer variable is non-blank, but the memo appears to be blank. Error 47 (Bad
Record Declaration) is posted, and any modification to the MEMO field is ignored.

FoxPro and FoxBase support a maximum of 10 characters in a field name. If you require
more, use an External Name with 10 characters or less.

FoxPro and FoxBase support the use of expressions to define keys. Within the
Dictionary Editor, you can place the expression in the external name field in the Key Properties
dialog. The general format of the external name is :
 'FileName=T[Expression]'

Where FileName represents the name of the index file (which can contain
a path and file extension), and T represents the type of the index. Valid
types are: C = character, D = date, and N = numeric. If the type is D or N
then Expression can name only one field.

Multiple-index (.CDX) files require the NAME() attribute on a KEY or INDEX to specify
the storage type of the key and any expression used to generate the key values. The general
format of the NAME() attribute on a KEY or INDEX is:
NAME('TagName|FileName[PageSize]=T[Expression],COMPRESSED')

The following documents the parameters for the NAME() attribute:

TagName Names an index tag within a multiple index file. If the TagName is omitted the
driver creates an .IDX file with the name specified in FileName.

FileName Names the index file, and optionally contains a path and extension.

PageSize May only be specified when creating a .CDX file (if a TagName is specified). It is
a number in the range 2-32 specifying the number of 512-byte blocks in each
index page. This value is only used when creating the file. If multiple values are
specified via declarations for different tags in the same .MDX file, the largest
value will be selected. The default value is 2.

T Specifies the type of the index; legal types are C = character, D = date, N =
numeric. If the type is D or N then Expression may name only one field.

Expression Specifies the expression used to generate the index. The expression may refer to
multiple fields, and invoke multiple of xBase functions. The functions currently
supported are listed below. Square brackets must enclose the expression.

COMPRESSED When specified, the FoxPro Driver creates a FoxPro 2 compatible
compressed .IDX file.

Elements of the NAME() attribute may be omitted from the right. When
specifying an Expression, the type and name must also be specified. If
the Expression is omitted, the driver determines the Expression from the
key fields when the file is created, or from the index file when opened.

If the type is omitted, the driver determines the index type from the first
key component when the file is created, or from the index file when
opened.

If the NAME() attribute is omitted altogether, the index file name is
determined from the key label. The path defaults to the same location as
the .DBF.

Tag names are limited to 9 characters in length; if the supplied name is
too long it is automatically truncated.

All field names in the NAME() attribute must be specified without a prefix.

FoxPro additionally supports the use of the Xbase FOR statement in expressions to
define keys. The expressions supported in the FOR condition must be a simple condition of the
form:
expression comparison_op expression

comparison_op may be one of the following: <, <=, =<, <>, =, =>, >= or >.

The expression may refer to multiple fields in the record, and contain
xBase functions. Square brackets must enclose the expression. The
currently supported functions appear below. If the driver encounters an
unsupported Xbase function in a preexisting file, it posts error 76 'Invalid
Index String' when the file is opened for keys and static indexes.

String expressions may use the '+' operator to concatenate multiple string
arguments. Numeric expressions use the '+' or '-' operators with their
conventional meanings. The maximum length of a FoxPro or FoxBase
expression is 250 characters.

Supported xBase Commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string format mm/dd/yy; the result takes the
form 'yyyymmdd'. The yyyy element of the date defaults to the twentieth century.
An invalid date results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format 'mm/dd/yy.'

DTOS(date) Converts a date key to string format 'yyyymmdd.'

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE, otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the string and the number of decimal
places are optional. The default string length is 10, and the number of decimal
places is 0.

SUBSTR(string,offset,n) Returns a substring of the string key starting at offset and of n characters in
length.

TRIM(string) Removes spaces from the right of a string (identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

TopSpeed Database Files
The TopSpeed Database file system is a high-performance, high-security, proprietary file driver for Clarion
development tools. It is not compatible with Clarion 2.1 and 3.0 files.

Data tables, keys, indexes and memos can all be stored together in a single DOS file. The default file
extension is *.TPS. A separate "Transaction Control File" takes the *.TCF extension.

The TopSpeed driver can optionally store multiple tables in a single DOS file. This allows you to open as
many data tables, keys and indexes as necessary using a single DOS file handle. This feature may be
especially useful when there are a large number of small tables, or when a group of related files are
normally accessed together. All keys, indexes, and Memos are always stored internally.

In addition, the TopSpeed file system supports the BLOB data type (Binary Large OBject), a string field
which is completely variable-length and may be greater than 64K in size (in both 16 and 32-bit
applications). A BLOB must be declared before the RECORD structure. Memory for a BLOB is
dynamically allocated and de-allocated as necessary. For more information, see BLOB in Chapter 10 of
the Language Reference.

Files: CWTPS16.LIB Windows Export Library (16-bit)

CWTPS32.LIB Windows Export Library (32-bit)

CLTPS16.LIB Windows Static Link Library (16-bit)

CLTPS32.LIB Windows Static Link Library (32-bit)

CWTPS16.DLL Windows Dynamic Link Library (16-bit)

CWTPS32.DLL Windows Dynamic Link Library (32-bit)

Tip: This new driver offers speed, security, and takes up fewer resources on the end users
system.

See Also:

TopSpeed:Storing multiple Tables (data files) in a single DOS file.

TopSpeed Database Recovery Utility

TopSpeed:Data Types
BYTE DECIMAL
SHORT STRING
USHORT CSTRING
LONG PSTRING
ULONG MEMO
SREAL GROUP
REAL BLOB

TopSpeed:Maximum File Specifications
File Size : Limited only by disk space
Records per File : Unsigned Long (4,294,967,295)
Record Size : 64K
Field Size : 64K
Fields per Record : 64K
Keys/Indexes per File: 240
Key Size: 64K
Memo fields per File: 255
Memo Field Size : 64K
BLOB fields per File: 255
BLOB Size : Hardware dependent
Open Data Files : Operating system dependent

TopSpeed:Driver Strings and SEND functions
Driver strings (the second parameter of the DRIVER attribute) are all preceded by a forward slash
character (/). SEND function commands can take two formatsone with an equal sign modifies a switch
setting and return the value of the previous switch setting; the other format (without an equal sign) returns
the value of the switch.

Driver strings are sent to the file driver when the file is opened. The SEND function sends a command to
modify a setting after the file is open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the SEND function syntax to return the
value of the switch is listed for all driver strings.

SEND(file,'TCF=file name')

/TCF=file name Specifies a transaction control file other than the default \TOPSPEED.TCF. The
file holds all multi-file commits until the program terminates or a SEND(TCF=file
name) executes.

SEND(file,'PNM=name')

/PNM=name Retrieves the names of the tables in a group (a single DOS file).

To retrieve the first name, issue this command: SEND(file,'PNM='). This returns
the name of the first table. Subsequent calls pass the name received and return
the next name.

For example, given a file with three tablesSupp, Part, and Ship, the example
below displays an alphabetical listing:

CODE
name = ' '
LOOP
name = (SEND(Supp,'PNM=' & name)
If name
DISPLAY name

ELSE
BREAK

 END
 END

TopSpeed:Unsupported Functions and Attributes
Record Access: GET(file, fileptr, len), ADD(file, len), APPEND(file, len)
 The TopSpeed Driver does not support variable length records
GET(file,1)
This relies on a valid pointer returned from the POINTER() function. You cannot use

GET(file,1) to retrieve the first record because 1 is not a valid pointer.
File updates: PUT(file, fileptr, len)
 The TopSpeed Driver does not support variable length records
Keys: NAME()
The TopSpeed Driver does not support external names for keys. All keys are stored

internally.

TopSpeed:Miscellaneous
SHARE and open access modes:
The following open access modes are supported Share required

34 (12h) Read/Write, deny write (default for OPEN) Yes
66 (42h) Read/Write, deny none (default for SHARE) Yes
64 (40h) Read Only, deny none Yes
18 (12h) Read/Write, deny all No
16 (10h) Read Only, deny all No
32 (20h) Read Only, deny write No

For the modes indicated, SHARE.EXE (which implements DOS record
locking) must be loaded in AUTOEXEC.BAT or CONFIG.SYS. The
following example loads SHARE in AUTOEXEC.BAT, providing 500
maximum file locks, and the default 2048 bytes for the storage area.

C:\DOS\SHARE.EXE /L:500

If SHARE.EXE is required but not loaded, the program generates a
runtime error when OPEN or SHARE is called (deny none modes), or
when an update is attempted (deny write modes).

APPEND()
APPEND() is recommended over ADD() if the total size of the keys exceeds the amount

of RAM available, if there is more than one key, or when adding a large number of records. The
size of a key (for this purpose) is the number of entries times (the sum of key fields + 10 bytes).
If the records being added are already in an approximate key order, then you can discount that
key for the purposes of the above calculation.

 As an example, if a file has two 40 byte keys and 2 Megabytes of RAM are available,
then ADD() becomes (relatively) slow when the database size exceeds about 2,000,000 / (40 +
10 + 40 + 10) = 20,000 records.

BUILD(file), BUILD(key)
The TopSpeed driver implements incremental building; this means that building a key

only reads records starting from the first record appended since the key was last built. The
driver merges the new keys with the existing key. Thus building a large key where only a few
recently added records have been modified should be fast. Building an index is similar, but must
start at the minimum physical record whose position in the index has changed since the index
was last built.

Dynamic indexes are not retained, so cannot be built incrementally.
LOCK(file)
LOCK() only affects other LOCK() calls. The only effect of a successful call to LOCK() is

that other processes will get an error FLALLK when they call LOCK().
LOGOUT(), COMMIT(), ROLLBACK()
A transaction control file is used to ensure that transactions which update more than one

DOS file are committed atomically. By default the transaction control file (.TCF) has the name "\
TOPSPEED.TCF." A SEND() command allows you to change this.

The .TCF file must be accessible when any files controlled by it are accessed. If a
transaction involves updating more than one shared network file, you should specify a
transaction control file on the network. It is not necessary to use the same TCF file for all
transactions; however, it must reside where it can be read by everyone accessing the file. If not,
after a crash/power-fail during a COMMIT(), some files may be updated, and others not. (The
files will not be corrupted - they may just not be consistent with one another).

A .TCF file can be deleted only if all files controlled by it may have been
opened (for writing) since a crash/power-fail.

POINTER(key)
The value returned by POINTER(key) corresponds to a physical data record.

Consequently when that record is removed by a call to DELETE() the pointer becomes invalid.
Any subsequent access using the pointer fails. If you require fuzzy matching whereby the
nearest record is returned, use the POSITION() function and appropriate access functions.

STREAM(), FLUSH()
When reading a large number of records, use STREAM() or open the file in a deny write

mode e.g. OPEN(f) rather than SHARE(f). After the records have been read, call FLUSH() to
allow other users access.

It is very important to use STREAM() when adding/appending/putting a
large number of records. STREAM() will typically make processing about
20 times faster. For example, adding 1000 records might take nearly 2
minutes without STREAM(), but only 5 seconds with STREAM. It is not
necessary to use STREAM() or FLUSH() on a logged out file
(performance on logged out files is always good).

Tip: When utilizing STREAM() to update a large number of records, the driver stores
uncommitted or unflushed pages in memory, and it is possible to run out of memory.
Calling COMMIT(), FLUSH(), or LOGOUT() periodically prevents this. To calculate the
maximum "updates" between each COMMIT(), divide the available memory by the update
size. When appending, the update size is approximately the size of the record in bytes.
When adding, the update size is approximately the size of the records and key component
fields in bytes. When updating records using PUT(), it's theoretically possible for the
update size to reach 7K. In practice, we recommend committing data every 100 or so
updates.

POSITION(file) returns a STRING the size of the key fields + 4 bytes.
POSITION(key) returns a STRING the size of the key fields + 4 bytes.

TopSpeed:Storing multiple Tables (data files) in a single DOS file.
By using the special escape sequence '\!' in the NAME() attribute of a
TopSpeed file declaration, you can specify that a single DOS file will store
more than one table. For example, to declare a single DOS file 's&p.tps'
which is to contain 3 logical tables, called supp, part and ship:

Supp FILE,DRIVER('TopSpeed'),PRE(Supp),CREATE,NAME('S&P\!Supp')
 ...
Part FILE,DRIVER('TopSpeed'),PRE(Part),CREATE,NAME('S&P\!Part')
 ...
Ship FILE,DRIVER('TopSpeed'),PRE(Ship),CREATE,NAME('S&P\!Ship')
 ...

The data files share a single DOS file handle, opened when the first file is
opened, and closed when the last file is closed. The first open mode
determines the open mode for all the other files. If the first open mode is
read-only, then no updates of any kind can be performed successfully
(ACCDNID will be returned).

If one file in a group is logged out, then all the files in the group are
effectively logged out. If one file in a group is flushed, then all files in the
group are flushed.

This feature is especially useful when there are a large number of small
tables, or when the application must normally access group of related files
together.

If no escape sequence is specified, then a default table name 'unnamed'
is supplied, so that the following are all equivalent:

foo FILE,DRIVER('TopSpeed')
foo FILE,DRIVER('TopSpeed'),NAME('foo')
foo FILE,DRIVER('TopSpeed'),NAME('foo\!unnamed')

A SEND() command allows the programmer to determine the names of
the files within a group. Files can be renamed within a group; for example,
given the above declarations the following command will rename the file
called Supp to Old_Supp:

RENAME(Supp,'S&P\!Old_Supp')

Renaming to another existing group normally involves copying/removal,
so is less efficient.

If your are using the OWNER attribute on multiple tables in a TopSpeed
database file, all tables must have the same OWNER attribute.

TopSpeed Database Recovery Utility
The TopSpeed file system is designed to automatically repair most errors. If the data file is physically
damaged during a system malfunction, the TopSpeed Database Recovery Utility can recover the
undamaged portions of your data.

Note: The TopSpeed Database Recovery Utility is an emergency repair tool and should not be
used on a regular basis. Use it only when a file has been damaged.

The TopSpeed Database Recovery Utility reads the damaged file and writes the recovered records to a
new file. It uses the information stored in the file's header or scans the file recovering undamaged
portions. Optionally, you can provide an example file containing table (individual file) and key layout.

The TopSpeed Database Recovery Utility is a freely distributable utility designed to enable your end users
to recover damaged files.

The recovery utility is designed to work interactively or transparently via command line parameters.
Interactively, you can use the utility to recover damaged files and provide the parameters via two wizard
dialogs. Using the command line parameters, you can incorporate it in your application using a RUN()
statement or create a shortcut (in Windows 95) or Program Manager Icon (in Windows 3.1x) with the
parameters to enable end users to recover data files.

See Also:

Using the TopSpeed Database Recovery Utility Interactively

TopSpeed Database Recovery Utility:Command Line Parameters

Using the Utility in your Application

Running the TopSpeed Database Recovery Utility

Using the TopSpeed Database Recovery Utility Interactively
1. Start the utility by double-clicking on the TopSpeed Database Recovery Utility Icon In the Clarion

for Windows 1.5 Program Group.

The TopSpeed Database Recovery Utility dialog appears. The utility
consists of two wizard dialogs.

2. In the Source (file to recover) section, specify the file name or press the Browse button to select
it from a standard file open dialog.

3. If the file has a password, type it in the Password entry box.

If the database file contains multiple tables (data files), each table must
have the same password.

4. Optionally, in the Destination (result file) section, specify the file name for the target file or press
the Browse button to select it from a standard file open dialog.

By default the .TPR extension is added to the source file name. This
parameter is optional. If omitted, the original (source file) is overwritten
and a backup file is created. The source file is renamed to filename.TPx,
where x is automatically incremented from 1 to 9 each time a new file is
created. If all nine numbers are used, any subsequent files created are
given the extension .TP$ and are overwritten.

5. If the result file is to have a different password, type it in the Password entry box. If omitted, the
password is removed.

6. Press the Next button.

The second wizard dialog for the TopSpeed Database Recovery Utility
appears.

7. Optionally, specify the Example File file name or press the Browse button to select it from a
standard file open dialog.

The utility uses the Example File to determine table layouts and key
definitions in the event those areas of the source file are damaged. The
default extension is .TPE, but if you choose, you may use any valid DOS
extension

Tip: We recommend shipping an example file when you deploy your application. This improves
data recovery from a damaged file.

8. If the example file has a password, type it in the Password entry box.

9. If you want the utility to rebuild Keys, check the Build Keys box.

If omitted, the keys are rebuilt by the original application when it attempts
to open it.

10. If you want to use the Header Information in the source file, check the Use Header box.

Utilizing Header Information optimizes the utility's performance, but
should not be used if the file header is corrupt. If omitted, the utility
searches the entire data file and restores all undamaged pages.

11. If the application uses a Locale (.ENV) File for an alternate collating sequence, specify the .ENV
file or press the Browse button to select it from a standard file open dialog.

12. If the file is using the OEM attribute to control the collating sequence, Check the Use OEM box.

This enables the OEMTOANSI and ANSITOOEM conversion.
13. Press the Start button to begin the recovery process.

If the utility does not find any errors, a message appears informing you
that "No Errors Detected in <fliename.ext>" and asks if you want to
continue with recovery.

TopSpeed Database Recovery Utility:Command Line Parameters
The utility can also accept command line parameters which enables you to execute it from an application
or Program Manager Icon (or Shortcut in Windows 95).

TPSFIX sourcepath[?password] [destpath[?password]]
 [/E:examplepath[?password]] [/L:localepath] [/H] [/K] [/P] [/O]

sourcepath The file name and path of the source (damaged) database file.

[?password] The database file's password.

destpath The file name and path of the recovered database file.

[?password] The recovered database file's password.

/E:examplepath The file name and path of the example database file.

[?password] The example database file's password

/L:localepath The Locale (.ENV) file used to specify an alternate collating sequence.

/H If specified, the utility uses the header information in the source file.

/K If specified, the utility rebuilds all keys for the database.

/P If specified, the user is prompted for each parameter even if they are supplied on
the command line.

/O If specified, the file uses OEMTOANSI and ANSITOOEM to determine the
collating sequence. See Internationalization in Chapter 10 of the Language
Reference.

Using the Utility in your Application
There are some issues to consider before allowing the utility to run.

o The database file should NOT be open when running the utility.
Ensure that the file is closed before allowing the user to start the
utility.

o To prevent access during the recovery process is completed, the
utility locks the file automatically.

o It is more efficient and safer to allow the application to rebuild the
KEYs (by omitting the /K parameter in the recovery). It is also a
good way to check the status of a recovery.

Running the TopSpeed Database Recovery Utility
There are basically two methods you can use from a RUN() statement: Using the first method, you omit
the destpath parameter so the original (source) file is overwritten. This requires an Example file.

In the Application Generator:

1. In the Actions dialog for a button or menu item, choose Run a Program from the drop down list.

2. In the Program Name entry box, specify TPSFIX.EXE.

3. In the parameters entry box, specify the parameters (see Command Line Parameters above).
For Example:
TPSFIX.EXE Datafile.TPS /E:Example.TPE /H
In Embedded Source Code:

RUN('TPSFIX.EXE Datafile.TPS /E:Example.TPE /H')
This recovers the "datafile.TPS" file using the "Example.TPE" file as an example for the table and key
layouts, does not rebuild the keys, and uses the header information in the original file. The original file is
saved to a backup file with an extension of TP1 through TP9. Each time the utility is executed, the
numeric portion of the extension is incremented.

The second method requires two lines of embedded source code but gives you control over the renaming
process. You insert the source code in the Accepted Embed point for the Menu Item or button.

For example:
COPY(datafilelabel, 'Datafile.OLD') ! copies the original file

! to Datafile.OLD
RUN(TPSFIX Datafile.OLD Datafile.tps /H) ! Runs the utility using the

! renamed file as
! the source and the original
! name as the target

This copies the datafilelabel file to DATAFILE.OLD, recovers the file and writes it to DATAFILE.TPS using
the header information in the original file.

